首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A coastal dunefield on Groote Eylandt, in the Gulf of Carpentaria, northern Australia, is stratigraphically described and dated using the coarse fraction thermoluminescence dating technique. Four phases of dune activity have been identified: (1) Modern active transverse and parabolic dunes. (2) A parabolic dunefield apparently stabilized less than 2000 yr BP. (3) A parabolic dunefield stablized between 6000 and 4800 yr BP. (4) A basal dunefield unit emplaced prior to 100,000 yr BP.The current dune systems are an expression of dune activation and stabilization events in the Holocene, but were formed from the deflation of an extensive pre-Holocene dunefield. The destruction of the pre-Holocene dunefield appears to have been caused by sea-level rise at the end of the Pleistocene and during the early Holocene. The ages derived from the dunefield accord well with chronostratigraphic investigations of coastal dune systems elsewhere in northern Australia and support theories of regional environmental change during the Holocene.  相似文献   

2.
As a contribution to understanding the morphogenesis of the Australian continental dunefield, maps are presented of the main types of dunes, their orientation and mean spacing using the best available sources of data. Major features on previous maps of the Australian dunefield are verified and new information has been obtained. The anticlockwise whorl of dunes has been found to close on both its eastern and western ends. Dunes extend as far north as 16°S and over large parts of the far south‐west of Western Australia. Distributions of dune types are related to former vegetation cover, climate, supply of sand and directional variability of formative winds. Previously documented relationships between dune spacing, height, equivalent sand thickness (EST) and the texture of surfaces over which sand is transported are used to partially explain the map of mean dune spacings. The spatial distribution of EST, and mineralogic and sedimentologic evidence show that aeolian sediment in the Australian dunefield has travelled only short distances.  相似文献   

3.
There are a wide variety of vegetated, eolian depositional landforms associated with the south Texas sand sheet, attesting to the past dominance of eolian processes. Mapping identified two sets of parabolic dunes elongating with winds from the southeast and the northwest. Parabolic dunes elongated by northwesterly winds are older than ca. 200 years and may be associated with eolian depositional events ca. 2700 and/or 2000 years ago. The latest dune migration event, associated with southeasterly winds occurred ca. 200 years ago and at one site is inset into northwesterly-extended parabolic dunes. This period of dune migration may be coincident with particularly severe drought identified in the tree-ring record centered at AD 1790, when the Palmer Drought Severity Index was − 4. A threshold of dune movement may have occurred ca. in the 11th, 15th and 20th centuries when there are two or more consecutive years with a Palmer Drought Severity Index of < − 4, corresponding to 30–50% reduction in precipitation. Dune systems on Coastal Plain of Texas to reactivated repeatedly due to climate variability in the past 3000 years.  相似文献   

4.
The climatic controls on dune mobility, especially the relative importance of wind strength, remain incompletely understood. This is a key research problem in semi-arid northern China, both for interpreting past dune activity as evidence of paleoclimate and for predicting future environmental change. Potential eolian sand transport, which is approximately proportional to wind power above the threshold for sand entrainment, has decreased across much of northern China since the 1970s. Over the same period, effective moisture (ratio of precipitation to potential evapotranspiration) has not changed significantly. This “natural experiment” provides insight on the relative importance of wind power as a control on dune mobility in three dunefields of northern China (Mu Us, Otindag, and Horqin), although poorly understood and potentially large effects of human land use complicate interpretation. Dune forms in these three regions are consistent with sand transport vectors inferred from weather station data, suggesting that wind directions have remained stable and the stations adequately represent winds that shaped the dunes. The predicted effect of weaker winds since the 1970s would be dune stabilization, with lower sand transport rates allowing vegetation cover to expand. Large portions of all three dunefields remained stabilized by vegetation in the 1970s despite high wind power. Since the 1970s, trends in remotely sensed vegetation greenness and change in mobile dune area inferred from sequential Landsat images do indicate widespread dune stabilization in the eastern Mu Us region. On the other hand, expansion of active dunes took place farther west in the Mu Us dunefield and especially in the central Otindag dunefield, with little overall change in two parts of the Horqin dunes. Better ground truth is needed to validate the remote sensing analyses, but results presented here place limits on the relative importance of wind strength as a control on dune mobility in the study areas. High wind power alone does not completely destabilize these dunes. A large decrease in wind power either has little short-term effect on the dunes, or more likely its effect is sufficiently small that it is obscured by human impacts on dune stability in many parts of the study areas.  相似文献   

