首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The attenuation properties of the crust in the Chamoli region of Himalaya have been examined by estimating the frequency-dependent relationships of quality factors for P waves (Qα) and for S waves (Qβ) in the frequency range 1.5–24 Hz. The extended coda normalization method has been applied on the waveforms of 25 aftershocks of the 1999 Chamoli earthquake (M 6.4) recorded at five stations. The average value of Qα is found to be varied from 68 at 1.5 Hz to 588 at 24 Hz while it varies from 126 at 1.5 Hz to 868 at 24 Hz for Qβ. The estimated frequency-dependent relations for quality factors are Qα = (44 ± 1)f(0.82±.04) and Qβ = (87 ± 3)f(0.71±.03). The rate of increase of Q(f) for P and S waves in the Chamoli region is comparable with the other regions of the world. The ratio Qβ/Qα is greater than one in the region which along with the frequency dependence of quality factors indicates that scattering is an important factor contributing to the attenuation of body waves in the region. A comparison of attenuation relation for S wave estimated here (Qβ = 87f0.71) with that of coda waves (Qc = 30f1.21) obtained by Mandal et al. (2001) for the same region shows that Qc > Qβ for higher frequencies (>8 Hz) in the region. This indicates a possible high frequency coda enrichment which suggests that the scattering attenuation significantly influences the attenuation of S waves at frequencies >8 Hz. This observation may be further investigated using multiple scattering models. The attenuation relations for quality factors obtained here may be used for the estimation of source parameters and near-source simulation of earthquake ground motion of the earthquakes, which in turn are required for the assessment of seismic hazard in the region.  相似文献   

2.
Analysis of the frequency dependence of the attenuation coefficient leads to significant changes in interpretation of seismic attenuation data. Here, several published surface-wave attenuation studies are revisited from a uniform viewpoint of the temporal attenuation coefficient, denoted by χ. Theoretically, χ( f) is expected to be linear in frequency, with a generally non-zero intercept γ?=?χ(0) related to the variations of geometrical spreading, and slope dχ/df = π/Q e caused by the effective attenuation of the medium. This phenomenological model allows a simple classification of χ( f) dependences as combinations of linear segments within several frequency bands. Such linear patterns are indeed observed for Rayleigh waves at 500–100-s and 100–10-s periods, and also for Lg from ~2 s to ~1.5 Hz. The Lg χ( f) branch overlaps with similar linear branches of body, Pn, and coda waves, which were described earlier and extend to ~100 Hz. For surface waves shorter than ~100 s, γ values recorded in areas of stable and active tectonics are separated by the levels of \(\gamma _{D} \approx 0.2 \times 10^{-3}\) s???1 (for Rayleigh waves) and 8 ×10???3 s???1 (for Lg). The recently recognized discrepancy between the values of Q measured from long-period surface waves and normal-mode oscillations could also be explained by a slight positive bias in the geometrical spreading of surface waves. Similarly to the apparent χ, the corresponding linear variation with frequency is inferred for the intrinsic attenuation coefficient, χ i , which combines the effects of geometrical spreading and dissipation within the medium. Frequency-dependent rheological or scattering Q is not required for explaining any of the attenuation observations considered in this study. The often-interpreted increase of Q with frequency may be apparent and caused by using the Q-based model of attenuation and following preferred Q( f) dependences while ignoring the true χ( f) trends within the individual frequency bands.  相似文献   

