首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Discretizing the fracture-matrix interface to simulate solute transport   总被引:1,自引:0,他引:1  
This article examines the required spatial discretization perpendicular to the fracture-matrix interface (FMI) for numerical simulation of solute transport in discretely fractured porous media. The discrete-fracture, finite-element model HydroGeoSphere ( Therrien et al. 2005 ) and a discrete-fracture implementation of MT3DMS ( Zheng 1990 ) were used to model solute transport in a single fracture, and the results were compared to the analytical solution of Tang et al. (1981) . To match analytical results on the relatively short timescales simulated in this study, very fine grid spacing perpendicular to the FMI of the scale of the fracture aperture is necessary if advection and/or dispersion in the fracture is high compared to diffusion in the matrix. The requirement of such extremely fine spatial discretization has not been previously reported in the literature. In cases of high matrix diffusion, matching the analytical results is achieved with larger grid spacing at the FMI. Cases where matrix diffusion is lower can employ a larger grid multiplier moving away from the FMI. The very fine spatial discretization identified in this study for cases of low matrix diffusion may limit the applicability of numerical discrete-fracture models in such cases.  相似文献   

2.
The migration of five dense nonaqueous phase liquids (DNAPLs) through a single fracture in a clay aquitard was numerically simulated with the use of a compositional simulator. The effects of fracture aperture, fracture dip, matrix porosity, and matrix organic carbon content on the migration of chlorobenzene, 1,2-dichloroethylene, trichloroethylene, tetra-chloroethylene, and 1,2-dibromoethane were examined. Boundary conditions were chosen such that DNAPL entry into the system was allowed to vary according to the stresses applied. The aperture is the most important factor of those studied controlling the migration rate of DNAPL through a single fracture embedded in a clay matrix. Loss of mass to the matrix through diffusion does not significantly retard the migration rate of the DNAPL, particularly in larger aperture fractures (e.g., 50 microm). With time, the ratio of diffusive loss to the matrix to DNAPL flux into the fracture approaches an asymptotic value lower than unity. The implication is that matrix diffusion cannot arrest the migration of DNAPL in a single fracture. The complex relationships between density, viscosity, and solubility that, to some extent, govern the migration of DNAPL through these systems prevent accurate predictions without the use of numerical models. The contamination potential of the migrating DNAPL is significantly increased through the transfer of mass to the matrix. The occurrence of opposite concentration gradients within the matrix can cause dissolved phase contamination to exist in the system for more than 1000 years after the DNAPL has been completely removed from the fracture.  相似文献   

3.
A new lumped-parameter approach to simulating unsaturated flow processes in dual-porosity media such as fractured rocks or aggregated soils is presented. Fluid flow between the fracture network and the matrix blocks is described by a non-linear equation that relates the imbibition rate of the local difference in liquid-phase pressure between the fractures and the matrix blocks. Unlike a Warren-Root-type equation, this equation is accurate in both the early and late time regimes. The fracture/matrix interflow equation has been incorporated into an existing unsaturated flow simulator, to serve as a source/sink term for fracture gridblocks. Flow processes are then simulated using only fracture gridblocks in the computational grid. This new lumped-parameter approach has been tested on two problems involving transient flow in fractured/porous media, and compared with simulations performed using explicit discretisation of the matrix blocks. The new procedure seems to accurately simulate flow processes in unsaturated fractured rocks, and typically requires an order of magnitude less computational time than do simulations using fully-discretised matrix blocks.  相似文献   

4.
In general, the accuracy of numerical simulations is determined by spatial and temporal discretization levels. In fractured porous media, the time step size is a key factor in controlling the solution accuracy for a given spatial discretization. If the time step size is restricted by the relatively rapid responses in the fracture domain to maintain an acceptable level of accuracy in the entire simulation domain, the matrix tends to be temporally over-discretized. Implicit sub-time stepping applies smaller sub-time steps only to the sub-domain where the accuracy requirements are less tolerant and is most suitable for problems where the response is high in only a small portion of the domain, such as within and near the fractures in fractured porous media. It is demonstrated with illustrative examples that implicit sub-time stepping can significantly improve the simulation efficiency with minimal loss in accuracy when simulating flow and transport in fractured porous media. The methodology is successfully applied to density-dependent flow and transport simulations in a Canadian Shield environment, where the flow and transport is dominated by discrete, highly conductive fracture zones.  相似文献   