5.
Three experimental plots, covering the transition from the upper beach to the dune, on the North Sea coast of France were monitored at various intervals over a period of 18–24 months via high resolution terrain surveys in order to determine inter-site sand budget variability, as well as patterns and processes involved in sand exchanges between the upper beach and dune. The wind regime consists of a fairly balanced mix of moderate (80% of winds are below 8 m/s) onshore, offshore and shore-parallel winds. Sustained dune accretion over several years depends on the periodic local onshore welding of shoreface tidal banks that have developed in the storm- and tide-dominated setting of the southern North Sea. The only site where this has occurred in the recent past is Calais, where bank welding has created a wide accreting upper beach sand flat. At this site, significant sand supply from the subtidal sand bank reservoir to the upper beach flat occurred only once over the 18-month survey following a major storm. The bulk of the sand deposited over this large flat is not directly integrated into the adjacent embryo dunes by onshore winds but is progressively reworked in situ into developing dunes or transported alongshore by the balanced wind regime, thus resulting in alongshore stretching of the embryo dune system. The Leffrinckoucke site near Belgium shows moderate beach–dune mobility and accretion, while the Wissant site exhibits significant upper beach bedform mobility controlled by strong longshore currents that result in large beach budget fluctuations with little net budget change, to the detriment of the adjacent dunes. Accretion at these two sites, which are representative of the rest of the North Sea coast of France, is presently constrained by the absence of a shore-attached sand bank supply reservoir, while upper beach–dune sand exchanges are further limited by the narrow wave-affected upper beach, the intertidal morphology of bars and troughs which segments the aeolian fetch, and the moderate wind energy conditions. The balanced wind regime limits net sand mobilisation in favour of either the beach or the dune, and may explain the relatively narrow longshore morphology of the dune ridges bounding this coast.  相似文献   

6.
Elongation and migration of sand dunes   总被引:3,自引:0,他引:3  
Two distinct processes are known to act on dynamic dunes, the process of migration by erosion on the windward side and deposition on the lee side, typical for transverse dunes, and the process of elongation typical for linear dunes. These two processes are determined by wind direction relative to the dune alignment. This article reviews the assertion that linear dunes experience lateral displacement in addition to elongation. Fieldwork on vegetated linear dunes (VLDs) and GIS work on seif dunes indicates no lateral migration for these dunes. Linear dunes can shift laterally only when a slip face, formed on the lee side, reaches the plinth of the dune. The winds from both sides of the seif dune are never symmetric; usually winds from one direction are more dominant and effective. The outcome is the formation of peaks and saddles along the dune. The strongest winds create a slip face on the lee side of the peak segments of the dune, oblique to the dune alignment, which reaches the base of the dune and displaces the peak downwind along the dune alignment. The internal structure of the seif dune is formed mostly by this dominant wind direction and gives the impression that the dune has shifted laterally. On the other hand, there are cases in which the wind directions relative to dune alignment fall between those of transverse and seif dunes. In such cases, both processes act on the dune, which subsequently experiences migration as well as elongation.  相似文献   

7.
Longitudinal (linear) sand dunes of the Simpson and Strzelecki dunefields in eastern central Australia present a paradox. Low levels of activity today stand in contrast to luminescence dating which has repeatedly shown deep deposits of sand on dune crests dating to within the late Holocene. In order to investigate the nature of dune activity in the Simpson–Strzelecki dunefield, vegetation and sand mobility were investigated by detailed vegetation survey and measurement of rippled area and loose sand depth of dunes at three sites along a climatic gradient. The response of both vegetation and sand movement to inter-annual climate variability was examined by repeat surveys of two sites in drought and non-drought conditions. Projected plant cover and plant + crust cover were found to have inverse linear relationships with rippled area and the area of deep loose sand. No relationship was found between these measures of sand movement and the plant frontal area index. A negative exponential relationship between equivalent mobile sand depth on dune surfaces and both vascular plant cover and vascular + crust cover was also found. There is no simple threshold of vegetation cover below which sand transport begins. Dunes with low perennial plant cover may form small dunes with slip faces leading to a positive feedback inhibiting ephemeral plant growth in wet years and accelerating sand transport rates. The linear dunefields are largely within the zone in which plant cover is sufficient to enforce low sand transport rates, and in which there is a strong response of vegetation and sand transport to inter-annual variation in rainfall. Both ephemeral plants (mostly forbs) and crust were found to respond rapidly to large (> 20 mm/month) rainfall events. On millennial time-scales, the level of dune activity is controlled by vegetation cover and probably not by fluctuations of wind strength. Land use or extreme, decadal time-scale, drought may destabilise dunes by removing perennial plant cover, accelerating wind erosion.  相似文献   

