首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The strontium isotopic geochemistry is given for three Puerto Rican intrusive rocks: the granodioritic Morovis and San Lorenzo plutons and the Rio Blanco stock of quartz dioritic composition. The average calculated initial87Sr/86Sr ratios are 0.70370, 0.70355 and 0.70408, respectively. In addition, the San Lorenzo data establish a whole-rock isochron of71 ± 2m.y., which agrees with the previously reported K-Ar age of 73 m.y. Similarity of most of the intrusive rocks in the Greater Antilles with respect to their strontium isotopic geochemistry regardless of their major element composition indicates that intrusive magmas with a wide range of composition can be derived from a single source material. The most likely source material, in view of the available isotopic data, is the mantle wedge overlying the subduction zone.  相似文献   

2.
New inductively coupled plasma mass spectrometry (ICP-MS) trace element data are presented on a suite of arc lavas from the northern Mariana and southern Bonin island arcs. The samples were dredged from seamounts in the Central Island Province (CIP), the Northern Seamount Province (NSP) and the Volcano Arc (VA), and they range in composition from low-K tholeiites to shoshonites. Previous studies on these samples concluded that the primary compositional control was two-component mixing between a fluid-metasomatized mid-ocean ridge basalt (MORB) source and an enriched, ocean island basalt (OIB)-like, mantle component, with subducted sediment material playing a secondary role. However, the new trace element data suggest that the compositional variations along the Mariana arc can be better explained by the addition of spatially varying subduction components to a spatially varying mantle source. The data suggest that the subduction component in the CIP and VA is dominated by aqueous fluids derived from altered oceanic crust and a pelagic sediment component, while the subduction component in the NSP is dominated by more silicic fluids derived from volcanogenic sediments as well as from pelagic sediment and altered oceanic crust. The mantle wedge in the CIP and VA is depleted relative to a normal mid-ocean ridge basalt source by loss of a small melt fraction, while the mantle wedge in the NSP is enriched either by possible gain of a small melt fraction or addition of a sediment-derived melt. Because the subduction of seamounts controls the arc and back-arc geometries, so the concomitant variation between subducted material and mantle composition may be no coincidence. The high field strength element (HFSE) data indicate a high degree of melting (∼ 25–30%) throughout the arc, ∼ 10% of which may be attributed to decompression and ∼ 20% to fluid addition.  相似文献   

3.
Detailed field mapping in the Güvem area in the Galatia province of NW Central Anatolia, Turkey, combined with K–Ar dating, has established the existence of two discrete Miocene volcanic phases, separated by a major unconformity. The magmas were erupted in a post-collisional tectonic setting and it is possible that the younger phase could be geodynamically linked to the onset of transtensional tectonics along the North Anatolian Fault zone. The Early Miocene phase (18–20 Ma; Burdigalian) is the most voluminous, comprising of over 1500 m of potassium-rich intermediate-acid magmas. In contrast, the Late Miocene volcanic phase (ca. 10 Ma; Tortonian) comprises a single 70-m-thick flow unit of alkali basalt. The major and trace element and Sr–Nd isotope compositions of the volcanics suggest that the Late Miocene basalts and the parental mafic magmas to the Early Miocene series were derived from different mantle sources. Despite showing some similarities to high-K calc-alkaline magma series from active continental margins, the Early Miocene volcanics are clearly alkaline with higher abundances of high field strength elements (Zr, Nb, Ti, Y). Crustal contamination appears to have enhanced the effects of crystal fractionation in the petrogensis of this series and some of the most silica-rich magmas may be crustal melts. The mantle source of the most primitive mafic magmas is considered to have been an asthenospheric mantle wedge modified by crustally-derived fluids rising from a Late Cretaceous–Early Tertiary Tethyan subduction zone dipping northwards beneath the Galatia province. The Late Miocene basalts, whilst still alkaline, have a Sr–Nd isotope composition indicating partial melting of a more depleted mantle source component, which most likely represents the average composition of the asthenosphere beneath the region.  相似文献   

