首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
反演问题的时空间分辨率或称时空分辨长度是评估模型精细程度的重要参数,决定了该模型应用的范围和价值,但是分辨长度估算却是比反演更复杂和麻烦的数学问题。除了层析成像中广泛利用理论模型恢复试验定性提取空间分辨长度外,通过求解分辨率矩阵可定量获得分辨长度。通过矩阵操作给出的分辨率矩阵包括三类:直接分辨率矩阵、正则化分辨率矩阵和混合分辨率矩阵。这三类矩阵包含了反演本身不同侧面的信息,因此在一个反演应用中,同时提供这三类分辨率矩阵可更全面地评估反演模型分辨率分布。最近An(2012)提出了从大量随机理论模型及其解中统计出分辨率矩阵的方法。这种分辨率矩阵是从模拟真实反演实验的输入和输出模型中通过反演得到的,因此这种分辨率矩阵更能反映整个反演所涉及到的更多因素和过程;同时由于这种分辨率矩阵计算过程无需进行矩阵操作且不依赖于具体正演和反演方法,因此可以被应用于更普遍的反演问题。实际应用证明统计分辨率分析方法适用于对二维和三维层析成像反演模型进行分辨率分析。  相似文献   

2.
Regularization is the most popular technique to overcome the null space of model parameters in geophysical inverse problems, and is implemented by including a constraint term as well as the data‐misfit term in the objective function being minimized. The weighting of the constraint term relative to the data‐fitting term is controlled by a regularization parameter, and its adjustment to obtain the best model has received much attention. The empirical Bayes approach discussed in this paper determines the optimum value of the regularization parameter from a given data set. The regularization term can be regarded as representing a priori information about the model parameters. The empirical Bayes approach and its more practical variant, Akaike's Bayesian Information Criterion, adjust the regularization parameter automatically in response to the level of data noise and to the suitability of the assumed a priori model information for the given data. When the noise level is high, the regularization parameter is made large, which means that the a priori information is emphasized. If the assumed a priori information is not suitable for the given data, the regularization parameter is made small. Both these behaviours are desirable characteristics for the regularized solutions of practical inverse problems. Four simple examples are presented to illustrate these characteristics for an underdetermined problem, a problem adopting an improper prior constraint and a problem having an unknown data variance, all frequently encountered geophysical inverse problems. Numerical experiments using Akaike's Bayesian Information Criterion for synthetic data provide results consistent with these characteristics. In addition, concerning the selection of an appropriate type of a priori model information, a comparison between four types of difference‐operator model – the zeroth‐, first‐, second‐ and third‐order difference‐operator models – suggests that the automatic determination of the optimum regularization parameter becomes more difficult with increasing order of the difference operators. Accordingly, taking the effect of data noise into account, it is better to employ the lower‐order difference‐operator models for inversions of noisy data.  相似文献   

3.
We develop an inversion procedure using the total variation (TV) regularization method as a stabilizing function to invert surface gravity data to retrieve 3-D density models of geologic structures with sharp boundaries. The developed inversion procedure combines several effective algorithms to solve the TV regularized problem. First, a matrix form of the gradient vector is designed using the Kronecker product to numerically approximate the 3-D TV function. The piecewise polynomial truncated singular value decomposition (PP-TSVD) algorithm is then used to solve the TV regularized inverse problem. To obtain a density model with depth resolution, we use a sensitivity-based depth weighting function. Finally, we apply the Genetic Algorithm (GA) to select the best combination of the PP-TSVD algorithm and the depth weighting function parameters. 3-D simulations conducted with synthetic data show that this approach produces sub-surface images in which the structures are well separated in terms of sharp boundaries, without the need of a priori detailed density model. The method applied to a real dataset from a micro-gravimetry survey of Gotvand Dam, southwestern Iran, clearly delineates subsurface cavities starting from a depth of 40 m within the area of the dam reservoir.  相似文献   

