首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Makkah city, Saudi Arabia, is periodically exposed to flash floods that result in major human and economical damages. That is due to several factors including its rugged topography and geological structures. Hence, precise assessment of floods becomes a more vital demand in development planning. A GIS-based methodology has been developed for quantifying and spatially mapping the flood characteristics. The core of this new approach is integrating several topographic, metrological, geological, and land use data sets in a geographic information system (GIS) environment that utilizes the curve number method of flood modelling for ungauged arid catchments. Based on the estimated flood volume of sub-basins, a hazard factor has been developed to quantify the expected hazard level for each road. Applying this proposed approach reveals that 21?% of the road network in Makkah city is subjected to low flood hazards, 29?% is facing medium hazards, and 50?% of roads are exposed to harsh flood impacts. The developed approach may be considered a digital precise method that can be easily re-run, in other situations or regions, to estimate flood hazards on roads.  相似文献   

2.
Estimation of floods in a hydrological basin is essential for efficient flood management and development planning. Several approaches have been proposed to estimate flood peak discharge based on topographic and morphometric characteristics of ungauged hydrological basins. Two global approaches, namely the rational and the curve number methods, along with four national regression models have been compared over Makkah metropolitan area, Saudi Arabia. The curve number methodology has been taken as the basis of comparison due to its precision and wide utilization. Results show that the rational method produces differences equal to 44% in terms of peak discharges. Moreover, the best national regression model gives difference in the order of 18% with respect to the curve number results. Other national models give results very far away from those of the curve number (up to 95%), which can be considered as measures for their awful accuracy. Hence, the curve number is recommended as an optimum methodology for flood estimation, in Makkah city, in case of availability of geological, metrological, land use, and topographic datasets. Otherwise, a specific national regression model (Al-Subai) may be utilized in a simple way.  相似文献   

3.
The Al-Hada highway that descends towards the west of the city of At-Taif is a major connecting highway in the western part of the Kingdom of Saudi Arabia. It is one of the series of descending roads connecting the holy city of Makkah and the city of Jeddah with the city of At-Taif and the cities farther south along the escarpment. The length of the Al-Hada highways is about 22 km. The Al-Hada highway has been historically exposed to landslides and other geohazards since the day it was opened to public some 60 years ago. The road has been reconstructed and many slope instabilities have been remediated and the road has been expanded to two lanes in each direction. Heavy rainfalls occurred on the 14th of April 2012 in the province of At-Taif, causing huge debris flows in two places along the Al-Hada highway. As a result of that, these debris flows closed all four lanes of the highway for 2 weeks in order to remove the debris. The current research deals with mapping of all debris flows along Al-Hada highway and determining their volumes and their impact on the road. Finally, suitable solutions have been suggested to address these critical sites to minimize and/or avoid the debris flow hazards in the future.  相似文献   

4.
In arid regions, flash floods often occur as a consequence of excessive rainfall. Occasionally causing major loss of property and life, floods are large events of relatively short duration. Makkah area in western Saudi Arabia is characterized by high rainfall intensity that leads to flash floods. This study quantifies the hydrological characteristics and flood probability of some major wadis in western Saudi Arabia, including Na’man, Fatimah, and Usfan. Flood responses in these wadis vary due to the nature and rainfall distribution within these wadis. Rainfall frequency analysis was performed using selected annual maximums of 24-h rainfall from eight stations located in the area. Two of the most applied methods of statistical distribution, Gumbel’s extreme value distribution and log Pearson type III distribution, were applied to maximum daily rainfall data over 26 to 40 years. The Gumbel’s model was found to be the best fitting model for identifying and predicting future rainfall occurrence. Rainfall estimations from different return periods were identified. Probable maximum floods of the major wadis studied were also estimated for different return periods, which were extrapolated from the probable maximum precipitation.  相似文献   