8.
A high-resolution multibeam survey of the northwest Florida shelf mapped six relict shelf-edge deltas, each with a drowned barrier–island system developed on its south and southwestern rims. The deltas appear to have formed during periods of sea-level stasis that occurred between 58,000 and 28,000 years ago. The barrier islands formed on the deltas during periods of slow regression during this same time interval. Large fields of asymmetric dunes are found on the delta surfaces as well as on the south and southwestern flanks of the deltas. The asymmetry and orientation of the dunes suggest that a northward-flowing current was sheared by the presence of the delta topography, and as a result, the upper layer of the flow continued to the north, whereas the lower layer was steered by the topography. The topographic steering accelerated the northward flow around the south and southwestern flanks with speeds adequate to form large dunes. The flow slowed after rounding southwestern flank but accelerated again as it encountered the next delta flank to the north. The age of the dune formation is unknown, and no northward-flowing geostrophic flow has been reported in the literature from this area.  相似文献   

9.
库姆塔格沙漠形成演化与区域新构造运动关系研究   总被引:22,自引:3,他引:19  
库姆塔格沙漠位于塔里木板块东部的阿尔金山北麓地带,受青藏高原新构造运动强烈隆升和贯穿本区的阿尔金断裂系发生左旋走滑变动的影响,构筑了南高北低的地质构造变为盆山格局。通过现今的断裂左旋走滑、多风向吹扬及南侧高山洪水及泥石流侵蚀地形共同作用表现出帚状弧形展布。风沙地貌特征表现为由东北向西南分异明显、沙丘类型复杂、形态独特,主要以羽毛状沙丘、金字塔沙丘著称。  相似文献   

10.
Source-bordering dunefields have been reported in some drylands of the planet, but scarcely in China where there are extensive drylands. This article reports them in China for the first time, and presents a model for their active origin and development on a semiarid fluvial plain by means of satellite image analyses and field investigations. Local- and regional-scale examples are chosen to analyze the spatial patterns of dunefields, as well as the relationships with the fluvial systems in the central part of Naiman Banner where the Jiaolai River runs, and the lower Laoha River, and the middle and lower Ulijimulun River (principal tributaries of the Xiliaohe River). The active origin and development of source-bordering dunefields can be divided into four stages in terms of the spatial patterns of dunefields and channel dynamics: Stage I — individual dunes on the downwind margins of river valleys where running water constantly erodes the steep slopes of valley and where the downwind slopes orient to local dominant winds; Stage II — individual local-scale dunefields formed by deflation of the steep valley slopes and extending antecedent dunes downwind, together with the downstream displacement of meanders; Stage III — individual large-scale dunefield belts along the downwind margins of river valleys formed through frequent lateral migrations of channel; Stage IV — regional-scale dunefields formed mainly by river diversions due to climatic changes or tectonic movements. On the one hand, it is the running water's lateral migration, especially meandering, that prepares suitable places for aeolian systems in terms of both wind flow fields and sand sources, and subsequently it can further cause separate local-scale source-bordering dunefields to link together as a regional-scale dunefield belt given sufficient time. On the other hand, diversions of the river are bound to occur following changing hydrologic regimes resulting from tectonic movements or significant climate change (at regional and millennium scales). As a result, when some dunefield belts as well as the adjacent channels are abandoned, new channels work elsewhere in the same way to actively form new source-bordering dunefields and even dunefield belts at a regional scale.  相似文献   

