首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this study, we examine the effects of conditioning spatially variable transmissivity fields using head and/or transmissivity measurements on well-capture zones. In order to address the challenge posed by conditioning a flow model with spatially varying parameters, an innovative inverse algorithm, the Representers method, is employed. The method explicitly considers this spatial variability.

A number of uniform measurement grids with different densities are used to condition transmissivity fields using the Representers method. Deterministic and stochastic analysis of well-capture zones are then examined. The deterministic study focuses on comparison between reference well-capture zones and their estimated mean conditioned on head data. It shows that model performance due to head conditioning on well-capture zone estimation is related to pumping rate. At moderate pumping rates transmissivity observations are more crucial to identify effects arising from small-scale variations in pore water velocity. However, with more aggressive pumping these effects are reduced, consequently model performance, through incorporating head observations, markedly improves. In the stochastic study, the effect of conditioning using head and/or transmissivity data on well-capture zone uncertainty is examined. The Representers method is coupled with the Monte Carlo method to propagate uncertainty in transmissivity fields to well-capture zones. For the scenario studied, the results showed that a combination of 48 head and transmissivity data could reduce the area of uncertainty (95% confidence interval) in well-capture zone location by over 50%, compared to a 40% reduction using either head or transmissivity data. This performance was comparable to that obtained through calibrating on three and a half times the number of head observations alone.  相似文献   


3.
A common approach for the performance assessment of radionuclide migration from a nuclear waste repository is by means of Monte-Carlo techniques. Multiple realizations of the parameters controlling radionuclide transport are generated and each one of these realizations is used in a numerical model to provide a transport prediction. The statistical analysis of all transport predictions is then used in performance assessment. In order to reduce the uncertainty on the predictions is necessary to incorporate as much information as possible in the generation of the parameter fields. In this regard, this paper focuses in the impact that conditioning the transmissivity fields to geophysical data and/or piezometric head data has on convective transport predictions in a two-dimensional heterogeneous formation. The Walker Lake data based is used to produce a heterogeneous log-transmissivity field with distinct non-Gaussian characteristics and a secondary variable that represents some geophysical attribute. In addition, the piezometric head field resulting from the steady-state solution of the groundwater flow equation is computed. These three reference fields are sampled to mimic a sampling campaign. Then, a series of Monte-Carlo exercises using different combinations of sampled data shows the relative worth of secondary data with respect to piezometric head data for transport predictions. The analysis shows that secondary data allows to reproduce the main spatial patterns of the reference transmissivity field and improves the mass transport predictions with respect to the case in which only transmissivity data is used. However, a few piezometric head measurements could be equally effective for the characterization of transport predictions.  相似文献   

4.
A common approach for the performance assessment of radionuclide migration from a nuclear waste repository is by means of Monte-Carlo techniques. Multiple realizations of the parameters controlling radionuclide transport are generated and each one of these realizations is used in a numerical model to provide a transport prediction. The statistical analysis of all transport predictions is then used in performance assessment. In order to reduce the uncertainty on the predictions is necessary to incorporate as much information as possible in the generation of the parameter fields. In this regard, this paper focuses in the impact that conditioning the transmissivity fields to geophysical data and/or piezometric head data has on convective transport predictions in a two-dimensional heterogeneous formation. The Walker Lake data based is used to produce a heterogeneous log-transmissivity field with distinct non-Gaussian characteristics and a secondary variable that represents some geophysical attribute. In addition, the piezometric head field resulting from the steady-state solution of the groundwater flow equation is computed. These three reference fields are sampled to mimic a sampling campaign. Then, a series of Monte-Carlo exercises using different combinations of sampled data shows the relative worth of secondary data with respect to piezometric head data for transport predictions. The analysis shows that secondary data allows to reproduce the main spatial patterns of the reference transmissivity field and improves the mass transport predictions with respect to the case in which only transmissivity data is used. However, a few piezometric head measurements could be equally effective for the characterization of transport predictions.  相似文献   

5.
We investigated the effect of conditioning transient, two-dimensional groundwater flow simulations, where the transmissivity was a spatial random field, on time dependent head data. The random fields, representing perturbations in log transmissivity, were generated using a known covariance function and then conditioned to match head data by iteratively cokriging and solving the flow model numerically. A new approximation to the cross-covariance of log transmissivity perturbations with time dependent head data and head data at different times, that greatly increased the computational efficiency, was introduced. The most noticeable effect of head data on the estimation of head and log transmissivity perturbations occurred from conditioning only on spatially distributed head measurements during steady flow. The additional improvement in the estimation of the log transmissivity and head perturbations obtained by conditioning on time dependent head data was fairly small. On the other hand, conditioning on temporal head data had a significant effect on particle tracks and reduced the lateral spreading around the center of the paths.  相似文献   