4.
Evaluation of higher derivatives (gradients) of potential fields plays an important role in geophysical interpretation (qualitative and/or quantitative), as has been demonstrated in many approaches and methods. On the other hand, numerical evaluation of higher derivatives is an unstable process – it has the tendency to enlarge the noise content in the original data (to degrade the signal-to-noise ratio). One way to stabilize higher derivative evaluation is the utilization of the Tikhonov regularization. In the submitted contribution we present the derivation of the regularized derivative filter in the Fourier domain as a minimization task by means of using the classical calculus of variations. A very important part of the presented approach is the selection of the optimum regularization parameter – we are using the analysis of the C-norm function (constructed from the difference between two adjacent solutions, obtained for different values of regularization parameter). We show the influence of regularized derivatives on the properties of the classical 3D Euler deconvolution algorithm and apply it to high-sensitivity magnetometry data obtained from an unexploded ordnance detection survey. The solution obtained with regularized derivatives gives better focused depth-estimates, which are closer to the real position of sources (verified by excavation of unexploded projectiles).  相似文献   

5.
The anisotropy of the land surface can be best described by the bidirectional reflectance distribution function (BRDF). As the field of multiangular remote sensing advances, it is increasingly probable that BRDF models can be inverted to estimate the important biological or climatological parameters of the earth surface such as leaf area index and albedo. The state-of-the-art of BRDF is the use of the linear kernel-driven models, mathematically described as the linear combination of the isotropic kernel, volume scattering kernel and geometric optics kernel. The computational stability is characterized by the algebraic operator spectrum of the kernel-matrix and the observation errors. Therefore, the retrieval of the model coefficients is of great importance for computation of the land surface albedos. We first consider the smoothing solution method of the kernel-driven BRDF models for retrieval of land surface albedos. This is known as an ill-posed inverse problem. The ill-posedness arises from that the linear kernel driven BRDF model is usually underdetermined if there are too few looks or poor directional ranges, or the observations are highly dependent. For example, a single angular observation may lead to an under-determined system whose solution is infinite (the null space of the kernel operator contains nonzero vectors) or no solution (the rank of the coefficient matrix is not equal to the augmented matrix). Therefore, some smoothing or regularization technique should be applied to suppress the ill-posedness. So far, least squares error methods with a priori knowledge, QR decomposition method for inversion of the BRDF model and regularization theories for ill-posed inversion were developed. In this paper, we emphasize on imposing a priori information in different spaces. We first propose a general a priori imposed regularization model problem, and then address two forms of regularization scheme. The first one is a regularized singular value decomposition method, and then we propose a retrieval method in I 1 space. We show that the proposed method is suitable for solving land surface parameter retrieval problem if the sampling data are poor. Numerical experiments are also given to show the efficiency of the proposed methods. Supported by National Natural Science Foundation of China (Grant Nos. 10501051, 10871191), and Key Project of Chinese National Programs for Fundamental Research and Development (Grant Nos. 2007CB714400, 2005CB422104)  相似文献   

6.
Regularization methods are used to recover a unique and stable solution in ill-posed geophysical inverse problems. Due to the connection of homogeneous operators that arise in many geophysical inverse problems to the Fourier basis, for these operators classical regularization methods possess some limitations that one may try to circumvent by wavelet techniques.
In this paper, we introduce a two-step wavelet-based regularization method that combines classical regularization methods with wavelet transform to solve ill-posed linear inverse problems in geophysics. The power of the two-step wavelet-based regularization for linear inversion is twofold. First, regularization parameter choice is straightforward; it is obtained from a priori estimate of data variance. Second, in two-step wavelet-based regularization the basis can simultaneously diagonalize both the operator and the prior information about the model to be recovered. The latter is performed by wavelet-vaguelette decomposition using orthogonal symmetric fractional B-spline wavelets.
In the two-step wavelet-based regularization method, at the first step where fully classical tools are used, data is inverted for the Moore-Penrose solution of the problem, which is subsequently used as a preliminary input model for the second step. Also in this step, a model-independent estimate of data variance is made using nonparametric estimation and L-curve analysis. At the second step, wavelet-based regularization is used to partially recover the smoothness properties of the exact model from the oscillatory preliminary model.
We illustrated the efficiency of the method by applying on a synthetic vertical seismic profiling data. The results indicate that a simple non-linear operation of weighting and thresholding of wavelet coefficients can consistently outperform classical linear inverse methods.  相似文献   

