首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Coastal wetlands are characterized by strong, dynamic interactions between surface water and groundwater. This paper presents a coupled model that simulates interacting surface water and groundwater flow and solute transport processes in these wetlands. The coupled model is based on two existing (sub) models for surface water and groundwater, respectively: ELCIRC (a three‐dimensional (3‐D) finite‐volume/finite‐difference model for simulating shallow water flow and solute transport in rivers, estuaries and coastal seas) and SUTRA (a 3‐D finite‐element/finite‐difference model for simulating variably saturated, variable‐density fluid flow and solute transport in porous media). Both submodels, using compatible unstructured meshes, are coupled spatially at the common interface between the surface water and groundwater bodies. The surface water level and solute concentrations computed by the ELCIRC model are used to determine the boundary conditions of the SUTRA‐based groundwater model at the interface. In turn, the groundwater model provides water and solute fluxes as inputs for the continuity equations of surface water flow and solute transport to account for the mass exchange across the interface. Additionally, flux from the seepage face was routed instantaneously to the nearest surface water cell according to the local sediment surface slope. With an external coupling approach, these two submodels run in parallel using time steps of different sizes. The time step (Δtg) for the groundwater model is set to be larger than that (Δts) used by the surface water model for computational efficiency: Δtg = M × Δts where M is an integer greater than 1. Data exchange takes place between the two submodels through a common database at synchronized times (e.g. end of each Δtg). The coupled model was validated against two previously reported experiments on surface water and groundwater interactions in coastal lagoons. The results suggest that the model represents well the interacting surface water and groundwater flow and solute transport processes in the lagoons. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The southern coastal plain of Laizhou Bay, which is the area most seriously affected by salt water intrusion in north China, is a large alluvial depression, which represents one of the most important hydrogeological units in the coastal region of northern China. Chlorofluorocarbons (CFCs, including CFC‐11, CFC‐12 and CFC‐113) and tritium were used together for dating groundwater up to 50 years old in the study area. There are two cones of depression, caused by intensive over‐exploitation of fresh groundwater in the south and brine water in the north. The assigned CFC apparent ages for shallow groundwater range from 8 a to >50 a. A binary mixing model based on CFC‐113 and CFC‐12 concentrations in groundwater was used to estimate fractions of young and pre‐modern water in shallow aquifers and to identify groundwater mixing processes during saltwater intrusion. Discordance between concentrations of different CFC compounds indicate that shallow groundwater around the Changyi cone of depression is vulnerable to contamination. Pumping activities, CFC contamination, mixing and/or a large unsaturated zone thickness (e.g. >20 m) may be reasons for some groundwater containing CFCs without tritium. Saline intrusion mainly occurs because of large head gradients between fresh groundwater in the south and saline water bodies in the north, forming a wedge of saline water below/within fresh aquifer layers. Both CFC and tritium dates indicate that the majority of the saline water is from >50 a, with little or no modern seawater component. Based on the distribution of CFC apparent ages, tritium contents plus chemical and physical data, a conceptual model of groundwater flow along the investigated Changyi‐Xiaying transect has been developed to describe the hydrogeological processes. Three regimes are identified from south to north: (i) fresh groundwater zone, with a mixing fraction of 0.80–0.65 ‘young’ water calculated with the CFC binary mixing model (groundwater ages <34 a) and 1.9–7.8TU of tritium; (ii) mixing zone characterized by a mixing fraction of 0.05–0.65 young groundwater (ages of 23–44 a), accompanied by local vertical recharge and upward leakage of older groundwater; and (iii) salt water zone, mostly comprising waters with ages beyond the dating range of both CFCs and tritium. Some shallow groundwater in the north of the Changyi groundwater depression belongs to the >50a water group (iii), indicating slow velocity of groundwater circulation and possible drawing in of saline or deep groundwater that is tracer‐free. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Summary Bathythermograms just off the northern edge of the Gulf Stream often show temperature inversions, while those in the Gulf Stream and the Sargasso Sea do not show such features. A similar situation was found in the Kuroshio area. TheT-S curve obtained off Cape Hatteras with a bathysalinograph and a bathythermograph indicates that the temperature inversions correspond to high salinity and less stable density stratification. Sequential surface temperature charts suggest that the inversions may be caused by sinking of the warm and saline Gulf Stream water. When such water is driven into the slope water region, it is cooled by mixing or heat transfer to the atmosphere, but retains its high salinity and sinks. A simple mathematical model is developed based on an assumption that an isolated water mass is enclosed in a parcel with a flexible and permeable membrane. The initial density inside the parcel is different from the one outside and the water mixes with the surrounding water. When it is assumed that mixing of temperature occurs faster than that of salinity, the isolated Gulf Stream water sinks to an equilibrium depth, causing temperature peaks and inversions in the subsurface layer.LGO Contribution No. 1052.  相似文献   