11.
禹门口南黄河东岸沙丘初步研究   总被引:2,自引:1,他引:1  
在禹门口南山西省河津、万荣县境内黄河阶地上发育了一些固定、半固定沙丘,注入黄河的汾河将这些沙丘分成了南北两部分。北部的沙丘多在海拔400m左右,高出现代黄河约35m,位于黄河的第二级阶地上,由两条南北向的沙垄和两垄之间分布的抛物线形沙丘构成特殊的景观。这些抛物线形沙丘一般高度约7~8m,背风面突出,迎风坡坡度一般为15°~20°,背风坡坡度一般大于40°。风沙堆积下伏的河流堆积物的14C年龄为26.40±0.8kaBP,表明沙丘形成于距今26ka以来。南部沙丘海拔高度近500m,高出现代黄河水面150m,覆盖于黄河第三级阶地之上。一个天然剖面揭示,第三阶地的底部为黄色中粗砂与灰绿色粉砂粘土互层,中部为灰黄色黄土,顶部为黄色风沙层。在黄土地层中可以识别出S1古土壤和位于风沙堆积下面的可能为L1SS1的弱成土层。由此推断风沙堆积于距今3万a以来。黄河阶地上的沙丘是在特殊的地区和特定的时期;强大的风力、丰富的沙源和气候变干条件下形成的。虽然东岸沙丘已是固定、半固定沙丘,但沙化仍然是该地区的一个问题。由于3~4a前开始在丘前洼地栽种苹果树,破坏了下风向沙丘迎风面的植被,造成了原来已固定沙丘的活化,在沙丘顶部生成了新的小抛物线形沙丘,高度大于1 m。沙丘上裸露的树根指示表土已被侵蚀0.3 m。南部沙丘区的风蚀作用也很强,例如,万荣县裴庄乡西范村北一片柿树林的树根由于风蚀已经裸露1.2 m。  相似文献   

12.
Coastal dunes are common along the eastern shore of Lake Michigan, with the most common being large (>30 m high), parabolic dunes that mantle lake terraces south of Manistee, MI. Although these dunes are an important resource in Michigan, and thus intensely managed by various state agencies, their geomorphic history is poorly understood. This study examines four sites near Holland, MI, through stratigraphic and radiocarbon analyses and is the most detailed geomorphic reconstruction conducted of coastal parabolic dunes in the region. Results from this study could benefit the environmental agencies in their management of the coastal dune ecosystem.Deposition of Eolian sand apparently began 5500 cal. years BP (i.e., during the Nipissing high stand). Most (75%) dune building occurred between 4000 and 2500 cal. years BP but was punctuated by brief periods of stability that resulted in the development of Entisols (A/C horizonation). Entisol burial occurred because the sand supply apparently increased during both the receding and rising lake levels. Subsequently, each dune stabilized for 2000 years, allowing the formation of Inceptisols (i.e., A/E/Bs/C horizonation). This interval of dune stability correlates with sites south of Holland and occurred while Lake Michigan fluctuated slowly and the beach potentially prograded. These combined variables of slow fluctuation and potential beach progradation hypothetically protected the dunes from wave erosion. Dunes near Holland became active again 1000–500 cal. years BP and grew both vertically and laterally. This activity intensified in the past 500 cal. years BP and hypothetically occurred due to recession of the lake shore such that wave erosion at the modern bluff base resumed. Results from this study indicate that coastal dunes along Lake Michigan are similar to many coastal dunes around the world, including those along the intermediate beaches in SE Australia.  相似文献   

13.
巴丹吉林沙漠沙山发育与环境演变研究   总被引:13,自引:6,他引:7  
通过对巴丹吉林沙漠风沙地貌、沙山地层结构、古沙山层理构造、沙山TL测年和区域输沙率等的综合研究表明,巴丹吉林地区自西北而东南大致可划分为河湖为主的弱水冲洪积扇、以河湖与风沙交替作用过度区和以风沙作用为主沙丘区。弱水冲洪积扇的发育为沙漠、沙山的发育提供了丰富的沙物质来源。高大沙山是更新世期间起伏的沙质下垫面与西风环流和季风环流相互作用的结果。末次冰期以前为西风环流为主时期,地表主导风向为西风,次为西北风,河湖环境发育;末次冰期以来为东亚季风环流为主时期,地表盛行风向为西北风,次为西风,风沙活动盛行。期间,风积床面经历了新月形、新月形沙丘链、复合新月形、复合沙丘链到复合型高大沙山的一系列复合、演变与发展过程。  相似文献   

14.
《自然地理学》2013,34(3):233-244
Relatively low (<25 m) parabolic dunes and dune ridges occur inland of massive parabolic dunes in many dune complexes along the southeastern shore of Lake Michigan. The major study of these backdunes (Tagues, 1946) concluded, based on field criteria, that they were older than the massive parabolic dunes and originate at the Calumet and Algonquin stages of ancestral Lake Michigan (~14-10 ka). Younger ages are indicated by this study in which Optically Stimulated Luminescense (OSL) ages were obtained from the crest of three backdunes southwest of Holland, Michigan. All ages are within statistical error of each other and indicate dune stabilization at ~4 ka. Similarities in surface soil development throughout the backdunes support the conclusion that they all stabilized at about the same time. Radiocarbon ages from paleosols indicate that the massive parabolic dunes were active at 4 ka and that this activity persisted after the back dunes had stabilized. In the Holland area, dune growth and migration occurred in a broad zone, including both back and massive parabolic dunes, immediately after the rise to and drop from Nipissing II high lake levels but became confined to a narrower zone closer to shore after ~4 ka.  相似文献   