6.
We investigated the effect of conditioning transient, two-dimensional groundwater flow simulations, where the transmissivity was a spatial random field, on time dependent head data. The random fields, representing perturbations in log transmissivity, were generated using a known covariance function and then conditioned to match head data by iteratively cokriging and solving the flow model numerically. A new approximation to the cross-covariance of log transmissivity perturbations with time dependent head data and head data at different times, that greatly increased the computational efficiency, was introduced. The most noticeable effect of head data on the estimation of head and log transmissivity perturbations occurred from conditioning only on spatially distributed head measurements during steady flow. The additional improvement in the estimation of the log transmissivity and head perturbations obtained by conditioning on time dependent head data was fairly small. On the other hand, conditioning on temporal head data had a significant effect on particle tracks and reduced the lateral spreading around the center of the paths.  相似文献   

7.
This paper investigates the impact of heterogeneity of the transmissivity field on the interpretation of steady-state pumping test data from aquifer systems delimited by constant head boundaries such as aquifers adjacent to lakes or rivers. Spatially variable transmissivity fields are randomly generated and used to simulate the drawdown due to a pumping well located at different distances from a constant head boundary. The steady-state drawdown simulated at different observation wells are then interpreted using the Hantush method (Hantush 1959). The numerical simulations show that, in contrast to the case of infinite aquifer domains, the interpreted transmissivity varies depending on well locations and the separation distance between pumping well and boundary relative to the correlation length. The ensemble-averaged estimated transmissivity varies between the geometric mean and the arithmetic mean, and can even exceed the arithmetic mean in a narrow domain adjacent to the boundary. It approaches the geometric mean of the underlying transmissivity field only if the distance between the pumping well is more than 20 times the characteristic length of the transmissivity field.  相似文献   

8.
A conceptual model of anisotropic and dynamic permeability is developed from hydrogeologic and hydromechanical characterization of a foliated, complexly fractured, crystalline rock aquifer at Gates Pond, Berlin, Massachusetts. Methods of investigation include aquifer‐pumping tests, long‐term hydrologic monitoring, fracture characterization, downhole heat‐pulse flow meter measurements, in situ extensometer testing, and earth tide analysis. A static conceptual model is developed from observations of depth‐dependent and anisotropic permeability that effectively compartmentalizes the aquifer as a function of foliation intensity. Superimposed on the static model is dynamic permeability as a function of hydraulic head in which transient bulk aquifer transmissivity is proportional to changes in hydraulic head due to hydromechanical coupling. The dynamic permeability concept is built on observations that fracture aperture changes as a function of hydraulic head, as measured during in situ extensometer testing of individual fractures, and observed changes in bulk aquifer transmissivity as determined from earth tides during seasonal changes in hydraulic head, with higher transmissivity during periods of high hydraulic head, and lower transmissivity during periods of relatively lower hydraulic head. A final conceptual model is presented that captures both the static and dynamic properties of the aquifer. The workflow presented here demonstrates development of a conceptual framework for building numerical models of complexly fractured, foliated, crystalline rock aquifers that includes both a static model to describe the spatial distribution of permeability as a function of fracture type and foliation intensity and a dynamic model that describes how hydromechanical coupling impacts permeability magnitude as a function of hydraulic head fluctuation. This model captures important geologic controls on permeability magnitude, anisotropy, and transience and therefor offers potentially more reliable history matching and forecasts of different water management strategies, such as resource evaluation, well placement, permeability prediction, and evaluating remediation strategies.  相似文献   

9.
This paper presents a geostatistical approach to multi-directional aquifer stimulation in order to better identify the transmissivity field. Hydraulic head measurements, taken at a few locations but under a number of different steady-state flow conditions, are used to estimate the transmissivity. Well installation is generally the most costly aspect of obtaining hydraulic head measurements. Therefore, it is advantageous to obtain as many informative measurements from each sampling location as possible. This can be achieved by hydraulically stimulating the aquifer through pumping, in order to set-up a variety of flow conditions. We illustrate the method by applying it to a synthetic aquifer. The simulations provide evidence that a few sampling locations may provide enough information to estimate the transmissivity field. Furthermore, the innovation of, or new information provided by, each measurement can be examined by looking at the corresponding spline and sensitivity matrix. Estimates from multi-directional stimulation are found to be clearly superior to estimates using data taken under one flow condition. We describe the geostatistical methodology for using data from multi-directional simulations and address computational issues.  相似文献   