4.
Coastal eutrophication poses an increasing risk to ecosystem health due to enhanced nutrient loading to the global coastline. Submarine groundwater discharge (SGD) represents a significant pathway for nitrate-nitrogen (NO3-N) transport to the coast, but diffusive SGD transport is difficult to monitor directly, given the low flux rates and expansive discharge areas. In contrast, focused SGD from intertidal springs can potentially be sampled and directly gauged, providing unique insight into SGD and associated contaminant transport. Basin Head is a coastal lagoon in Prince Edward Island, Canada that is a federally protected ecosystem. Nitrate-nitrogen is conveyed from agricultural fields in the contributing watershed to the eutrophic lagoon via intertidal groundwater springs and groundwater-dominated tributaries. We used several field methods to characterize groundwater discharge, nutrient loading, and in-channel mixing associated with intertidal springs. The tributaries and intertidal springs were gauged and sampled to estimate a representative summer nitrate load to the lagoon. Our analysis revealed that NO3-N export to the lagoon through tributaries and springs throughout summer 2023 was on average 401 kg N/month, with the combined spring loading comparable in magnitude to the combined tributary loading. We collected thermal infrared and visual imagery using drone surveys and found spatial overlap between cold-water plumes from the spring discharge and macroalgae blooms, indicating the local thermal and ecosystem impacts of the focused SGD. We also mapped the electrical resistivity (salinity) distribution in the water column around one large spring with electromagnetic geophysics at different tidal stages to reveal the three-dimensional spring plume dynamics. Results showed that the fresher spring water floated above the saline lagoon water with the brackish plume oriented in the direction of the tidal current. Collectively, our multi-pronged field investigations help elucidate the hydrologic, thermal, and nutrient dynamics of intertidal springs and the cascading ecosystem impacts.  相似文献   

5.
Abstract

In order to evaluate groundwater quality and geochemical reactions arising from mixing between seawater and dilute groundwater, we performed a hydrochemical investigation of alluvial groundwater in a limestone-rich coastal area of eastern South Korea. Two sites were chosen for comparison: an upstream site and a downstream site. Data of major ion chemistry and ratios of oxygen–hydrogen isotopes (δ18O, δD) revealed different major sources of groundwater salinity: recharge by sea-spray-affected precipitation in the upstream site, and seawater intrusion and diffusion zone fluctuation in the downstream site. The results of geochemical modelling showed that Ca2+ enrichment in the downstream area is caused by calcite dissolution enhanced by the ionic strength increase, as a result of seawater–groundwater mixing under open system conditions with a constant PCO2 value (about 10?1.5 atm). The results show that, for coastal alluvial groundwater residing on limestone, significant hydrochemical change (especially increased hardness) due to calcite dissolution enhanced by seawater mixing should be taken into account for better groundwater management. This process can be effectively evaluated using geochemical modelling.