4.
Combined elemental, and Sr and Nd isotopic data are presented for Mesozoic dolerite dikes of Liberia (Africa) which are related to the initial stage of opening of the Atlantic Ocean.The large scatter of both trace element and isotopic data allows the identification of five groups of dolerites which cannot be related to each other by simple processes of mineral fractionation from a common source. On the contrary, the observed chemical and isotopic variation within some dolerites (Groups I and II) may result either from variable degrees of melting of an isotopically heterogeneous source or mixing between enriched and depleted oceanic type mantle. For the other dolerites (Groups III–V) mixing with a third mantle source with more radiogenic Sr and with element ratios characteristic of subduction environments is suggested. This third source is probably the subcontinental lithospheric mantle.Finally, no significant modification by interaction with continental crust is apparent in most of the analyzed samples.  相似文献   

5.
A survey of Sr isotopic ratios and other compositional features of subduction-related magma suites reveals significant correlations between these averaged parameters and characteristics of the underlying crust (i.e., thickness, composition, and age). These observations lead to the conclusion that crust and(or) mantle rocks in the hanging walls of subduction zones are involved in modification of primary mafic magmas (typically basalt or basaltic andesite). It is proposed that mafic magmas will stagnate within the crust or uppermost mantle where they may differentiate and react with wall rocks. The extent to which such processes manifest themselves will depend upon details of the local crustal structure. In particular, the composition and age of the crust will strongly influence such parameters as Sr, Nd and Pb isotopic compositions. Such data strongly indicate the involvement of crustal rocks in locales underlain by old sialic crust (e.g., central Andes). Depending upon the level of magma stagnation and evolution within the crust, different trends in isotopic composition may result. These isotopic trends may be enhanced by partial melting of the wall rocks to produce relatively silicic anatectic magmas, and locally they may reflect subduction of continental sediments. Interpretation of the isotopic data may be more ambiguous in locales underlain by younger and more mafic continental crust (Cascades, E Eleutians) and those underlain by oceanic crust owing to the similarity in isotopic composition of primary magmas and the latter crustal materials. Yet some degree of crustal involvement in magmatic evolution seems highly probable even in these more primitive terranes. Consequently, most island arc magmas, and especially those more evolved than basalt, are probably not primary in the sense that they do not represent direct melts of the upper mantle. Studies of arc volcanic rocks may yield misleading conclusions concerning processes of magma generation related to subduction unless evolutionary processes are defined and their effects considered. It appears that modern volcanic arcs provide a poor analog for models of early crustal development because the modern mantle-derived magmatic components are more mafic in composition than average continental crust.  相似文献   