15.
The evolution of mega-dunes is sometimes attributed to factors other than the wind but evidence for this is lacking. It is assumed that the dominance of wind in maintaining the evolution of mega-dunes should be characterized by regular height–spacing relationships that have been found for simple dunes or wind ripples which are dominantly formed by the wind. In this context, we studied the height–spacing relationship for the complex reversing mega-dunes in the Badain Jaran Desert, which features the tallest mega-dunes in the world. The complex mega-dunes were divided into three hierarchical orders according to the cumulative probability plots of dune height and spacing measurements, and the coefficients of variability of dune heights and spacings were in accordance with values reported for other deserts. The relationship between dune spacing and height for all the three orders of dunes could be expressed reasonably well by a uniform linear function that was also applied to the height–wavelength relationship for wind ripples in other deserts. This relationship was found to be similar to those for several other deserts and subaqueous bedforms. This implies that there should be few unique factors in maintaining the evolution of complex mega-dunes in the Badain Jaran Desert compared with the superimposed simple dunes and dunes in other deserts, dune fields and subaqueous bedforms, and that the tallest mega-dunes on the earth can be maintained by the wind.  相似文献   

16.
图们江下游圈河流域河岸沙丘动态变化   总被引:1,自引:1,他引:0  
杜会石  张爽  陈智文 《地理科学》2017,37(3):400-405
以图们江下游跨国界地区圈河流域河岸沙丘为研究对象,运用遥感与GIS技术,结合遥感影像、地形图等资料,分析该区1984~2015年河岸沙丘空间分布与格局演变,计算河岸沙丘分维值与稳定性指数。结果表明:该区河岸沙丘主要分布在弯曲型河道东岸,呈WNW-ESE向带状展布,面积15.71 km2。近31 a沙丘面积总体呈减少态势,净减少0.09 km2,其中,较少有人类活动的A区,沙丘面积呈减少趋势,减少幅度为8.21%;而受人类活动影响较大的B区,沙丘面积持续增加,尤其近5 a增幅达32%。河岸沙丘分维值虽总体高于内陆沙漠沙丘,但变化不显著,说明河岸沙丘处于相对稳定的发育演化过程中。该研究为图们江下游跨国界地区生态环境可续持发展提供科学依据。  相似文献   

17.
The western coast of Hainan Island exhibits a savanna landscape. Many types of sand dunes, including transverse dune ridges, longitudinal dune ridges, elliptical dunes, coppice dunes, and climbing dunes, are widely distributed in the coastal zone. In winter, high-frequency and high-energy NE winds (dominant winds) are prevalent, with a resultant drift direction (RDD) of S35.6°W. In spring, low-frequency and low-energy SW secondary winds prevail, with a RDD of N25.1°E. Wind tunnel simulations revealed that the airflow over the dune surface is the main factor controlling the erosion and deposition patterns of dune surfaces and the morphological development of dunes. In the region's bidirectional wind en-vironment, with two seasonally distinct energy levels, the airflow over the surface of elliptical dunes, barchan dunes, and transverse dune ridges will exhibit a transverse pattern, whereas the airflow over longitudinal dunes ridges exhibits a lateral pattern and that over climbing dunes exhibits a climbing-circumfluent pattern. These patterns represent different dynamic processes. The coastal dunes on the western coast of Hainan Island are influenced by factors such as onshore winds, sand sources, coastal slopes, rivers, and forest shelter belts. The source of the sand that supplements these dunes particularly influences the development pattern: when there is more sand, the pattern shows positive equilibrium deposition between dune ridges and dunes; otherwise, it shows negative equilibrium deposition. The presence or absence of forest shelter belts also influences deposition and dune development patterns and transformation of dune forms. Coastal dunes and inland desert dunes experience similar dynamic processes, but the former have more diversified shapes and more complex forma-tion mechanisms.  相似文献   