Editor D. Koutsoyiannis; Associate editor Y. Guttman

Citation Chae, G.-T., Yun, S.-T., Yun, S.-M., Kim, K.-H., and So, C.-S., 2012. Seawater–freshwater mixing and resulting calcite dissolution: an example from a coastal alluvial aquifer in eastern South Korea. Hydrological Sciences Journal, 57 (8),1–12.  相似文献   

6.
利用北半球40°N~50°N纬度带上HALOE实验测量的O3和H2O廓线资料,根据示踪成分O3和H2O空间分布的化学寿命以及输运特征时间常数等性质,在等熵坐标中构建了对流层顶附近及最低平流层300~390 K等熵面间,O3/H2O混合关系的结构形态和季节特征.结果表明: (1) 在对流层顶转换层的320~380 K等熵面间O3混合比廓线的斜率具有空间转折"突变",而H2O混合比廓线的斜率则出现空间渐变转折.在对流层顶附近O3和H2O的源分别是平流层与对流层,使O3混合比和H2O混合比在320~380 K等熵面的两侧显现出截然不同的垂直分布梯度.(2) 在对流层顶附近O3/H2O达到最小二乘意义上的最佳拟合时,两者参考关系的对流层支与平流层支呈现出非规则"L"结构形态的季节与季节内变化,其中对流层支的斜率为负,而平流层支的斜率可随季节出现正负变化.同时,由"L"形态的转角处可确定随季节变化的化学对流层顶(chemopause)特征.(3) 由O3/H2O混合关系反映出对流层不同区域空气携带的物质成分分别与平流层空气混合而形成混合层,而且可使混合层的混合线不恒定.混合层的表现在2003年、2005年1月和2003年4月的混合程度相当,混合的等熵厚度大约是30 K,即在320~350 K等熵面间.2005年11月的混合高度有所增高,进入平流层的H2O混合比要比2003年和2005年1月的小,混合的等熵厚度大约为30 K,在330~360 K等熵面间.不同季节混合的等熵厚度变化较小,但高度可随季节而变化.O3/H2O混合关系的平流层支随季节的变化很明显,1月最低平流层空气脱水是引起平流层支季节变化的重要原因.  相似文献   

7.
Interactions between fresh groundwater and seawater affect significantly the nearshore pore water flow, which in turn influences the fate of nutrients and contaminants in coastal aquifers prior to discharge to the marine environment. Field investigations and numerical simulations were carried out to examine the groundwater dynamics in the intertidal zone of a carbonate sandy aquifer on the tropical island of Rarotonga, Cook Islands. The study site was featured by distinct cross‐shore slope breaks on the beach surface. Measured pore water salinities revealed different distributions under the influences of different beach profiles, inland heads, and tidal oscillations. Fresh groundwater was found to discharge around a beach slope break located in the middle area of the intertidal zone. The results indicate a strong interplay between the slope break beach morphology and tidal force in controlling the nearshore groundwater flow and solute transport. The fresh groundwater discharge location was largely determined by the beach morphology in combination with the tidal force. The nearshore groundwater flow can be very sensitive to beach slope breaks, which induce local circulation and flow instabilities. As slope breaks are a common feature of beaches around the world, these results have important, general implications for future studies of nutrients transport and transformations in nearshore aquifers and associated fluxes via submarine groundwater discharge.  相似文献   