5.
Flood inundation maps are dependent on the topographic and geomorphologic features of a wadi (drainage basin) in arid regions, which are most susceptible for potential flash flood occurrences, such as in the southwestern part of the Kingdom of Saudi Arabia. It is not possible to control the potential flood hazards by using only technological instruments that forewarn the occurrences or imminence. Additionally, it would be better to prepare flood risk maps so as to delineate the risky areas to educate the administrators and local settlers. The availability of these maps is the key requirement for any urban development that entails land use allocation, identification of dam, tunnel, highway, bridge sites, and infrastructure locations for sustainable future. This paper suggests the necessary steps in flood inundation map preparation after determining the possible flood discharge. For this purpose, a set of critical cross-sections along the possible flood plain are taken in the field with surveying methods and measurements. The calculation of the average flow velocity in each section is calculated according to the cross-section geometric, hydraulic, and material properties. Synthetic rating curves (SRC) are prepared for each cross section, which are very useful especially in arid and semi-arid regions where there are no perennial surface water flows for natural rating curve measurements. All the SRCs appear in the form of power function which relates the flow depth to discharge in a given cross section. It is then possible to calculate the flood depth in the cross section through its SRC. Depending on the cross-section shape, the flood width can be calculated. The connection of a series of widths on a scaled topographic map delineates the flood inundation area. If digital elevation map (DEM) is available, then the SRCs can be integrated with these maps and the flood inundation delineation can be achieved automatically. Since DEMs are not available, the topographic maps are used for this purpose in order to delineate flood inundation areas within wadis Hali and Yiba from the southwestern Kingdom of Saudi Arabia.  相似文献   

6.
This paper presents a proposed integrated approach for flood hazardous evaluation in arid and semi-arid areas. Wadi Fatimah in Saudi Arabia is utilized for implementation of such an approach. The approach consists of four stages. In the first stage, a statistical analysis of rainfall data is performed to determine the design storms at specified return periods. In the second stage, geological and geomorphologic analyses are followed to estimate the geomorphic parameters. The third stage concerned with land use and land cover analyses linked with hydrological analysis to estimate the hydrographs. The fourth stage is related to the delineation of the inundation area under two scenarios: the presence and absence of the dam. The statistical analysis proved that some rainfall stations do not follow a Gumbel distribution. The presence of the dam reduces the inundation depth by about 10 %. The reduction in the inundation area due the presence of the dam is about 25 %.  相似文献   

7.
The main objective of the study was to assess the integrated multiple hydrological hazards and their environmental and socio-economic risks in Himalaya through geographical information system (GIS) and database management system (DBMS). The Dabka Watershed constitutes a part of the Kosi Basin in the Kumaun Lesser Himalaya has been selected for the case illustration. The Dabka DBMS is constituted of three GIS modules, that is, geo-informatics, hydro-informatics and hazard-informatics. Through the integration and superimposing of these modules prepared Hydrological Hazard Index to identify the level of vulnerability for existing hydrological hazards and their socio-economic and environmental risks. The results suggested that geo-environmentally most stressed barren land areas have high rate of runoff, flood magnitude, erosion sediment load and denudation during rainy season particularly in the month of August (i.e., respectively, 84.56 l/s/km2, 871.80 l/s/km2, 78.60 t/km2 and 1.21 mm/year), which accelerates high hazards and their socio-economic and environmental risks, whereas geo-environmentally least stressed dense forest areas experience low rate of stream runoff, flood magnitude, erosion sediment load and denudation in the same season and month (i.e., respectively, 20.67 l/s/km2, 58.12 l/s/km2, 19.50 t/km2 and 0.20 mm/year) comparatively have low hazards and their socio-economic and environmental risks. The other frazzled geo-environment that also found highly vulnerable for natural hazards and their risks is agricultural land due to high stream runoff, flood magnitude, erosion sediment load and denudation rates (i.e., respectively, 53.15 l/s/km2, 217.95 l/s/km2, 90.00 t/km2 and .92 mm/year). This makes it necessary to take up an integrated and comprehensive sustainable land use policy for the entire Himalaya region based on the scientific interpretation of the crucial linkages between land use and hydrological hazards, that is, floods, erosion, landslides during rainy season and drought due to dry-up of natural springs and streams during summer season. The study would help the village, district and state development authority to formulate decision support system for alternate planning and management for the Himalaya region.  相似文献   