5.
Variations in fluid density can greatly affect fluid flow and solute transport in the subsurface. Heterogeneities such as fractures play a major role for the migration of variable-density fluids. Earlier modeling studies of density effects in fractured media were restricted to orthogonal fracture networks, consisting of only vertical and horizontal fractures. The present study addresses the phenomenon of 3D variable-density flow and transport in fractured porous media, where fractures of an arbitrary incline can occur. A general formulation of the body force vector is derived, which accounts for variable-density flow and transport in fractures of any orientation. Simulation results are presented that show the verification of the new model formulation, for the porous matrix and for inclined fractures. Simulations of variable-density flow and solute transport are then conducted for a single fracture, embedded in a porous matrix. The simulations show that density-driven flow in the fracture causes convective flow within the porous matrix and that the high-permeability fracture acts as a barrier for convection. Other simulations were run to investigate the influence of fracture incline on plume migration. Finally, tabular data of the tracer breakthrough curve in the inclined fracture is given to facilitate the verification of other codes.  相似文献   

6.
Numerical simulations of variable-density flow and solute transport have been conducted to investigate dense plume migration for various configurations of 2D fracture networks. For orthogonal fractures, simulations demonstrate that dispersive mixing in fractures with small aperture does not stabilize vertical plume migration in fractures with large aperture. Simulations in non-orthogonal 2D fracture networks indicate that convection cells form and that they overlap both the porous matrix and fractures. Thus, transport rates in convection cells depend on matrix and fracture flow properties. A series of simulations in statistically equivalent networks of fractures with irregular orientation show that the migration of a dense plume is highly sensitive to the geometry of the network. If fractures in a random network are connected equidistantly to the solute source, few equidistantly distributed fractures favor density-driven transport. On the other hand, numerous fractures have a stabilizing effect, especially if diffusive transport rates are high. A sensitivity analysis for a network with few equidistantly distributed fractures shows that low fracture aperture, low matrix permeability and high matrix porosity impede density-driven transport because these parameters reduce groundwater flow velocities in both the matrix and the fractures. Enhanced molecular diffusion slows down density-driven transport because it favors solute diffusion from the fractures into the low-permeability porous matrix where groundwater velocities are smaller. For the configurations tested, variable-density flow and solute transport are most sensitive to the permeability and porosity of the matrix, which are properties that can be determined more accurately than the geometry and hydraulic properties of the fracture network, which have a smaller impact on density-driven transport.  相似文献   

7.
Estimates of contaminant fluxes from DNAPL sources as a function of time and DNAPL mass reduction are important to assess the long-term sustainability and costs of monitored natural attenuation and to determine the benefits of partial source removal. We investigate the accuracy of the upscaled mass transfer function (MTF) proposed by Parker and Park [Parker JC, Park E. Modeling field-scale dense nonaqueous phase liquid dissolution kinetics in heterogeneous aquifers. WRR 2004;40:W05109] to describe field-scale dissolved phase fluxes from DNAPL sources for a range of scenarios generated using high-resolution 3-D numerical simulations of DNAPL infiltration and long-term dissolved phase transport. The results indicate the upscaled MTF is capable of accurately describing field-scale DNAPL dissolution rates as a function of time. For finger-dominated source regions, an empirical mass depletion exponent in the MTF takes on values greater than one which results in predicted mass flux rates that decrease continuously with diminishing DNAPL mass over time. Lens-dominated regions exhibit depletion exponents less than one, which results in more step-function like mass flux versus time behavior. Mass fluxes from DNAPL sources exhibiting both lens- and finger-dominated subregions were less accurately described by the simple MTF, but were well described by a dual-continuum model of the same form for each subregion. The practicality of calibrating a dual-continuum model will likely depend on the feasibility of obtaining spatially resolved field measurements of contaminant fluxes or concentrations associated with the subregions using multilevel sampling or some other means.  相似文献   

8.
We present a method to determine equivalent permeability of fractured porous media. Inspired by the previous flow-based upscaling methods, we use a multi-boundary integration approach to compute flow rates within fractures. We apply a recently developed multi-point flux approximation Finite Volume method for discrete fracture model simulation. The method is verified by upscaling an arbitrarily oriented fracture which is crossing a Cartesian grid. We demonstrate the method by applying it to a long fracture, a fracture network and the fracture network with different matrix permeabilities. The equivalent permeability tensors of a long fracture crossing Cartesian grids are symmetric, and have identical values. The application to the fracture network case with increasing matrix permeabilities shows that the matrix permeability influences more the diagonal terms of the equivalent permeability tensor than the off-diagonal terms, but the off-diagonal terms remain important to correctly assess the flow field.  相似文献   