6.
Two fundamentally different types of silicic volcanic rocks formed during the Cenozoic of the western Cordillera of the United States. Large volumes of dacite and rhyolite, mostly ignimbrites, erupted in the Oligocene in what is now the Great Basin and contrast with rhyolites erupted along the Snake River Plain during the Late Cenozoic. The Great Basin dacites and rhyolites are generally calc-alkaline, magnesian, oxidized, wet, cool (<850°C), Sr-and Al-rich, and Fe-poor. These silicic rocks are interpreted to have been derived from mafic parent magmas generated by dehydration of oceanic lithosphere and melting in the mantle wedge above a subduction zone. Plagioclase fractionation was minimized by the high water fugacity and oxide precipitation was enhanced by high oxygen fugacity. This resulted in the formation of Si-, Al-, and Sr-rich differentiates with low Fe/Mg ratios, relatively low temperatures, and declining densities. Magma mixing, large proportions of crustal assimilation, and polybaric crystal fractionation were all important processes in generating this Oligocene suite. In contrast, most of the rhyolites of the Snake River Plain are alkaline to calc-alkaline, ferroan, reduced, dry, hot (830–1,050°C), Sr-and Al-poor, and Nb-and Fe-rich. They are part of a distinctly bimodal sequence with tholeiitic basalt. These characteristics were largely imposed by their derivation from parental basalt (with low fH2O and low fO2) which formed by partial melting in or above a mantle plume. The differences in intensive parameters caused early precipitation of plagioclase and retarded crystallization of Fe–Ti oxides. Fractionation led to higher density magmas and mid-crustal entrapment. Renewed intrusion of mafic magma caused partial melting of the intrusive complex. Varying degrees of partial melting, fractionation, and minor assimilation of older crust led to the array of rhyolite compositions. Only very small volumes of distinctive rhyolite were derived by fractional crystallization of Fe-rich intermediate magmas like those of the Craters of the Moon-Cedar Butte trend. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
This paper addresses formation of felsic magmas in an intra‐oceanic magmatic arc. New bathymetric, petrologic, geochemical, and isotopic data for Zealandia Bank and two related volcanoes in the south‐central Mariana arc is presented and interpreted. These three volcanoes are remnants of an older andesitic volcano that evolved for some time and became dormant long enough for a carbonate platform to grow on its summit before reawakening as a rhyodacitic volcano. Zealandia lavas are transitional between low‐ and medium‐K and tholeiitic and calc‐alkaline suites. They define a bimodal suite with a gap of 56–58 wt% SiO2; this suggests that mafic and felsic magmas have different origins. The magmatic system is powered by mantle‐derived basalts having low Zr/Y and flat rare earth element patterns. Two‐pyroxene thermometry yields equilibration temperatures of 1000–1100 °C for andesites and 900–1000 °C for dacites. Porphyritic basalts and andesites show textures expected for fractionating magmas but mostly fine‐grained felsic lavas do not. All lavas show trace element signatures expected for mantle and crustal sources that were strongly melt‐depleted and enriched by subduction‐related fluids and sediment melts. Sr and Nd isotopic compositions fall in the normal range of Mariana arc lavas. Felsic lavas show petrographic evidence of mixing with mafic magma. Zealandia Bank felsic magmatism supports the idea that a large mid‐ to lower‐crustal felsic magma body exists beneath the south‐central Mariana arc, indicating that MASH (mixing, assimilation, storage, and homogenization) zones can form beneath intra‐oceanic as well as continental arcs.  相似文献   

8.
Noble gas elemental and isotopic abundances have been analysed in eight samples of youthful basaltic glass dredged from three different locations within the Lau Backarc Basin: (1) the King's Triple Junction, (2) the Central Lau Spreading Centre at 18°S and (3) the Eastern Lau Spreading Centre at 19°S. Samples from the Lau central and eastern spreading centres have MORB-like helium isotopic ratios of approximately 1.2 × 10−5 (8.5 R/RA). In contrast, the samples from the King's Triple Junction yield helium isotopic ratios averaging 9.4 (±0.8) × 10−6 (6.7 ± 0.6 R/RA), systematically lower than the MORB-like value, which may be reflecting the addition of radiogenic 4He released from the descending slab. Neon isotopic ratios are enriched in 20Ne and 21Ne with respect to atmospheric ratios by as much as 23% and 62% respectively. These observations further confirm that non-atmospheric neon is a common characteristic of samples derived from the mantle. The helium and neon isotopic signatures in the samples can be explained by mixing of a primordial solar component, radiogenic and nucleogenic components produced by radioactive processes inside the Earth, and an atmospheric component. This reconnaissance survey of noble gases in a backarc basin indicates that current volcanism is dominated by magmas from the mantle wedge, a source similar to that from which MORBs are derived. The heavier noble gases (argon, krypton and xenon), however, show more atmosphere-like compositions, either indicating strong interaction of the magmas with the atmosphere or the presence of a recycled component derived from the underlying subducting slab.  相似文献   