8.
Shair  I. M. 《GeoJournal》1983,7(3):291-298
GeoJournal - This study is concerned with explaining a pattern which results from the travel of Soutwest Asian Hajjis (pilgrims) to Makkah (Mecca, Saudi Arabia). It's aim is to discover the...  相似文献   

9.
The present study designed to monitor and predict land cover change (LCC) in addition to characterizing LCC and its dynamics over Al-Baha region, Kingdom of Saudi Arabia, by utilizing remote sensing and GIS-cellular automata model (Markov-CA). Moreover, to determine the effect of rainwater storage reservoirs as a driver to the expansion of irrigated cropland. Eight Landsat 5/7 TM/ETM images from 1975 to 2010 were analyzed and ultimately utilized in categorizing LC. The LC maps classified into four main classes: bare soil, sparsely vegetated, forest and shrub land, and irrigated cropland. The quantification of LCC for the analyzed categories showed that bare soil and sparsely vegetated was the largest classes throughout the study period, followed by forest, shrubland, and irrigated cropland. The processes of LCC in the study area were not constant, and varied from one class to another. There were two stages in bare soil change, an increase stage (1975–1995) and decline stage (1995–2010), and the construction of 25 rainwater-harvesting dams in the region was the turning point in bare soil change. The greatest increase was observed in irrigated cropland after 1995 in the expense of the other three categories as an effect of extensive rainwater harvesting practices. Losses were evident in forest and shrubland and sparsely vegetated land during the first stage (1975–1995) with 5.4 and 25.6 % of total area in 1995, while in 1975, they covered more than 13.8 and 32.7 % of total area. During the second stage (1995–2010), forest and shrubland witnessed a significant increase from 1569.17 km2 in 1975 to 1840.87 km2 in 2010. Irrigated cropland underwent the greatest growth (from 422.766 km2 in 1975 to 1819.931 km2 in 2010) during the entire study period, and this agriculture expansion reached its zenith in the 2000s. Markov-CA simulation in 2050 predicts a continuing upward trend in irrigated cropland and forest and shrubland areas, as well as a downward trend in bare soil and sparsely vegetated areas; the spatial distribution prediction indicates that irrigated cropland will expand around reservoirs and the mountain areas. The validation result showed that the model successfully identified the state of land cover in 2010 with 97 % agreement between the actual and projected cover. The output of this study would be useful for decision makers and LC/land use planners in Saudi Arabia and similar arid regions.  相似文献   

10.
Forecasting and monitoring extreme floods in arid regions like Saudi Arabia (SA) are a big challenge for engineers and hydrologists. It is difficult to derive reliable flood estimates at any site without adequate flood measurements. Therefore, envelope curves were developed for reliable estimates of flood peaks. Relaying on recorded flood events in SA, Francou–Rodier approach is used to develop the Regional Maximum Flood (RMF) for some wadis and for SA as a whole. A total of 3121 flood events in 32 arid basins of sizes varying from 99 to more than 4500 km2 are collected and analyzed. Results show that established regional coefficients (K) range between 2.76 and 5.5. The RMF formula for the Saudi regions is Q?=?251 A0.45. The flood-frequency analysis showed that the Log-Pearson Type III is best. The extreme observed floods for the envelope curve for K?=?5.5 accommodate floods of recurrence interval ranging between 1000 and 100,000 years. The study results provide more realistic runoff peaks for a design of flood protection works for SA watersheds and for the similar environment. Consequently, it is recommended to use the developed envelope curves and models for efficient, safe and precise hydraulic structures design in SA.  相似文献   