9.
Hydraulic displacement is a mass removal technology suitable for stabilization of a dense, nonaqueous phase liquid (DNAPL) source zone, where stabilization is defined as reducing DNAPL saturations and reducing the risk of future pool mobilization. High resolution three-dimensional multiphase flow simulations incorporating a spatially correlated, heterogeneous porous medium illustrate that hydraulic displacement results in an increase in the amount of residual DNAPL present, which in turn results in increased solute concentrations in groundwater, an increase in the rate of DNAPL dissolution, and an increase in the solute mass flux. A higher percentage of DNAPL recovery is associated with higher initial DNAPL release volumes, lower density DNAPLs, more heterogeneous porous media, and increased drawdown of groundwater at extraction wells. The fact that higher rates of recovery are associated with more heterogeneous porous media stems from the fact that larger contrasts in permeability provide for a higher proportion of capillary barriers upon which DNAPL pooling and lateral migration can occur. Across all scenarios evaluated in this study, the ganglia-to-pool (GTP) ratio generally increased from approximately 0.1 to between approximately 0.3 and 0.7 depending on the type of DNAPL, the degree of heterogeneity, and the imposed hydraulic gradient. The volume of DNAPL recovered as a result of implementing hydraulic displacement ranged from between 9.4% and 45.2% of the initial release volume, with the largest percentage recovery associated with 1,1,1 trichloroethane, the least dense of the three DNAPLs considered.  相似文献   

10.
The objective of this work is to develop a new numerical approach for the three-dimensional modelling of flow and transient solute transport in fractured porous media which would provide an accurate and efficient treatment of 3D complex geometries and inhomogeneities. For this reason, and in order to eliminate as much as possible the number of degrees of freedom, the fracture network, fractures and their intersections, are solved with a coupled 2D–1D model while the porous matrix is solved independently with a 3D model. The interaction between both models is accounted for by a coupling iterative technique. In this way it is possible to improve efficiency and reduce CPU usage by avoiding 3D mesh refinements of the fractures. The approach is based on the discrete-fracture model in which the exact geometry and location of each fracture in the network must be provided as an input. The formulation is based on a multidimensional coupling of the boundary element method-multidomain (BEM-MD) scheme for the flow and boundary element dual reciprocity method-multidomain (BE-DRM-MD) scheme for the transport. Accurate results and high efficiency have been obtained and are reported in this paper.  相似文献   

11.
Invasion percolation (IP) models of dense non‐aqueous phase liquid (DNAPL) invasion into saturated horizontal fractures typically neglect viscous and gravity forces, as it is assumed that capillarity dominates in many situations. An IP model simulating DNAPL invasion into saturated horizontal fractures was modified to include gravity as a local effect. The model was optimized using a genetic algorithm, and demonstrated that the inclusion of gravity is important for replicating the architecture of the DNAPL invasion pattern. The optimized gravity‐included simulation showed the DNAPL invasion pattern to be significantly more representative of the experimentally observed pattern (80% accuracy) than did the optimized gravity‐neglected simulation (70% accuracy). Additional simulations of DNAPL invasion in 360 randomly generated fractures were compared with and without gravity forces. These simulations showed that with increasing fracture roughness, the minimum difference between simulations with and without gravity increases to 35% for a standard deviation of the mid‐aperture elevation field (SDz) of 10 mm. Even for low roughness (SDz = 0.1 mm), the difference was as high as 30%. Furthermore, a scaled Bond Number is defined which includes data regarding DNAPL type, media type and statistical characteristics of the fracture. The value of this scaled Bond Number can be used to determine the conditions under which gravity should be considered when simulating DNAPL invasion in a macroscopically horizontal fracture. Finally, a set of equations defining the minimum and maximum absolute percentage difference between gravity‐included and gravity‐neglected simulations is presented based on the fracture and DNAPL characteristics.  相似文献   