8.
The infinite slope method is widely used as the geotechnical component of geomorphic and landscape evolution models. Its assumption that shallow landslides are infinitely long (in a downslope direction) is usually considered valid for natural landslides on the basis that they are generally long relative to their depth. However, this is rarely justified, because the critical length/depth (L/H) ratio below which edge effects become important is unknown. We establish this critical L/H ratio by benchmarking infinite slope stability predictions against finite element predictions for a set of synthetic two‐dimensional slopes, assuming that the difference between the predictions is due to error in the infinite slope method. We test the infinite slope method for six different L/H ratios to find the critical ratio at which its predictions fall within 5% of those from the finite element method. We repeat these tests for 5000 synthetic slopes with a range of failure plane depths, pore water pressures, friction angles, soil cohesions, soil unit weights and slope angles characteristic of natural slopes. We find that: (1) infinite slope stability predictions are consistently too conservative for small L/H ratios; (2) the predictions always converge to within 5% of the finite element benchmarks by a L/H ratio of 25 (i.e. the infinite slope assumption is reasonable for landslides 25 times longer than they are deep); but (3) they can converge at much lower ratios depending on slope properties, particularly for low cohesion soils. The implication for catchment scale stability models is that the infinite length assumption is reasonable if their grid resolution is coarse (e.g. >25 m). However, it may also be valid even at much finer grid resolutions (e.g. 1 m), because spatial organization in the predicted pore water pressure field reduces the probability of short landslides and minimizes the risk that predicted landslides will have L/H ratios less than 25. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Hydrogen and oxygen isotopes of water are common environmental tracers used to investigate hydrological processes, such as evaporation, vegetation water use, surface water–groundwater interaction, and groundwater recharge. The water isotope signature in surface water and groundwater evolves from the initial rain signature. In mountain terrain, rain water stable isotope composition spatially varies due to complex orographic precipitation processes. Many studies have examined the isotope–elevation relationships, while few have quantitatively investigate the terrain aspect and slope effect on rain isotope distribution. In this paper, we examine the orographic effects more completely, including elevation, terrain slope and aspect, on stable isotope distribution in the Mount Lofty Ranges (MLR) of South Australia, using a multivariate regression model. The regression of precipitation isotope composition suggests that orographic effects are the dominant controls on isotope spatial variability. About 75% of spatial variability in δ18O and deuterium excess is represented by the regression using solely orography-related variables (elevation, terrain aspect and slope), with about 25% of δ18O spatial variability attributed to the terrain aspect and slope effect. The lapse rate is about −0.25‰ for every 100 m at both windward and leeward slopes. However, at the same elevation, δ18O at the leeward slope (eastern MLR) is 0.5‰ larger than that at the windward slope. The difference can be explained by different mechanisms – continuous rain-out processes on the windward side and sub-cloud evaporation on the leeward side. Both δ18O and deuterium excess maps (1 km resolution) are constructed based on the regression results for the MLR. Both maps are consistent with groundwater of local precipitation origin, and useful to examine groundwater recharge.  相似文献   