10.
This paper presents a geostatistical approach to multi-directional aquifer stimulation in order to better identify the transmissivity field. Hydraulic head measurements, taken at a few locations but under a number of different steady-state flow conditions, are used to estimate the transmissivity. Well installation is generally the most costly aspect of obtaining hydraulic head measurements. Therefore, it is advantageous to obtain as many informative measurements from each sampling location as possible. This can be achieved by hydraulically stimulating the aquifer through pumping, in order to set-up a variety of flow conditions. We illustrate the method by applying it to a synthetic aquifer. The simulations provide evidence that a few sampling locations may provide enough information to estimate the transmissivity field. Furthermore, the innovation of, or new information provided by, each measurement can be examined by looking at the corresponding spline and sensitivity matrix. Estimates from multi-directional stimulation are found to be clearly superior to estimates using data taken under one flow condition. We describe the geostatistical methodology for using data from multi-directional simulations and address computational issues.  相似文献   

11.
We present a nonlinear stochastic inverse algorithm that allows conditioning estimates of transient hydraulic heads, fluxes and their associated uncertainty on information about hydraulic conductivity (K) and hydraulic head (h  ) data collected in a randomly heterogeneous confined aquifer. Our algorithm is based on Laplace-transformed recursive finite-element approximations of exact nonlocal first and second conditional stochastic moment equations of transient flow. It makes it possible to estimate jointly spatial variations in natural log-conductivity (Y=lnK)(Y=lnK), the parameters of its underlying variogram, and the variance–covariance of these estimates. Log-conductivity is parameterized geostatistically based on measured values at discrete locations and unknown values at discrete “pilot points”. Whereas prior values of Y at pilot point are obtained by generalized kriging, posterior estimates at pilot points are obtained through a maximum likelihood fit of computed and measured transient heads. These posterior estimates are then projected onto the computational grid by kriging. Optionally, the maximum likelihood function may include a regularization term reflecting prior information about Y. The relative weight assigned to this term is evaluated separately from other model parameters to avoid bias and instability. We illustrate and explore our algorithm by means of a synthetic example involving a pumping well. We find that whereas Y and h can be reproduced quite well with parameters estimated on the basis of zero-order mean flow equations, all model quality criteria identify the second-order results as being superior to zero-order results. Identifying the weight of the regularization term and variogram parameters can be done with much lesser ambiguity based on second- than on zero-order results. A second-order model is required to compute predictive error variances of hydraulic head (and flux) a posteriori. Conditioning the inversion jointly on conductivity and hydraulic head data results in lesser predictive uncertainty than conditioning on conductivity or head data alone.  相似文献   

12.
《Advances in water resources》2005,28(10):1057-1075
The theory of a pumping test or a slug test to measure aquifer transmissivity or storativity assumes that the aquifer properties are uniform around the well. The response of the drawdown to small spatial variations in aquifer properties in the volume of influence is determined by spatial weighting functions or Fréchet kernels, which in general are functions of space and time. The Fréchet kernels determine the effective “volume of influence” of the measurements at any time. Under the assumption that the well is a line sink we derive explicit analytical expressions for the Fréchet kernels for storativity and for transmissivity for both pumping and slug tests. We also derive the total sensitivity functions for uniform variations in storativity and transmissivity and show that they are the spatial integrals of the Fréchet kernels. We consider both the case of separate pumping and observation wells and also the radially symmetric case of observations made at the pumped or slugged well. The “volume of influence” is symmetric with respect to the pumping or slugged well and the observation well, and far from the well the contours of equal spatial sensitivity approach the shapes of ellipses with a well at each focus, rather than circles centered on the pumping well. We use the analytical solutions to investigate the nature of the singularities in the spatial sensitivity functions around the wells, which govern the importance of inhomogeneities close to the well or observation point.  相似文献   

13.
This paper presents the extension of the self-calibrating method to the coupled inverse modelling of groundwater flow and mass transport. The method generates equally likely solutions to the inverse problem that display the variability as observed in the field and are not affected by a linearisation of the state equations. Conditioning to the state variables is measured by an objective function including, among others, the mismatch between the simulated and measured concentrations. Conditioning is achieved by minimising the objective function by gradient-based methods. The gradient contains the partial derivatives of the objective function with respect to: log conductivities, log storativities, prescribed heads at boundaries, retardation coefficients and mass sources. The derivatives of the objective function with respect to log conductivity are the most cumbersome and need the most CPU-time to be evaluated. For this reason, to compute this derivative only advective transport is considered. The gradient is calculated by the adjoint-state method. The method is demonstrated in a controlled, synthetic study, in which the worth of concentration data is analysed. It is shown that concentration data are essential to improve transport predictions and also help to improve aquifer characterisation and flow predictions, especially in the upstream part of the aquifer, even in the case that a considerable amount of other experimental data like conductivities and heads are available. Besides, conditioning to concentration data reduces the ensemble variances of estimated transmissivity, hydraulic head and concentration.  相似文献   