9.
New lead isotope data for calc-alkaline volcanic rocks from New Zealand and the Lesser Antilles, combined with published data for Japan and the Andes, show that the spread of isotopic composition in each volcanic arc region is small (2–4% range in Pb206/Pb204) compared to the range of values observed (8%). Pb207 and Pb206 increase systematically from Japan to the Andes to New Zealand to the Caribbean. Likewise Pb208 and Pb206 are positively correlated, but there is evidence of long term (108 m.y.) differences of Th/U between the regions studied. The apparent U/Pb ratios of Peruvian, New Zealand and Caribbean calc-alkaline volcanics do not differ greatly from the apparent ratio for the single stage growth curve for stratiform Pb ores. In contrast the apparent U/Pb ratios for Japanese calc-alkaline volcanics are distinctly lower. Although the Japanese Pb has model ages near zero, the other volcanic arcs have negative (future) model ages, the Caribbean samples being most extreme in this respect. Published oceanic volcanic and sediment lead isotopic composition data and the new results are consistent with a model of volcanic arc evolution in which oceanic sediments are dragged into the mantle, mixed to some degree with mantle material, and partially melted to form calc-alkaline magmas. Either constant continental volume or continental growth are compatible with this process. The mixing of two separate « frequently mixed » leads is the minimum complexity required to explain volcanic are leads. Mathematically there are probably no single-stage leads but isotopic homogenization during earth history has caused lead isotopes to closely approximate a single stage growth. The use of lead isotopic composition as a « tracer » suggests that mantle — crust geochemical evolution involves an exchange of material and is not simply a one-way process. The Pb isotopic composition of the Auckland, New Zealand alkali basalts is apparently the result of incomplete mixing of two leads to give a linear array of Pb207/Pb204-Pb206/Pb204 data with negative slope.  相似文献   

10.
The Iliniza Volcanic Complex (IVC) is a poorly known volcanic complex located 60 km SSW of Quito in the Western Cordillera of Ecuador. It comprises twin peaks, North Iliniza and South Iliniza, and two satellite domes, Pilongo and Tishigcuchi. The study of the IVC was undertaken in order to better constrain the role of adakitic magmas in the Ecuadorian arc evolution. The presence of volcanic rocks with an adakitic imprint or even pristine adakites in the Ecuadorian volcanic arc is known since the late 1990s. Adakitic magmas are produced by the partial melting of a basaltic source leaving a garnet rich residue. This process can be related to the melting of an overthickened crust or a subducting oceanic crust. For the last case a special geodynamic context is required, like the subduction of a young lithosphere or when the subduction angle is not very steep; both cases are possible in Ecuador. The products of the IVC, made up of medium-K basaltic andesites, andesites and dacites, have been divided in different geochemical series whose origin requires various interactions between the different magma sources involved in this subduction zone. North Iliniza is a classic calc-alkaline series that we interpret as resulting from the partial melting of the mantle wedge. For South Iliniza, a simple evolution with fractional crystallization of amphibole, plagioclase, clinopyroxene, magnetite, apatite and zircon from a parental magma, being itself the product of the mixing of 36% adakitic and 64% calc-alkaline magma, has been quantified. For the Santa Rosa rhyolites, a slab melting origin with little mantle interactions during the ascent of magmas has been established. The Pilongo series magma is the product of a moderate to high degree (26%) of partial melting of the subducting oceanic crust, which reached the surface without interaction with the mantle wedge. The Tishigcuchi series shows two stages of evolution: (1) metasomatism of the mantle wedge peridotite by slab melts, and (2) partial melting (10%) of this metasomatized source. Therefore, the relative ages of the edifices show a geochemical evolution from calc-alkaline to adakitic magmas, as is observed for several volcanoes of the Ecuadorian arc.  相似文献   