10.
Transfer of atmospheric N deposition on shallow‐soil forested basins on the Canadian Shield to receiving water bodies may be enhanced by rapid preferential flow along the soil–bedrock interface (BR runoff) on basin slopes. Controls on BR runoff, partitioning of event and pre‐event water contributions to this flow, and implications of this partitioning for N fluxes in BR runoff were studied under natural and artificial inputs to an instrumented slope. BR runoff as a fraction of water inputs to the slope increased with antecedent soil wetness and input depth. Event water contributions to BR runoff initially increased with antecedent soil wetness, but then declined at large antecedent soil wetness. Export of applied NH4+ from the slope was maximized when event water contributions containing large NH4+ concentrations dominated BR runoff; however, there was no relationship between the fraction of NO3? application transported in BR runoff and either application input or the event water fraction of that runoff. The applicability of our results to other shallow‐soil areas of the Canadian Shield is limited by artificial N inputs to the slope in excess of natural loads and by low rates of N mineralization and negligible nitrification in the slope's soils. Nevertheless, the study reinforces the need to consider how the hydrologic, geometric and pedologic properties of forest slopes interact with biotic and abiotic soil processes to control N transport and transformation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
Shallow submarine hydrothermal activity has been observed in the Bahía Concepción bay, located at the Gulf coast of the Baja California Peninsula, along faults probably related to the extensional tectonics of the Gulf of California region. Diffuse and focused venting of hydrothermal water and gas occurs in the intertidal and shallow subtidal areas down to 15 m along a NW–SE-trending onshore–offshore fault. Temperatures in the fluid discharge area vary from 50 °C at the sea bottom up to 87 °C at a depth of 10 cm in the sediments.Chemical analyses revealed that thermal water is enriched in Ca, As, Hg, Mn, Ba, HCO3, Li, Sr, B, I, Cs, Fe and Si, and it has lower concentrations of Cl, Na, SO4 and Br than seawater. The chemical characteristics of the water samples indicate the occurrence of mixing between seawater and a thermal end-member. Stable isotopic oxygen and hydrogen composition of thermal samples plot close to the Local Meteoric Water Line on a mixing trend between a thermal end-member and seawater. The composition of the thermal end-member was calculated from the chemistry of the submarine samples data by assuming a negligible amount of Mg for the thermal end-member. The results of the mixing model based on the chemical and isotopic composition indicate a maximum of 40% of the thermal end-member in the submarine vent fluid.Chemical geothermometers (Na/Li, Na–K–Ca and Si) were applied to the thermal end-member concentration and indicate a reservoir temperature of approximately 200 °C. The application of K–Mg and Na/Li geothermometers for vent fluids points to a shallow equilibrium temperature of about 120 °C.Results were integrated in a hydrogeological conceptual model that describes formation of thermal fluids by infiltration and subsequent heating of meteoric water. Vent fluid is generated by further mixing with seawater.  相似文献   