11.
Estimating the potential direct runoff for urban watersheds is essential for flood risk mitigation and rainwater harvesting. Thus, this study aims to estimate the potential runoff depth based on the natural resources conservation service (NRCS) method and delineation of the watersheds in Riyadh, Saudi Arabia. To accomplish this objective, the geographic information systems (GIS) and remote sensing technique (RST) data were integrated to save time and improve analysis accuracy. The employed data include the digital elevation model (DEM), soil map, geology map, satellite images, and daily precipitation records. Accordingly, the hydrologic soil groups (HSG), the land use/land cover (LULC), and curve number (CN) were determined for each watershed in the study area. The results of this analysis show that the study area can be delineated into 40 watersheds with a total area of 8500 km2. Furthermore, the dominant HSG is group D, which represents about 71% of the total area. The LULC maps indicate four major land types in the entire study area: urban, barren land, agricultural land, and roads. The CN of the study area ranges from 64 to 98, while the weighted CN is 92 for the city. The rainfall-runoff analysis shows that the area has a high and very high daily runoff (35–50 and >?50 mm, respectively). Therefore, in this case, the runoff leads to flooding, especially in the urban area and agricultural lands.  相似文献   

12.
 The geological hazards along part of Al-Sayl Alkabeir Al-Jammum road, western Saudi Arabia, were studied by the use of the sterographic projection to define the types of possible failures and the magnitude of safety factor on each slope face. The studied area consists of granite and granodiorite rocks that were cut by acidic and basic dikes. There are four sets of structural discontinuities which, besides a few strike slip faults, constitute the planes of weakness that lead to a variety of possible mode failures. The stability analysis indicates that sections of the road are unstable as their cut slopes exceed the maximum safe slope angles which range between 65° and 73°. Received: 16 June 1998 · Accepted: 2 March 1999  相似文献   

13.
Amin  Ammar  Bankher  Khalid 《Natural Hazards》1997,16(1):57-63
The occurrence of land subsidence in the Kingdom Saudi Arabia is either natural or man-made. Natural land subsidence occurs due to the development of subterranean voids by a solution of host rocks in carbonate and evaporite terrains, over many areas of Saudi Arabia. Man-induced land subsidence is either due to the removal of groundwater in the agricultural areas or to wetting of unstable soils. Therefore, earth fissures and a lowering of the ground surface in unconsolidated sediments took place in alluvial plains and volcanic vent terrains. Unstable soils include Sabkha soils and loess sediments. These types of soils occur in coastal plains, desert areas and volcanic terrains. When this soil is wetted either during agricultural activities, waste disposal or even during a rain storm, subsidence takes place due to either the removal of salts from the Sabkha soil or the rearrangement of soil particles in loess sediments.  相似文献   

14.
Overview of some geological hazards in the Saudi Arabia   总被引:2,自引:1,他引:1  
The Saudi Arabia has harsh environmental conditions which enhance some geomorphologic/geological processes more than in other areas. These processes create different geological hazards. The general physiography of the Saudi Arabia is characterized by the Red Sea coastal plains and the escarpment foothills called Tihama, followed by the Arabian Shield Mountains, the Arabian Shelf plateau and finally the Arabian Gulf coastal plains. These types of geological hazards can be categorized into sand accumulations, earth subsidence and fissures, flash floods, problematic soils, slope stability problems, and karst problems. The current study gives an overview of all these hazards with examples, as well as develops a geo-hazard map for the Saudi Arabia. Our findings indicate that the desert environment needs much concern and care. National and international agencies have to join together with other people to keep the system balanced and to reduce the resulting geological hazards. Also, remedial measures should be proposed to avoid and reduce these natural hazards.  相似文献   