7.
常规三维大地电磁反演的正则项为L2范数,它以电阻率空间分布函数处处光滑为模型期望,弱化了算法对电性突变界面的分辨能力.本文实现了正则项为L1范数的三维大地电磁反演算法,让模型空间梯度向量更有机会取得稀疏解,在充分正则的迭代下能够有效突出模型真实电性界面.为避免L1范数零点不可导带来的求解困难,使用迭代重加权最小二乘法把原问题转换为一系列L2正则子问题迭代求解.每个子问题的极小方法使用改进型拟牛顿法,其下降方向既能保证正则项海塞矩阵的精确性,又能允许反演过程随迭代灵活更新正则因子.使用比值法或分段衰减法自适应更新正则因子以避免迭代早期陷入奇异解,从而提升反演收敛的稳定性并降低初始模型依赖度.合成的无噪数据反演表明L1正则算法的模型恢复效果优于L2正则;不同噪声水平的合成数据反演表明本文的算法具有稳健性;实测数据反演对比表明在合理的正则因子调整策略下,L1正则反演结果的模型分辨率优于L2正则.另外,不同初始模型的反演测试还表明,正则因子选取不合理时L1正则可能造成方块状假异常.  相似文献   

8.
Hopfield neural networks are massive parallel automata that support specific models and are adept in solving optimization problems. They suffer from a ‘rough’ solution space and convergence properties that are highly dependent on the starting model or prior. These detractions may be overcome by introducing regularization into the network in the form of local feedback smoothing. Application of regularized Hopfield networks to over 50 optimization test cases has yielded successful results, even with uniform (minimal information) priors. In particular, the non-linear, one- and two-dimensional magnetotelluric inverse problems have been solved by means of these regularized networks. The solutions compare favourably with those produced by other methods. Such regularized networks, with either hardware or programmed, parallel-computer implementation, can be extended to the problem of three-dimensional magnetotelluric inversion. Because neural networks are natural analog-to-digital converters, it is predicted that they will be the basic building blocks of future magnetotelluric instrumentation.  相似文献   

9.
Tomas Perina 《Ground water》2020,58(6):993-999
Hydraulic testing for aquifer characterization at contaminated sites often includes tests of short duration and of different types, such as slug tests and pumping tests, conducted at different phases of investigation. Tests conducted on a well cluster installed in a single aquifer can be combined in aggregate inverse analysis using an analytical model for groundwater flow near a test well. A genetic algorithm performs parallel search of the parameter space and provides starting parameter values for a Markov chain Monte Carlo simulation to estimate the parameter distribution. This sequence of inverse methods avoids guessing of the initial parameter vector and the often encountered difficult convergence of gradient-based methods and estimates the parameter covariance matrix from a distribution rather than from a single point in the parameter space. Combination of different tests improves the resolution of the estimated aquifer properties and allows an assessment of the uniformity of the aquifer. Estimated parameter correlations and standard deviations are used as relative metrics to distinguish well resolved and poorly resolved parameters. The methodology is demonstrated on example field tests in unconfined and leaky aquifers.  相似文献   

10.
The errors-in-variables (EIV) model is a nonlinear model, the parameters of which can be solved by singular value decomposition (SVD) method or the general iterative algorithm. The existing formulae for covariance matrix of total least squares (TLS) parameter estimates don’t fully consider the randomness of quantities in iterative algorithm and the biases of parameter estimates and residuals. In order to reflect more reasonable precision information for TLS adjustment, the derivative-free unscented transformation with scaled symmetric sampling strategy, i.e. scaled unscented transformation (SUT), is introduced and implemented. In this contribution, we firstly discuss the existing various solutions of TLS adjustment and covariance matrices of TLS parameter estimates and derive the general first-order approximate cofactor matrices of random quantities in TLS adjustment. Secondly, based on the combination of TLS iterative algorithm and calculation process of SUT, we design the two SUT algorithms to calculate the biases and the second-order approximate covariance matrices. Finally, the straight line fitting model and plane coordinate transformation model are used to demonstrate that applying SUT for precision estimation of TLS adjustment is feasible and effective.  相似文献   