12.
设计并完成一个1∶30的大比例尺高陡反倾层状岩质边坡的振动台模型试验,坡体内部有6个软弱泥化夹层,研究在组合支护体系作用下EL Centro地震波和汶川-清屏地震波激振下泥化夹层含水量发生变化时边坡的加速度动力响应规律。试验结果表明:(1)坡面X、Z向加速度放大系数均具有非线性高程放大效应,但前者大于后者;(2)泥化夹层含水量的变化对坡面加速度放大效应影响显著,注水后X向减小而Z向增大;(3)支护体系作用下边坡临空面放大效应的现象受限制,预应力锚索抗滑桩以下边坡基本不存在加速度放大效应;边坡分级支护可有效降低X向加速度放大系数的高程增大效应,但对Z向会产生不利作用;(4)边坡的破坏模式为上部受软弱夹层滑动牵引而发生倾倒-拉裂变形,导致顶部框架梁有可能最先发生破坏,且破坏类型可能以绕坡顶为支点向坡体内侧转动,引起上部的锚索产生拔出破坏。  相似文献   

13.
Although there has been recent focus on understanding spatial variability in hyporheic zone geochemistry across different morphological units under baseflow conditions, less attention has been paid to temporal responses of hyporheic zone geochemistry to non‐steady‐state conditions. We documented spatial and temporal variability of hyporheic zone geochemistry in response to a large‐scale storm event, Tropical Storm Irene (August 2011), across a pool–riffle–pool sequence along Chittenango Creek in Chittenango, NY, USA. We sampled stream water as well as pore water at 15 cm depth in the streambed at 14 locations across a 30 m reach. Sampling occurred seven times at daily intervals: once during baseflow conditions, once during the rising limb of the storm hydrograph, and five times during the receding limb. Principal component analysis was used to interpret temporal and spatial changes and dominant drivers in stream and pore water geochemistry (n = 111). Results show the majority of spatial variance in hyporheic geochemistry (62%) is driven by differential mixing of stream and ground water in the hyporheic zone. The second largest driver (17%) of hyporheic geochemistry was temporal dilution and enrichment of infiltrating stream water during the storm. Hyporheic sites minimally influenced by discharging groundwater (‘connected’ sites) showed temporal changes in water chemistry in response to the storm event. Connected sites within and upstream of the riffle reflected stream geochemistry throughout the storm, whereas downstream sites showed temporally lagged responses in some conservative and biogeochemically reactive solutes. This suggests temporal changes in hyporheic geochemistry at these locations reflect a combination of changes in infiltrating stream chemistry and hyporheic flowpath length and residence time. The portion of the study area strongly influenced by groundwater discharge increased in size throughout the storm, producing elevated Ca2+ and concentrations in the streambed, suggesting zones of localized groundwater inputs expand in response to storms. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Major solute concentrations in overland flow water (OFW) were measured in an agricultural field of Brittany (western France). Two storm events were monitored in detail to examine the short time‐scale processes. During one year, samples were taken at different positions on the slope after each storm event to describe the spatial and seasonal variations of OFW chemistry. Although the total dissolved load in OFW is not much higher than in rain water, distinctive features are observed. K+, Ca2+, NH4 , Cl and SOare the major solutes. The main origin of the elements (sea salts, exchangeable soil complex or fertilizers) determined most of the variations observed. Spatial variations along the slope are mainly seen for exchangeable cations, while seasonal variations are predominant for sea salts. Rainfall intensity and suspended sediment load induce strong differences between the two storm events studied in detail. However, the within‐storm variations and the seasonal monitoring show that this relationship is complex. Within‐storm variations suggest that, in addition to desorption processes, mixing with pre‐event water may occur. The lack of a relationship between sediment load and dissolved load is attributed to the high rate of the exchange processes, which has been checked by a simple experiment in vitro. It is concluded that the conditions of the transit of water on the field (velocity, length, status of the surface, crusted or not) may well play a major role in the chemical changes between rain water and OFW. The results suggest that vegetated buffer strips designed to reduce the sediment load only, and not the amount of overland flow, will have little effect on the transfer of dissolved pollutants to the watercourses. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
The role of water depth and bottom boundary layer turbulence upon lee-wave generation in sill regions is examined. Their effect upon vertical mixing is also considered. Calculations are performed using a non-hydrostatic model in cross-section form with a specified tidal forcing. Initial calculations in deeper water and a sill height such that the sill top is well removed from the surrounding bed region showed that downstream lee-wave generation and associated mixing increased as bottom friction coefficient k increased. This was associated with an increase in current shear across the sill. However, for a given k, increasing vertical eddy viscosity A v reduced vertical shear in the across sill velocity, leading to a reduction in lee-wave amplitude and associated mixing. Subsequent calculations using shallower water showed that for a given k and A v, lee-wave generation was reduced due to the shallower water depth and changes in the bottom boundary layer. However, in this case (unlike in the deepwater case), there is an appreciable bottom current. This gives rise to bottom mixing which in shallow water extends to mid-depth and enhances the mid-water mixing that is found on the lee side of the sill. Final calculations with deeper water but small sill height showed that lee waves could propagate over the sill, thereby reducing their contribution to mixing. In this case, bottom mixing was the major source of mixing which was mainly confined to the near bed region, with little mid-water mixing.  相似文献   