12.
Various numerical methods have been used in the literature to simulate single and multiphase flow in fractured media. A promising approach is the use of the discrete-fracture model where the fracture entities in the permeable media are described explicitly in the computational grid. In this work, we present a critical review of the main conventional methods for multiphase flow in fractured media including the finite difference (FD), finite volume (FV), and finite element (FE) methods, that are coupled with the discrete-fracture model. All the conventional methods have inherent limitations in accuracy and applications. The FD method, for example, is restricted to horizontal and vertical fractures. The accuracy of the vertex-centered FV method depends on the size of the matrix gridcells next to the fractures; for an acceptable accuracy the matrix gridcells next to the fractures should be small. The FE method cannot describe properly the saturation discontinuity at the matrix–fracture interface. In this work, we introduce a new approach that is free from the limitations of the conventional methods. Our proposed approach is applicable in 2D and 3D unstructured griddings with low mesh orientation effect; it captures the saturation discontinuity from the contrast in capillary pressure between the rock matrix and fractures. The matrix–fracture and fracture–fracture fluxes are calculated based on powerful features of the mixed finite element (MFE) method which provides, in addition to the gridcell pressures, the pressures at the gridcell interfaces and can readily model the pressure discontinuities at impermeable faults in a simple way. To reduce the numerical dispersion, we use the discontinuous Galerkin (DG) method to approximate the saturation equation. We take advantage of a hybrid time scheme to alleviate the restrictions on the size of the time step in the fracture network. Several numerical examples in 2D and 3D demonstrate the robustness of the proposed model. Results show the significance of capillary pressure and orders of magnitude increase in computational speed compared to previous works.  相似文献   

13.
One of the more advanced approaches for simulating groundwater flow in fractured porous media is the discrete-fracture approach. This approach is limited by the large computational overheads associated with traditional modeling methods. In this work, we apply the Lanczos reduction method to the modeling of groundwater flow in fractured porous media using the discrete-fracture approach. The Lanczos reduction method reduces a finite element equation system to a much smaller tridiagonal system of first-order differential equations. The reduced system can be solved by a standard tridiagonal algorithm with little computational effort. Because solving the reduced system is more efficient compared to solving the original system, the simulation of groundwater flow in discretely fractured media using the reduction method is very efficient. The proposed method is especially suitable for the problem of large-scale and long-term simulation. In this paper, we develop an iterative version of Lanczos algorithm, in which the preconditioned conjugate gradient solver based on ORTHOMIN acceleration is employed within the Lanczos reduction process. Additional efficiency for the Lanczos method is achieved by applying an eigenvalue shift technique. The “shift” method can improve the Lanczos system convergence, by requiring fewer modes to achieve the same level of accuracy over the unshifted case. The developed model is verified by comparison with dual-porosity approach. The efficiency and accuracy of the method are demonstrated on a field-scale problem and compared to the performance of classic time marching method using an iterative solver on the original system. In spite of the advances, more theoretical work needs to be carried out to determine the optimal value of the shift before computations are actually carried out.  相似文献   

14.
We present a vertex-centered finite volume method for the fully coupled, fully implicit discretization of two-phase flow in fractured porous media. Fractures are discretely modeled as lower dimensional elements. The method works on unstructured, locally refined grids and on parallel computers with distributed memory. An implicit time discretization is employed and the nonlinear systems of equations are solved with a parallel Newton-multigrid method. Results from two-dimensional and three-dimensional simulations are presented.  相似文献   

15.
Free-phase DNAPL recovery operations are becoming increasingly prevalent at creosote-contaminated aquifer sites. This paper illustrates the potential of both classical and innovative recovery methods. The UTCHEM multiphase flow and transport numerical simulator was used to predict the migration of creosote DNAPL during a hypothetical spill event, during a long-term redistribution after the spill, and for a variety of subsequent free-phase DNAPL recovery operations. The physical parameters used for the DNAPL and the aquifer in the model are estimates for a specific creosote DNAPL site. Other simulations were also conducted using physical parameters that are typical of a trichloroethene (TCE) DNAPL. Dramatic differences in DNAPL migration were observed between these simulations.  相似文献   