11.
Determination of spherical harmonic coefficients of the Earth’s gravity field is often an ill-posed problem and leads to solving an ill-conditioned system of equations. Inversion of such a system is critical, as small errors of data will yield large variations in the result. Regularization is a method to solve such an unstable system of equations. In this study, direct methods of Tikhonov, truncated and damped singular value decomposition and iterative methods of ν, algebraic reconstruction technique, range restricted generalized minimum residual and conjugate gradient are used to solve the normal equations constructed based on range rate data of the gravity field and climate experiment (GRACE) for specific periods. Numerical studies show that the Tikhonov regularization and damped singular value decomposition methods for which the regularization parameter is estimated using quasioptimal criterion deliver the smoothest solutions. Each regularized solution is compared to the global land data assimilation system (GLDAS) hydrological model. The Tikhonov regularization with L-curve delivers a solution with high correlation with this model and a relatively small standard deviation over oceans. Among iterative methods, conjugate gradient is the most suited one for the same reasons and it has the shortest computation time.  相似文献   

12.
We present a new, fast and versatile method, the lateral parameter correlation method, of invoking lateral smoothness in model sections of one-dimensional (1D) models. Modern, continuous electrical and electromagnetic methods are capable of recording very large data sets and except for a few cases, standard inversion methodology still relies on 1D models. In environments where the lateral rate of change of resistivity is small, 1D inversion can be justified but model sections of concatenated 1D models do not necessarily display the expected lateral smoothness.
The lateral parameter correlation method has three steps. First, all sounding data are inverted individually. Next, a laterally smooth version of each model parameter, one at a time, is found by solving a simple constrained inversion problem. Identity is postulated between the uncorrelated and correlated parameters and the equations are solved including a model covariance matrix. As a last step, all sounding data are inverted again to produce models that better fit the data, now subject to constraints by including the correlated parameter values as a priori values. Because the method separates the inversion from the correlation it is much faster than methods where the inversion and correlation are solved simultaneously, typically with a factor of 200–500.
Theoretical examples show that the method produces laterally smooth model sections where the main influence comes from the well-determined parameters in such a way that problems with equivalence and poor resolution are alleviated. A field example is presented, demonstrating the improved resolution obtained with the lateral parameter correlation method. The method is very flexible and is capable of coupling models from inversion of different data types and information from boreholes.  相似文献   

13.
This paper introduces an efficiency improvement to the sparse‐grid geometric sampling methodology for assessing uncertainty in non‐linear geophysical inverse problems. Traditional sparse‐grid geometric sampling works by sampling in a reduced‐dimension parameter space bounded by a feasible polytope, e.g., a generalization of a polygon to dimension above two. The feasible polytope is approximated by a hypercube. When the polytope is very irregular, the hypercube can be a poor approximation leading to computational inefficiency in sampling. We show how the polytope can be regularized using a rotation and scaling based on principal component analysis. This simple regularization helps to increase the efficiency of the sampling and by extension the computational complexity of the uncertainty solution. We demonstrate this on two synthetic 1D examples related to controlled‐source electromagnetic and amplitude versus offset inversion. The results show an improvement of about 50% in the performance of the proposed methodology when compared with the traditional one. However, as the amplitude versus offset example shows, the differences in the efficiency of the proposed methodology are very likely to be dependent on the shape and complexity of the original polytope. However, it is necessary to pursue further investigations on the regularization of the original polytope in order to fully understand when a simple regularization step based on rotation and scaling is enough.  相似文献   

14.
无线电波透视法是常用的工作面地质构造探测方法之一,目前普遍使用的SIRT方法层析分辨率不高。本文采用约束正则化方法,推导Tikhonov正则化和全变差正则化的最小化问题表达式,讨论影响层析结果的主要因素,对典型理论模型进行了层析成像实验。结果表明:正则化方法具有比SIRT方法更好的分辨率;射线条数越多、噪声水平越低,层析分辨率越高;Tikhonov正则化在正则参数增大时层析结果更光滑,减小时则更贴近异常,全变差正则化与其相反。最后对实际坑透数据进行层析,识别出的异常构造基本吻合已知疑似构造位置,从而说明正则化方法在无线电波透视应用中的可行性。   相似文献   