16.
Artificially enhancing recharge rate into groundwater aquifer at specially designed facilities is an attractive option for increasing the storage capacity of potable water in arid and semi‐arid region such as Damascus basin (Syria). Two dug wells (I and II) for water injection and 24 wells for water extraction are available in Mazraha station for artificial recharge experiment. Chemical and stable isotopes (δ2H and δ18O) were used to evaluate artificial recharge efficiency. 400 to 500*103 m3 of spring water were injected annually into the ambient shallow groundwater in Mazraha station, which is used later for drinking purpose. Ambient groundwater and injected spring water are calcium bicarbonate type with EC about 880 ± 60 μS/cm and 300 ± 50 μS/cm, respectively. The injected water is under saturated versus calcite and the ambient groundwater is over saturated, while the recovered water is near equilibrium. It was observed that the injection process formed a chemical dilution plume that improves the groundwater quality. Results demonstrate that the hydraulic conductivity of the aquifer is estimated around 6.8*10?4 m/s. The effective diameter of artificial recharge is limited to about 250 m from the injection wells. Mixing rate of 30% is required in order to reduce nitrate concentration below 50 mg/l which is considered the maximum concentration limit for potable water. Deuterium and oxygen‐18 relationship demonstrates that mixing line between injected water and ambient groundwater has a slope of 6.1. Oxygen‐18 and Cl? plot indicates that groundwater salinity origin is from mixing process, and no dissolution and evaporation were observed. These results demonstrate the efficiency of the artificial recharge experiments to restore groundwater storage capacity and to improve the water quality. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Landslides in partially saturated colluvium on Seattle, WA, hillslopes have resulted in property damage and human casualties. We developed statistical models of colluvium and shallow‐groundwater distributions to aid landslide hazard assessments. The models were developed using a geographic information system, digital geologic maps, digital topography, subsurface exploration results, the groundwater flow modeling software VS2DI and regression analyses. Input to the colluvium model includes slope, distance to a hillslope–crest escarpment, and escarpment slope and height. We developed different statistical relations for thickness of colluvium on four landforms. Groundwater model input includes colluvium basal slope and distance from the Fraser aquifer. This distance was used to estimate hydraulic conductivity based on the assumption that addition of finer‐grained material from down‐section would result in lower conductivity. Colluvial groundwater is perched so we estimated its saturated thickness. We used VS2DI to establish relations between saturated thickness and the hydraulic conductivity and basal slope of the colluvium. We developed different statistical relations for three groundwater flow regimes. All model results were validated using observational data that were excluded from calibration. Eighty percent of colluvium thickness predictions were within 25% of observed values and 88% of saturated thickness predictions were within 20% of observed values. The models are based on conditions common to many areas, so our method can provide accurate results for similar regions; relations in our statistical models require calibration for new regions. Our results suggest that Seattle landslides occur in native deposits and colluvium, ultimately in response to surface‐water erosion of hillslope toes. Regional groundwater conditions do not appear to strongly affect the general distribution of Seattle landslides; historical landslides were equally dispersed within and outside of the area potentially affected by regional groundwater conditions. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

18.
This study employs stable oxygen and hydrogen isotopes as natural tracers to assess the headwater of a landslide next to a drainage divide and the importance of the slope's headwater in the study area. The study is undertaken near Wu‐She Township in the mountains of central Taiwan. Because a reservoir is located on the other side of the divide, this study evaluates the relationship between the reservoir water and headwater of the landslide as well. Over a 1‐year period, water samples from September 2008 to September 2009, including local precipitation (LP), Wu‐She Reservoir's water (WSRW), slope groundwater (SGW), upper‐reach stream water (USTW), and down‐reach stream water (DSTW), were analysed for deuterium (δD) and oxygen (δ18O) stable isotopes. Results indicate that WSRW is the predominant component in SGW: approximately 70% of SGW originates from WSRW and 30% from LP based on a two end‐member mass‐balance mixing model for δ18O. The similar two end‐member mixing model is also employed to assess the contributions of USTW and SGW to DSTW. Model results indicate that SGW is the major source of DSTW with a contribution of about 67%. Accordingly, about 47% of DSTW sources from the WSRW. In short, owing to reservoir leakage, WSRW contributes the greater part of both SGW and DSTW. Plentiful WSRW in SGW threatens the stability of the slope in the divide area. To avoid subsequent continuous slope failure, necessary mitigation steps are required. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
We consider 3D steady flow of fresh water over a salt water body in a confined aquifer of constant thickness D, with application to a pumping well in a coastal aquifer. With neglect of mixing, a sharp interface separates the two fluid bodies and an existing analytical solution, based on the Dupuit assumption, is adopted. The aim is to solve for the mixing between the fresh and salt waters for αT/D  1 (αT transverse dispersivity), as field studies indicate that αT = O(10−3 − 10−2 m). The mixing zone around the interface is narrow and solutions by existing codes experience numerical difficulties. The problem is solved by the boundary layer (BL) approximation, extending a method, applied previously to two-dimensional flows. The BL equations of variable-density flow are solved by using the Von Karman integral method, to determine the BL thickness and the rate of entrainment of salt water along the interface. Application to the pumping well problem yields the salinity of the pumped water, as function of the parameters of the problem (well discharge, seaward discharge, well distance from the coast and density difference).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号