18.
We describe the evolution of, and vegetation succession on, a previously undescribed landform: transverse dune trailing ridges at El Farallón transgressive dunefield in the state of Veracruz, Mexico. Three-dimensional clinometer/compass and tape topographic surveys were conducted in conjunction with 1 m2 contiguous percent cover and presence/absence vegetation survey transects at eight locations across two adjacent trailing ridges. At the study site, and elsewhere, the transverse dune trailing ridges are formed by vegetation colonization of the lateral margins of active transverse, barchanoidal transverse, and aklé or network dunes. For simplicity, all trailing ridges formed from these dune types are referred to as transverse dune trailing ridges. Because there are several transverse dunes in the dunefield, multiple trailing ridges can be formed at one time. Two adjacent trailing ridges were examined. The shortest length ridge was 70 m long, and evolving from a 2.5 m-high transverse dune, while the longer ridge was 140 m long, and evolving from an 8 m-high dune. Trailing ridge length is a proxy measure of ridge age, since the longer the ridge, the greater the length of time since initial formation. With increasing age or distance upwind, species diversity increased, as well as species horizontal extent and percent cover. In turn, the degree of bare sand decreased. Overall, the data indicate a successional trend in the vegetation presence and cover with increasing age upwind. Those species most tolerant to burial (Croton and Palafoxia) begin the process of trailing ridge formation. Ipomoea and Canavalia are less tolerant to burial and also are typically the next colonizing species. Trachypogon does not tolerate sand burial or deposition very well and only appears after significant stabilization has taken place. The ridges display a moderately defined successional sequence in plant colonization and percentage cover with time (and upwind distance). They are significant geomorphologically as a unique landform in transgressive dunefields, and also because they may be the only remaining indication of transverse dune presence, and net dune migration direction once the dunefield is stabilized and in a final evolutionary state.  相似文献   

19.
海南岛西海岸沙丘形成动力过程的风洞模拟试验   总被引:3,自引:0,他引:3  
The western coast of Hainan Island exhibits a savanna landscape. Many types of sand dunes, including transverse dune ridges, longitudinal dune ridges, elliptical dunes, coppice dunes, and climbing dunes, are widely distributed in the coastal zone. In winter, high-frequency and high-energy NE winds (dominant winds) are prevalent, with a resultant drift direction (RDD) of S35.6°W. In spring, low-frequency and low-energy SW secondary winds prevail, with a RDD of N25.1°E. Wind tunnel simulations revealed that the airflow over the dune surface is the main factor controlling the erosion and deposition patterns of dune surfaces and the morphological development of dunes. In the region’s bidirectional wind en- vironment, with two seasonally distinct energy levels, the airflow over the surface of elliptical dunes, barchan dunes, and transverse dune ridges will exhibit a transverse pattern, whereas the airflow over longitudinal dunes ridges exhibits a lateral pattern and that over climbing dunes exhibits a climbing-circumfluent pattern. These patterns represent different dynamic processes. The coastal dunes on the western coast of Hainan Island are influenced by factors such as onshore winds, sand sources, coastal slopes, rivers, and forest shelter belts. The source of the sand that supplements these dunes particularly influences the development pattern: when there is more sand, the pattern shows positive equilibrium deposition between dune ridges and dunes; otherwise, it shows negative equilibrium deposition. The presence or absence of forest shelter belts also influences deposition and dune development patterns and transformation of dune forms. Coastal dunes and inland desert dunes experience similar dynamic processes, but the former have more diversified shapes and more complex formation mechanisms.  相似文献   

20.
Inland dunes occur over a large part of east-central lower Michigan, where they mantle glaciolacustrine and outwash surfaces that were exposed around 12,000 yrs. B.P. The dunes are parabolic, with northwest-oriented limbs, and occur in swampy landscapes, suggesting that paleoclimatic conditions at the time of their formation were much drier and possibly windier. In order to determine whether the dunes stabilized concurrently or randomly in time and space, surface soils were studied on 30 dunes in the area and quantitatively analyzed for relative differences. Soils data from the dunes indicate concurrent stabilization, following a period of regional mobilization of aeolian sand. Surface soils have formed by podzolization, in uniform parent materials, and are morphologically similar throughout the area. All the soils are weakly developed, with subtle variations on a A-E-Bs-BC-C horizonation sequence. Munsell colors of Bs horizons are remarkably uniform, with 27 of 30 sites exhibiting values of 4 and chromas of 6. Chemical data suggest that Fe and Al translocation has been uniform throughout the region. When compared with soils of known age in northwest lower Michigan, the data indicate that dunes in the region had stabilized at least by 4000 yrs. B.P., leaving an approximately 8000-yr. interval in which they could have formed. In contrast to the prevailing southwesterly winds of today, dune-forming winds were dominantly from the northwest. [Key words: aeolian sedimentation, dunes, soil, Great Lakes, Michigan.]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号