15.
Calibration of a groundwater model requires that hydraulic properties be estimated throughout a model domain. This generally constitutes an underdetermined inverse problem, for which a solution can only be found when some kind of regularization device is included in the inversion process. Inclusion of regularization in the calibration process can be implicit, for example through the use of zones of constant parameter value, or explicit, for example through solution of a constrained minimization problem in which parameters are made to respect preferred values, or preferred relationships, to the degree necessary for a unique solution to be obtained.  相似文献   

16.
左博新  胡祥云  韩波 《地球物理学报》2012,55(12):4058-4068
地球物理数据在采集和处理过程中,由于存在噪声、模型误差、以及数据离散化误差等系统误差,导致了异常体边界模糊和模型分辨率降低等一些不可避免的不良系统退化效应的产生.本文提出了一种新的地球物理反演模型增强方法,通过消除反演估计模型中的系统误差,压制模型中的不良系统退化效应,增强反演模型的分辨率.文章从理论上分析了数据中存在的系统误差对模型求解的影响,提出了一个新的系统误差褶积退化模型,并根据该模型提出了一种基于混合范数总变分正则化的盲反褶积模型增强算法.最后,文章通过1D线性反演增强试验和2D大地电磁反演增强试验,验证了所提出的地球物理系统退化模型的正确性,以及盲反褶积增强算法的有效性.试验结果表明,方法可以有效地提高反演参数模型的分辨率.  相似文献   

17.
基于混合差分进化算法的地球物理线性反演   总被引:4,自引:0,他引:4       下载免费PDF全文
地球物理反问题线性化处理之后, 各种反演算法归结为对病态线性方程组的求解. 为了快速准确地计算出地球物理参数, 本文提出了一种全新的基于LSQR算法的混合差分进化算法(Hybrid Differential Evolution Algorithm, HDE). 该算法利用LSQR算法给出DE算法的初始种群, 提高DE算法的计算速度和稳定性. 在不同噪声水平下, 对四种正则化方法Tikhonov、TSVD、LSQR和HDE的反演结果进行详细比较. 理论模型和实际数据反演的结果都表明: 改进的HDE算法应用于地球物理反问题的求解是成功的: 反演结果与原设定模型具有较高的相关性, 在稳定性和准确性上较常规的反演算法都具有一定的优势; 而且不需要给定正则化参数, 具有更强的实用性.  相似文献   

18.
本文用一个纵波信息,对一维声波方程的速度和源函数进行联合反演,并考虑到声波方程的反问题是一个不适应问题,对源函数和波速分别和正则化法分步迭代求解,减少反问题的计算工作量,改善该问题的计算稳定性,为计算实际工程和岩性学问题供了一种方法。文中给出只用一个反问题补充条件同时进行多参数反演的公式,并对相应的数值算例进行分析和比较。  相似文献   

19.
为推进大地电磁三维反演的实用化,本文实现了基于L-BFGS算法的带地形大地电磁三维反演.首先推导了大地电磁法三维反演的Tikhonov正则化目标函数以及Hessian矩阵逆矩阵近似表达式和计算方法,然后设计了一种既能保证空气电阻率固定不变又能保证模型平滑约束的协方差矩阵统一表达式,解决带地形反演问题.在反演算法中采用正则化因子冷却法以及基于Wolf条件的步长搜索策略,提升了反演的稳定性.利用开发的算法对多个带地形地电模型(山峰地形下的单个异常模型、峰-谷地形下的棋盘模型)的合成数据进行了三维反演,并与已有大地电磁三维反演程序(ModEM)进行对比,验证了本文开发的三维反演算法的正确性和可靠性.最后,利用该算法反演了华南某山区大地电磁实测数据,得到该区三维电性结构,揭示了研究区以高阻介质为基底,中间以低阻不整合面和相对低阻介质连续分布,浅部覆盖高阻介质的电性结构特征,进一步验证了本文算法的实用性.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号