11.
Ocean island basalt (OIB) suites display a wide diversity of major element, trace element, and isotopic compositions. The incompatible trace element and isotopic ratios of OIB reflect considerable heterogeneity in the mantle source regions. In addition to the distinctive Sr, Nd and Pb isotopic signatures of the HIMU, EMI and EMII OIB end-members, differences in incompatible trace element ratios among these end-members are of great help in identifying the nature and origin of their sources. Examination of trace element and isotopic constraints for the three OIB end-members suggests a relatively simple model for their origin. The dominant component in all OIB is ancient recycled basaltic oceanic crust which has been processed through a subduction zone, and which carries the trace element and isotopic signature of a dehydration residue (enrichment in HFSE relative to LILE and LREE, low Rb/Sr, but high U/Pb and Th/Pb ratios leading to the development of radiogenic Pb isotope compositions). HIMU OIB are derived from such a source, with little contamination from other components. Both the EMI and EMII OIB end-members are also dominantly derived from this source, but they contain significant proportions (up to 5–10%) of sedimentary components derived from the continental crust. In the case of EMI OIB, ancient pelagic sediment with high LILE/HFSE, LREE/HFSE, Ba/Th and Ba/La ratios, and low U/Pb ratios, is the contaminant. EMII OIB are also contaminated by a sedimentary component, in the form of ancient terrigenous sediment with high LILE/HFSE and LREE/HFSE ratios, but lacking relative Ba enrichment, and with higher U/Pb and Rb/Sr ratios. A model whereby the source for all OIB is ancient (1–2 Ga old) subducted oceanic crust ± entrained sediment (pelagic and/or terrigenous) is therefore consistent with the trace element and isotopic data. Although subducted oceanic lithosphere will accumulate and be dominantly concentrated within the mesosphere boundary layer, forming the source for hot-spots, such material may also become convectively dispersed within the depleted upper mantle as blobs or streaks, giving rise to small-scale chemical heterogeneities in the upper mantle.  相似文献   

12.
The Cenozoic volcanic rocks of the southern Andes are characterized by low 87Sr/86Sr ratios (0.7040–0.7045), which are consistent with an origin in the downgoing slab of oceanic lithosphere or the overlying mantle. These values are distinctly lower than those from corresponding rocks of the central Andes.The calc-alkaline rocks of the central Andes exhibit higher Sr isotopic values (0.705–0.713) and variable Rb/Sr ratios. Different explanations are possible for this behaviour as well as for the positive correlation between 87Sr/86Sr and Rb/Sr expressed in an apparent isochron of 380 ± 50 m.y. It is postulated that these magmas result from a mixing process between a primary magma with basaltic affinities and crustal material of relatively young age.A model is proposed for the generation of the “andesitic” magmas of the central Andes by which crustal rocks of the upper part of the crust are added to the base of the crust by an accretionary process at the margin of the continent. Melts from these upper crustal rocks act as contaminants in “andesitic” magmas.The role of crustal material is still more significant in the generation of the ignimbritic magmas; they are considered to result from a two-stage melting process by which igneous rocks, belonging to a former stage of development of the Andes, are engulfed in the subduction zone, where they melt.  相似文献   