15.
To increase the potentiality of development and land reclamation activities, the Egyptian government funds the construction of a new desert road in Upper Egypt. This road connects Upper Egypt with the Red Sea Governorate. Surrounding the road is 207,000 acres of land surface which is almost flat and suitable for reclamation. To ensure the sustainability of the proposed development surrounding the road, analyses of the morphometric parameters, infiltration test and the grain size distribution, geoelectrical and hydrogeological investigations were conducted in the area. The results indicated a possibility of flash flood hazards and poor drainage condition for land reclamation activities is expected. The hydrogeological and geoelectrical investigations revealed that the unconfined Quaternary and confined Nubian Sandstone aquifers are the main aquifers in the area. The depths to water in the two aquifers range from 18 to 36 and 80 to 300 m with an average thickness of 40 and 275 m, respectively. The aquifers are made of sands and silt with clay intercalations. The total dissolved solids of water ranges between 1,700 and 5,400 mg/L, whereas the sodium absorption ratio ranges between 7 and 30 meq/L, indicating the suitability of water for irrigating medium- to high-salt-tolerant crops with proper drainage facilities. Thus, water in this area is not suitable for domestic use. Based on hydrogeological equations, the available water for extraction from the aquifers in the area is about 17.195?×?109 m3, and this volume is not feasible to reclaim the whole proposed area for reclamation. Meanwhile, it may be possible to water small farms (not more than 60,000 acres for 50 years). Surface water source should be considered for the sustainability development of the area.  相似文献   

16.
The central region of Saudi Arabia is underlain by thick sedimentary formations belonging to the Mesozoic and Cenozoic era. These sedimentary formations form a prolific aquifer supplying groundwater for agricultural and domestic usage in and around Riyadh. The region south of Riyadh City is well known for agricultural activities. Wadi Sahba, which is an eastward extension of Wadi Nisah, has readily available groundwater resources in the Cretaceous Biyadh sandstone aquifer to sustain agricultural activities. The objective of the present study was the hydrochemical assessment of groundwater in the area to understand the main hydrological processes which influence groundwater chemistry. To achieve this objective, 20 groundwater samples were collected from agricultural farms in the Wadi Sahba in central Saudi Arabia, and the major physiochemical constituents were analyzed and interpreted. The average TDS value of the analyzed samples is 1578.05 mg/l, whereas the average EC concentration is 3220.05 μS/cm. Groundwater facies classification inferred from the Piper plot shows that groundwater in the study area belongs to the Ca-SO4-Cl type and Ca-Na-SO4-Cl type. The Ca-SO4-Cl type of groundwater facies is influenced mainly by gypsum dissolution and base ion exchange, whereas the Ca-Na-SO4-Cl type is influenced by gypsum and halite dissolution. All the groundwater samples are undersaturated with respect to these two principal mineral phases. The Q-mode cluster analysis results in two main groups of groundwater samples, mainly based on the TDS content. Cluster 1 has an average TDS value of 1980 mg/l, whereas cluster 2 has an average TDS of 1176 mg/l. The groundwater facies identified through the Piper plot reflects the major hydrological processes controlling groundwater chemistry in the area and was found to be more useful in this study as compared to cluster analysis.  相似文献   

17.
Runoff peak and volume in flood studies are estimated relying on temporal rainfall distribution from various storm patterns. Usually, SCS distributions types (I, II, III, IA) are commonly used. Using these distributions in runoff calculations assume that the in situ temporal rainfall pattern typically behaves as the one described by the SCS-type distribution, which is due to cyclonic frontal storms and actually developed in temperate environment. To what extent such assumption is valid in the arid environment? How much the impacts of rainfall temporal patterns are reflected in runoff volumes and peaks? The aim objectives of the current study are to answer the above two questions and clarify the validity of aforementioned assumption and exemplify such effect. Real rainfall data collected from rain gauges of Makkah Al-Mukkramah region over a period of more than 20 years are utilized. Temporal rainfall patterns and their parameters are deduced. Many hydrological simulations are performed and comparisons, in terms of runoff volume and peak flows, are made to show the effects of the common rainfall storm patterns and the developed rainfall storm patterns in the region based on the current study. Results indicate that major bursts of the design rainfall storm pattern are located in the first time of the storm period in the two quartiles which is mainly due to convective rainfall type in thunderstorms unlike the commonly used by SCS types relying on frontal cyclonic storms. Makkah Al-Mukkramah temporal rainfall pattern does not behave as the “typical pattern” assumed by SCS distributions that are deduced from different environments. The impacts of the temporal pattern reflected as an overestimate in the runoff peak reached to 68 %. The developed hyetographs and tables presented in the current study are recommended to enhance economical and rational design practice in watersheds of Makkah Al-Mukkramah region.  相似文献   