16.
An efficient and accurate numerical model for multicomponent compressible single-phase flow in fractured media is presented. The discrete-fracture approach is used to model the fractures where the fracture entities are described explicitly in the computational domain. We use the concept of cross flow equilibrium in the fractures. This will allow large matrix elements in the neighborhood of the fractures and considerable speed up of the algorithm. We use an implicit finite volume (FV) scheme to solve the species mass balance equation in the fractures. This step avoids the use of Courant–Freidricks–Levy (CFL) condition and contributes to significant speed up of the code. The hybrid mixed finite element method (MFE) is used to solve for the velocity in both the matrix and the fractures coupled with the discontinuous Galerkin (DG) method to solve the species transport equations in the matrix. Four numerical examples are presented to demonstrate the robustness and efficiency of the proposed model. We show that the combination of the fracture cross-flow equilibrium and the implicit composition calculation in the fractures increase the computational speed 20–130 times in 2D. In 3D, one may expect even a higher computational efficiency.  相似文献   

17.
Simulations of flow for a discrete-fracture model in fractured porous rocks have gradually become more practical, as a consequence of increased computer power and improved simulation and characterization techniques. Discrete-fracture models can be formulated in a lower-dimensional framework, where the fractures are modeled in a lower dimension than the matrix, or in an equi-dimensional form, where the fractures and the matrix have the same dimension.  相似文献   

18.
Numerical simulation of the acoustic wave equation is widely used to theoretically synthesize seismograms and constitutes the basis of reverse‐time migration. With finite‐difference methods, the discretization of temporal and spatial derivatives in wave equations introduces numerical grid dispersion. To reduce the grid dispersion effect, we propose to satisfy the dispersion relation for a number of uniformly distributed wavenumber points within a wavenumber range with the upper limit determined by the maximum source frequency, the grid spacing and the wave velocity. This new dispersion‐relationship‐preserving method relatively uniformly reduces the numerical dispersion over a large‐frequency range. Dispersion analysis and seismic numerical simulations demonstrate the effectiveness of the proposed method.  相似文献   

19.
Grid convergence in space and time of variable-density flow in fractured-porous rock is systematically assessed. Convergence of the flow simulation is attained using both uniform and adaptive time-stepping. This contrasts to variable-density flow in unfractured porous media where grid convergence variable-density flow problems is almost never achieved. At high discretization levels, the number of fingers in fractured-porous rock is no longer influenced by spatial-temporal grid discretization, which is not the case in unfractured porous media. However, similar to unfractured porous media, the number of fingers in fractured-porous media varies at low discretization levels. Simulated convective pattern and penetration depth of the dense plume in fractured rock depend more on spatial discretization than on temporal discretization. The appropriate spatial-temporal grid is then used to examine some aspects of mixed convection in fractured-porous rock, characterized by the mixed convection number M. The critical mixed convection number Mc = 46 represents the transition between forced and free convection in fractured porous media, which is much higher than Mc = 1 in unfractured porous media. Thus, for mixed convective flow problems, the value of Mc is not a sufficient indicator to predict the convective mode (free convection-forced convection), and the presence of vertical fractures must be included in the prediction of convective flow modes.  相似文献   

20.
Site characterization in densely fractured dolomite: comparison of methods   总被引:2,自引:0,他引:2  
One of the challenges in characterizing fractured-rock aquifers is determining whether the equivalent porous medium approximation is valid at the problem scale. Detailed hydrogeologic characterization completed at a small study site in a densely fractured dolomite has yielded an extensive data set that was used to evaluate the utility of the continuum and discrete-fracture approaches to aquifer characterization. There are two near-vertical sets of fractures at the site; near-horizontal bedding-plane partings constitute a third fracture set. Eighteen boreholes, including five coreholes, were drilled to a depth of approximately 10.6 m. Borehole geophysical logs revealed several laterally extensive horizontal fractures and dissolution zones. Flowmeter and short-interval packer testing identified which of these features were hydraulically important. A monitoring system, consisting of short-interval piezometers and multilevel samplers, was designed to monitor four horizontal fractures and two dissolution zones. The resulting network consisted of >70 sampling points and allowed detailed monitoring of head distributions in three dimensions. Comparison of distributions of hydraulic head and hydraulic conductivity determined by these two approaches suggests that even in a densely fractured-carbonate aquifer, a characterization approach using traditional long-interval monitoring wells is inadequate to characterize ground water movement for the purposes of regulatory monitoring or site remediation. In addition, traditional multiwell pumping tests yield an average or bulk hydraulic conductivity that is not adequate for predicting rapid ground water travel times through the fracture network, and the pumping test response does not appear to be an adequate tool for assessing whether the porous medium approximation is valid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号