13.
Andesites from the Peruvian Andes and the Banda arc of Indonesia are characterized by unusually high and variable 87Sr/86Sr ratios. The Banda arc samples, including two cordierite-bearing lavas from Ambon, show a clear positive correlation between 87Sr/86Sr and δ18O. The andesitic rocks have δ18O values that range from 5.6 to 9.2‰. Over that range in δ18O, 87Sr/86Sr increases from 0.7044 to 0.7095. The cordierite-bearing lavas have δ18O values of approximately 15‰ and 87Sr/86Sr ratios of approximately 0.717. The similarity between δ18O values and 87Sr/86Sr ratios in total rocks and separated plagioclase phenocrysts of the Banda arc samples indicates that the measured isotope ratios are primary and have not been affected by secondary, low-temperature post-eruptive alteration. The observed variation between O and Sr isotopic ratios can be modeled by two-component mixing in which one component is of mantle isotopic composition. As the crust beneath the Banda arc is probably oceanic, contamination of the manle component may have resulted from the subduction of either continentally-derived sediments or continental crust. Mixing calculations indicate that the contaminant could have an isotopic composition similar to that observed in the cordierite-bearing lavas.The Andean samples, despite petrographic evidence of freshness, exhibit whole-rock δ18O values significantly higher than those of corresponding plagioclase phenocryst separates, indicating extensive low-temperature post-eruptive alteration. The plagioclase mineral separates show a range of δ18O values between 6.9 and 7.9‰. The 87Sr/86Sr ratios of these same samples are, in most instances, not significantly different from those measured for the whole rock, thus signifying that the phenocrysts and groundmass were in isotopic equilibrium at the time of eruption. Unlike the lavas of the Banda arc, the Andean lavas show no strong positive correlation between 87Sr/86Sr ratios and δ18O values, but instead lower 87Sr/86Sr ratios appear to be associated with higher δ18O values. The δ18O and 87Sr/86Sr values of the Peruvian samples are both slightly higher than those of “normal” island arc volcanics.The small proportions of contaminant implied by the O isotope results seem to preclude continental crustal contamination as a primary cause of high 87Sr/86Sr ratios. The most plausible process that can explain both O and Sr isotope results is one in which sediments of continental origin are partially melted in the subduction zone. These melts rise into overlying mantle material and subsequently participate in the formation of calc-alkaline magmas.If the involvement of a sialic component in the genesis of andesitic magma occurs in the subduction zone, melting of that sialic material signifies temperatures of at least 750–800°C at the top of the subducted lithospheric slab at depths of approximately 150 km. The fact that contamination has apparently occurred in the Banda arc samples without producing any simple widespread correlations between Sr and O isotopic compositions on the one hand and major or trace element abundances on the other, shows that isotopic correlations, possibly including pseudo-isochrons, can be produced by mixing without producing trace element mixing correlations. Because O versus Sr isotope correlations are little affected by processes of partial melting of differentiation, they provide a direct means of testing whether Sr isotopic variations in volcanic rocks are of mantle origin or are due instead to mixing with sialic material.  相似文献   

14.
Among long-lived radioactive parent-daughter element pairs, the ratio Lu/Hf is strongly fractionated relative to constant Sm/Nd in the Earth's sedimentary system. This is caused by high resistance to chemical weathering of the mineral zircon (Zr,Hf)SiO4. Zircon-bearing sandy sediments on and near continents have very low Lu/Hf, while deep-sea clays have up to three times the chondritic Lu/Hf ratio. Turbidity currents mechanically carry the low-Lu/Hf sandy material onto the ocean floor. The results are important for the crust-to-mantle recycling discussion, where most recycled materials would be subducted oceanic sediments. Such sediment should be capable of explaining the HfNd mantle isotopic variation by mixing with peridotite, but in fact any average pelagic sediment has Nd/Hf and Lu/Hf too high to allow mixing curves to pass through the Hf/Nd isotopic array. The array could only be reproduced by subduction of turbidite sandstone with pelagic sediment in the approximate ratio 1.2 to 1, and by maintaining a good mixture between the two components. At least today, turbidites are available for subduction only at locations quite different and distant from those where pelagic sediments may be recycled; furthermore, mantle isotopic variation shows that the mantle often cannot mix itself well enough to homogenize these widely-separated sedimentary components to the degree required. The Lu/Hf fractionations place a severe restriction on the ability of recycled sediments to explain mantle isotopic patterns.  相似文献   