14.
Chenaf D  Chapuis RP 《Ground water》2002,40(4):385-389
Starting from the equations of Theis and Cooper-Jacob, two new mathematical methods are proposed for interpreting the residual drawdown data for an infinite confined aquifer. Under Theis' assumptions and using the Cooper-Jacob approximation, the principal aquifer characteristics of transmissivity, pumping storativity, and recovery storativity are expressed without any correction or additional assumption. An actual case is used for illustration and confirms the validity of proposed equations and methods.  相似文献   

15.
Abstract

Abstract Characterization of heterogeneity at the field scale generally requires detailed aquifer properties such as transmissivity and hydraulic head. An accurate delineation of these properties is expensive and time consuming, and for many if not most groundwater systems, is not practical. As an alternative approach, stochastic representation of random fields is used and presented in this paper. Specifically, an iterative stochastic conditional simulation approach was applied to a hypothetical and highly heterogeneous pre-designed aquifer system. The approach is similar to the classical co-kriging technique; it uses a linear estimator that depends on the covariance functions of transmissivity (T), and hydraulic head (h), as well as their cross-covariances. A linearized flow equation along with a conditional random field generator constitutes the iterative process of the conditional simulation. One hundred equally likely realizations of transmissivity fields with pre-specified geostatistical parameters were generated, and conditioned to both limited transmissivity and head data. The successful implementation of the approach resulted in conditioned flow paths and travel-time distribution under different degrees of aquifer heterogeneity. This approach worked well for fields exhibiting small variances. However, for random fields exhibiting large variances (greater than 1.0), an iterative procedure was used. The results show that, as the variance of the ln[T] increases, the flow paths tend to diverge, resulting in a wide spectrum of flow conditions, with no direct discernable relationship between the degree of heterogeneity and travel time. The applied approach indicates that high errors may result when estimation of particle travel times in a heterogeneous medium is approximated by an equivalent homogeneous medium.  相似文献   

16.
Groundwater management decisions are often founded upon estimates of aquifer hydraulic properties, recharge and the rate of groundwater usage. Too often hydraulic properties are unavailable, recharge estimates are very uncertain, and usage is unmetered or infrequently metered over only recent years or estimated using numerical groundwater models decoupled from the drivers of drawdown. This paper extends the HydroSight groundwater time-series package ( http://peterson-tim-j.github.io/HydroSight/ ) to allow the joint estimation of gross recharge, transmissivity, storativity, and daily usage at multiple production bores. A genetic evolutionary scheme was extended from estimating time-series model parameters to also estimating time series of usage that honor metered volumes at each production bore and produces (1) the best fit with the observed hydrograph and (2) plausible estimates of actual evapotranspiration and hence recharge. The reliability of the approach was rigorously tested. Repeated calibration of models for four bores produced estimates of transmissivity, storativity, and mean recharge that varied by a factor of 0.22-0.32, 0.13-0.2, and 0.03-0.48, respectively, when recharge boundary effects were low and the error in monthly, quarterly, and biannual metered usage was generally <10%. Application to the 30 observation bores within the Warrion groundwater management area (Australia), produced a coefficient of efficiency of ≥0.80 at 22 bores and ≥0.90 at 12 bores. The aquifer transmissivity and storativity were reasonably estimated, and were consistent with independent estimates, while mean gross recharge may be slightly overestimated. Overall, the approach allows greater insights from the available data and provides opportunity for the exploration of usage and climatic scenarios.  相似文献   