18.
Historical and exact information about the land use/land cover change is very important for regional sustainable development. The aim of this paper is to determine the rapid changes in land use/land cover (LULC) pattern due to agriculture expansion, environmental calamities such as flood and government policies over Upper Narmada basin, India. Multi-temporal Landsat satellite images for years 1990, 2000, 2010 and 2015 were used to analyze and monitor the changes in LULC with an overall accuracy of more than 85%. Results revealed a potential decrease in natural vegetation (? 9.52%) due to the expansion of settlement (+ 0.52%) and cropland (+ 9.43%) from 1990 to 2015. In the present study, Cellular Automata and Markov (CA–Markov), an integrated tool was used to project the short-term LULC map of year 2030. The projected LULC (2030) indicated the expansion of built-up area along with the cropland and degradation in the vegetation area. The outcomes from the study can help as a guiding tool for protection of natural vegetation and the management of the built-up area. Additionally, it will help in devising the strategies to utilize every bit of land in the study area for decision makers.  相似文献   

19.
Sand and dust storms are causing hazards and problems in aviation as well as the dangers and distresses they cause on living things. The low meteorological visibility, the presence of strong winds with gust, and the transport of dust and sand particles by the wind are dangerous on landing and departure of aircrafts, and even on planes that are parked. The main aim of the study is to examine the meteorological conditions causing the dust storm that took place in the Arabian Peninsula on February 28, 2009, and to determine the source of dust caused dust storm, sand storm, blown sand, and blown dust at the airports. Within the scope of the study, aviation routine weather report (METAR) and aviation selected special weather report (SPECI) reports have been assessed at many airports over Arabian Peninsula (AP), the northern part of the AP and North Africa. As model outputs; NCEP–DOE Reanalysis 2 data, BSC–DREAM8B, and HYSPLIT model were used. In the satellite images; METEOSAT MSG dust RGB images, MODIS, and Kalpana-1 data were used. According to obtained results, dust storms were detected in Bahrain, Kuwait, Saudi Arabia, and United Arab Emirates (UAE). At Al-Ahsa Airport in Saudi Arabia, the lowest visibility measured on February 28, 2009, dropping to 200 m, which was dominated by blowing sand. The source region of the dust observed at Dubai Airport in UAE is the eastern regions of the Rub’al Khali Desert located between Saudi Arabia, Oman, and UAE.  相似文献   

20.
Mesozoic oil in Saudi Arabia exists in north/south-oriented anticlines. Such anticlines are usually studied using subsurface data. The present study introduces, for the first time in Saudi Arabia, a surface analog for these anticlines. The study covers two northerly oriented anticlines located in the Jinadriyah area at 15 km to the northeast of the Riyadh city. They are named herein the North and South Jinadriyah anticlines. The outcrops in both anticlines belong to the Lower Cretaceous Yamama Formation which consists of limestone in its lower part and limestone with shale in its upper part. The study included initially detailed interpretation of Google Earth and Landsat TM images to map the structural pattern of the anticlines. Detailed field mapping confirmed the satellite image interpretation and helped describe the geometry of the two anticlines in detail. The 3.5-km-long South Jinadriyah anticline is an open doubly plunging asymmetric anticline. The western flank is dissected by 13 minor reverse faults of north–south orientation. The North Jinadriyah anticline is about 5.5 km long and is relatively more complex than the South Jinadriyah anticline. It consists of northern, central, and southern segments that differ from each others in orientation and style. The anticline is dissected by 18 minor faults of different orientations and sense of displacement. Two perpendicular fracture sets with one being parallel to the anticline axes were recorded in the two anticlines. Both anticlines are interpreted as fault-propagation folds that were formed during the Late Cretaceous first Alpine orogeny. The mid-Late Tertiary second Alpine orogeny and Late Tertiary eastward tilting of the Arabian Plate increased the degree of folding and faulting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号