15.
Abstract Oxygen is the most abundant element in the earth, and isotopic analysis of this element in island arc lavas potentially provides sensitive constraints on the proportion of oxygen recycled from subducted material, relative to that extracted from the mantle. Here we report on 225 new oxygen isotopic analyses of whole‐rock and glass samples, and clinopyroxene separates, from lavas collected from the southernmost 1500 km of the Izu–Bonin–Mariana (IBM) convergent margin. Whole‐rock samples clustered around a mean of 6.11 ± 0.47‰, whereas Mariana Trough glasses and mafic melts, calculated to be in equilibrium with mafic phenocrysts, clustered narrowly around a mean of 5.7‰. These data demonstrate that unequivocal identification of magmatic oxygen requires analysis of fresh glass or mafic minerals, and that the source of southern IBM Arc melts is entirely, or almost entirely, in equilibrium with normal mantle oxygen. If the elemental enrichments characteristic of the subduction component originate in subducted materials, these oxygen isotopic data are most consistent with the interaction of a small amount of sediment melt (<4%; mostly less than 1%) with mantle peridotite to yield the hybrid mantle that melts to form IBM Arc magmas.  相似文献   

16.
Sr and Nd isotope analyses are presented for Tertiary continental alkaline volcanics from Cantal, Massif Central, France. The volcanics belong to two main magma series, silica-saturated and silica-undersaturated (with rare nephelinites). Trace element and isotopic data indicate a common source for the basic parental magmas of both major series; the nephelinites in contrast must have been derived from a mantle source which is isotopically and chemically distinct from that which gave rise to the basalts and basanites.87Sr/86Sr initial ratios range from 0.7034 to 0.7056 in the main magma series (excluding rhyolites) and143Nd/144Nd ratios vary between 0.512927 and 0.512669; both are correlated with increasing SiO2 in the lavas. The data can be explained by a model of crustal contamination linked with fractional crystallisation. This indicates that crustal magma chambers are the sites of differentiation since only rarely do evolved magmas not show a crustal isotopic signature and conversely basic magmas have primitive isotopic ratios unless they contain obvious crustal-derived xenocrysts. Potential contaminants include lower crustal granulites or partial melts of upper crustal units. Equal amounts of contamination are required for both magma series, refuting hypotheses of selective contamination of the silica-saturated series.The isotopic characteristics of the apparently primary nephelinite lavas demonstrates widespread heterogeneity in the mantle beneath Cantal. Some rhyolites, previously thought to be extremely contaminated or to be crustally derived, are shown to have undergone post-emplacement hydrothermal alteration.  相似文献   

17.
Abstract Whole‐rock chemical and Sr and Nd isotope data are presented for gabbroic and dioritic rocks from a Cretaceous‐Paleogene granitic terrain in Southwest Japan. Age data indicate that they were emplaced in the late Cretaceous during the early stages of a voluminous intermediate‐felsic magmatic episode in Southwest Japan. Although these gabbroic and dioritic rocks have similar major and trace element chemistry, they show regional variations in terms of initial Sr and Nd isotope ratios. Samples from the South Zone have high initial 87Sr/86Sr (0.7063–0.7076) and low initial Nd isotope ratios (?Nd, ?2.5 to ?5.3); whereas those from the North Zone have lower initial 87Sr/86Sr (usually less than 0.7060) and higher Nd isotope ratios (?Nd, ?0.8 to + 3.3). Regional variations in Sr and Nd isotope ratios are similar to those observed in granitic rocks, although gabbroic and dioritic rocks tend to have slightly lower Sr and higher Nd isotope ratios than granitic rocks in the respective zones. Limited variations in Sr and Nd isotope ratios among samples from individual zones may be attributed partly to a combination of upper crustal contamination and heterogeneity of the magma source. Contamination of magmas by upper crustal material cannot, however, explain the observed Sr and Nd isotope variations between samples from the North and South Zones. Between‐zone variations would reflect geochemical difference in magma sources. The gabbroic and dioritic rocks are enriched in large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE), showing similar normal‐type mid‐ocean ridge basalt (N‐MORB) normalized patterns to arc magmas. Geochronological and isotopic data may suggest that some gabbroic and dioritic rocks are genetically related to high magnesian andesite. Alternatively, mantle‐derived mafic or intermediate rocks which were underplated beneath the crust may be also plausible sources for gabbroic and dioritic rocks. The magma sources (the mantle wedge and lower crust) were isotopically more enriched beneath the South Zone than the North Zone during the Cretaceous‐Paleogene. Sr and Nd isotope ratios of the lower crustal source of the granitic rocks was isotopically affected by mantle‐derived magmas, resulting in similar initial Sr and Nd isotope ratios for gabbroic, dioritic and granitic rocks in each zone.  相似文献   