17.
Cem B. Avci  A. Ufuk Sahin 《水文研究》2014,28(23):5739-5754
Pumping tests are one of the most commonly used in situ testing techniques for assessing aquifer hydraulic properties. Numerous researches have been conducted to predict the effects of aquifer heterogeneity on the groundwater levels during pumping tests. The objectives of the present work were as follows: (1) to predict drawdown conditions and to estimate aquifer properties during pumping tests undertaken in radially symmetric heterogeneous aquifers, and (2) to identify a method for assessing the transmissivity field along the radial coordinate in radially symmetric and fully heterogeneous transmissivity fields. The first objective was achieved by expanding an existing analytical drawdown formulation that was valid for a radially symmetric confined aquifer with two concentric zones around the pumping well to an N concentric zone confined aquifer having a constant transmissivity value within each zone. The formulation was evaluated for aquifers with three and four concentric zones to assess the effects of the transmissivity field on the drawdown conditions. The specific conditions under which aquifer properties could be identified using traditional methods of analysis were also evaluated. The second objective was achieved by implementing the inverse solution algorithm (ISA), which was developed for petroleum reservoirs to groundwater aquifer settings. The results showed that the drawdown values are influenced by a volumetric integral of a weighting function and the transmissivity field within the cone of depression. The weighting function migrates in tandem with the expanding cone of depression. The ability of the ISA to predict radially symmetric and log‐normally distributed transmissivity fields was assessed against analytical and numerical benchmarks. The results of this investigation indicated that the ISA method is a viable technique for evaluating the radial transmissivity variations of heterogeneous aquifer settings. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
In steady-state hydraulic tomography, the head data recorded during a series of pumping or/and injection tests can be inverted to determine the transmissivity distributions of an aquifer. This inverse problem is usually under-determined and ill-posed. We propose to use structural information inferred from a guiding image to constrain the inversion process. The guiding image can be drawn from soft data sets such as seismic and ground penetrating radar sections or from geological cross-sections inferred from the wells and some geological expertise. The structural information is extracted from the guiding image through some digital image analysis techniques. Then, it is introduced into the inversion process of the head data as a weighted four direction smoothing matrix used in the regularizer. Such smoothing matrix allows applying the smoothing along the structural features. This helps preserving eventual drops in the hydraulic properties. In addition, we apply a procedure called image-guided interpolation. This technique starts with the tomogram obtained from the image-guided inversion and focus this tomogram. These new approaches are applied on four synthetic toy problems. The hydraulic distributions estimated from the image-guided inversion are closer to the true transmissivity model and have higher resolution than those computed from a classical Gauss–Newton method with uniform isotropic smoothing.  相似文献   

19.
The estimation of field parameters, such as transmissivity, is an important part of groundwater modeling. This work deals with the quasilinear geostatistical inverse approach to the estimation of the transmissivity fields from hydraulic head measurements. The standard quasilinear approach is an iterative method consisting of successive linearizations. We examine a synthetic case to evaluate the basic methodology and some modifications and extensions. The first objective is to evaluate the performance of the quasilinear approach when applied to strongly heterogeneous (or “high-contrast”) transmissivity fields and, when needed, to propose improvements that allow the solution of such problems. For large-contrast cases, the standard quasilinear method often fails to converge. However, by introducing a derivative-free line search as a polishing step after each Gauss–Newton iteration, we have found that convergence can be practically assured. Another issue is that the quasilinear procedure, which uses linearization about the best estimate to evaluate estimation variances, may lead to inaccurate estimation of the variance of the estimated variable. Our numerical results suggest that this may not be a particularly serious problem, though it is hard to say whether this conclusion will apply to other cases. Nevertheless, since the quasilinear approach is an approximation, we propose a potentially more accurate but computer-intensive Markov Chain Monte Carlo (MCMC) procedure based on conditional realizations generated through the quasilinear approach and accepted or rejected according to the Metropolis–Hastings algorithm. Six transmissivity fields with increasing contrast were generated and one thousand conditional realizations were computed for each studied case. The MCMC procedure proposed in this work gives an overall more accurate picture than the quasilinear approach but at a considerably higher computational cost.  相似文献   

20.
Bayer P  Finkel M 《Ground water》2006,44(2):234-243
We investigate the performance of vertical hydraulic barriers in combination with extraction wells for the partial hydraulic isolation of contaminated aquifer areas. The potential advantage of such combinations compared to a conventional pump-and-treat system has already been demonstrated in a previous study. Here we extend the scope of the performance analysis to the impact of uncertainty in the regional flow direction as well as to highly heterogeneous aquifer transmissivity distributions. In addition, two new well-barrier scenarios are proposed and analyzed. The hydraulic efficiency of the scenarios is rated based on the expected (mean) reduction of the pumping rate that is required to achieve downgradient contaminant capture. The uncertain spatial distribution of aquifer transmissivity is considered by means of unconditioned Monte Carlo simulations. The significance of uncertain background flow conditions is incorporated by computing minimized pumping rates for deviations of the regional flow direction up to 30 degrees from a normative base case. The results give an answer on how pumping rates have to be changed for each barrier-well combination in order to achieve robust systems. It is exposed that in comparison to installing exclusively wells, the barrier-supported approach generally yields savings in the (average) pumping rate. The particular efficiency is shown to be highly dependent on the interaction of variance and integral scale of transmissivity distribution, well and barrier position, as well as direction of background flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号