18.
Mariana Trough basalt (MTB) glasses from zones of of active seafloor volcanism have incompatible trace element compositions which are intermediate between normal MORB and basaltic rocks from the active northern Mariana Island Arc (MIAB). The chemical variation is observed in trace elemental abundances and ratios such as LIL/LIL and LIL/HFS. MTB glasses with high LIL/HFS and Ba/Sm ratios, and low K/Rb, K/Ba, and Sm/Nd ratios have more enriched Sr and Nd isotopic compositions.Comparison of the SrNd isotopic compositions of MTB and MIAB suggests that the source region within the mantle wedge is heterogeneous. The diverse trace element and isotopic compositions of MTB glasses both within and between dredge sites near 18°N imply small-scale source heterogeneity. Correlation between Sm/Nd and143Nd/144Nd of the MTB glasses is interpreted as due to recent binary mixing, rather than closed system evolution of a common homogeneous source. Mixing of melts at or near the source region between a mantle component with long-term LREE and LIL element depletion (MORB-like) and a relatively enriched component with lower integrated143Nd/144Nd (Arc-like) is suggested by trends of the MTB data on ratio-ratio, ratio-element and element-element plots.  相似文献   

19.
In order to evaluate the mechanism of production of unusual high-Mg andesite (HMA) magmas, Pb–Nd–Sr isotopic compositions were determined for HMAs and basalts from the Miocene Setouchi volcanic belt in the SW Japan arc. The isotopic compositions of Setouchi rocks form mixing lines between local oceanic sediments and Japan Sea backarc basin basalts, suggesting a significant contribution of the subducting sediment component to the HMA magma generation. Mixing calculations using compositions of an inferred original mantle and local oceanic sediments suggest that a sediment-derived melt, neither an H2O-rich fluid nor an amphibolite/eclogite-derived melt, could have been produced first and served as a plausible metasomatic agent for the HMA magma source. The unusual tectonic setting, including subduction of a newly-borne hence hot plate, may be responsible for melting of subducting sediments.  相似文献   

20.
Os isotope systematics in ocean island basalts   总被引:5,自引:0,他引:5  
New ReOs isotopic results for Os-poor basalts from St. Helena, the Comores, Samoa, Pitcairn and Kerguelen dramatically expand the known range of initial 186Os/187Os ratios in OIBs to values as high as 1.7. In contrast to the Os isotopic uniformity of Os-rich basalts from the HIMU islands of Tubuai and Mangaia found by Hauri and Hart [1], our values for St. Helena span most of the known range of Os isotopic variability in oceanic basalts (initial 187Os/186Os ranges from 1.2 to 1.7). Generation of such radiogenic Os in the mantle requires melting of source materials that contain large proportions of recycled oceanic crust. The very low Os concentrations of most of the basalts analyzed here, however, leave them susceptible to modification via interaction with materials containing radiogenic Os in the near-surface environment. Thus the high 186Os/187Os ratios may result from assimilation of radiogenic Os-rich marine sediments, such as Mn oxides, within the volcanic piles traversed by these magmas en route to the surface. Furthermore, the Os isotopic signatures of Os-rich, olivine-laden OIBs may reflect the accumulation of lithospheric olivine, rather than simply their mantle source characteristics. The extent to which these processes alter the view of the mantle obtained via study of ReOs systematics in oceanic basalts is uncertain. These effects must be quantified before ReOs systematics in OIBs can be used with confidence to investigate the nature of mantle heterogeneity and its causes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号