3.
Attenuation of High-Frequency Seismic Waves in Eastern Iran   总被引:1,自引:0,他引:1  
We investigated the frequency-dependent attenuation of the crust in Eastern Iran by analysis data from 132 local earthquakes having focal depths in the range of 5–25 km. We estimated the quality factor of coda waves (Q c) and body waves (Q p and Q s) in the frequency band of 1.5–24 Hz by applying the single backscattering theory of S-coda envelopes and the extended coda-normalization method, respectively. Considering records from recent earthquakes (Rigan M w 6.5, 2010/12/20, Goharan M w 6.2, 2013/5/11 and Sirch M w 5.5, 2013/1/21), the estimated values of Q c, Q p and Q s vary from 151 ± 49, 63 ± 6, and 93 ± 14 at 1.5 Hz to 1,994 ± 124, 945 ± 84 and 1,520 ± 123 at 24 Hz, respectively. The average frequency-dependent relationships (Q = Q o f n ) estimated for the region are Q c = (108 ± 10)f (0.96±0.01), Q p = (50 ± 5)f (1.01±0.04), and Q s = (75 ± 6)f (1.03±0.06). These results evidenced a frequency dependence of the quality factors Q c, Q p, and Q s, as commonly observed in tectonically active zones characterized by a high degree of heterogeneity, and the low value of Q indicated an attenuative crust beneath the entire region.  相似文献   

4.
Attenuation characteristics in the New Madrid Seismic Zone (NMSZ) are estimated from 157 local seismograph recordings out of 46 earthquakes of 2.6?≤?M?≤?4.1 with hypocentral distances up to 60 km and focal depths down to 25 km. Digital waveform seismograms were obtained from local earthquakes in the NMSZ recorded by the Center for Earthquake Research and Information (CERI) at the University of Memphis. Using the coda normalization method, we tried to determine Q values and geometrical spreading exponents at 13 center frequencies. The scatter of the data and trade-off between the geometrical spreading and the quality factor did not allow us to simultaneously derive both these parameters from inversion. Assuming 1/R 1.0 as the geometrical spreading function in the NMSZ, the Q P and Q S estimates increase with increasing frequency from 354 and 426 at 4 Hz to 729 and 1091 at 24 Hz, respectively. Fitting a power law equation to the Q estimates, we found the attenuation models for the P waves and S waves in the frequency range of 4 to 24 Hz as Q P?=?(115.80?±?1.36) f (0.495?±?0.129) and Q S?=?(161.34?±?1.73) f (0.613?±?0.067), respectively. We did not consider Q estimates from the coda normalization method for frequencies less than 4 Hz in the regression analysis since the decay of coda amplitude was not observed at most bandpass filtered seismograms for these frequencies. Q S/Q P?>?1, for 4?≤?f?≤?24 Hz as well as strong intrinsic attenuation, suggest that the crust beneath the NMSZ is partially fluid-saturated. Further, high scattering attenuation indicates the presence of a high level of small-scale heterogeneities inside the crust in this region.  相似文献   

5.
The attenuation of coda waves in the earth’s crust in southwest (SW) Anatolia is estimated by using the coda wave method, which is based on the decrease of coda wave amplitude in time and distance. A total of 159 earthquakes were recorded between 1997 and 2010 by 11 stations belonging to the KOERI array. The coda quality factor Q c is determined from the properties of scattered coda waves in a heterogeneous medium. Firstly, the quality factor Q 0 (the value of Q c at 1 Hz.) and its frequency dependency η are determined from this method depending on the attenuation properties of scattered coda waves for frequencies of 1.5, 3.0, 6.0, 8.0, 12 and 20 Hz. Secondly, the attenuation coefficients (δ) are estimated. The shape of the curve is controlled by the scattering and attenuation in the crustal volume sampled by the coda waves. The average Q c values vary from 110 ± 15 to 1,436 ± 202 for the frequencies above. The Q 0 and η values vary from 63 ± 7 to 95 ± 10 and from 0.87 ± 0.03 to 1.04 ± 0.09, respectively, for SW Anatolia. In this region, the average coda Qf relation is described by Q c = (78 ± 9)f 0.98±0.07 and δ = 0.012 km?1. The low Q 0 and high η are consistent with a region characterized by high tectonic activity. The Q c values were correlated with the tectonic pattern in SW Anatolia.  相似文献   

6.
The attenuation characteristics of the Kinnaur area of the North West Himalayas were studied using local earthquakes that occurred during 2008–2009. Most of the analyzed events are from the vicinity of the Panjal Thrust (PT) and South Tibetan Detachment Thrust, which are well-defined tectonic discontinuities in the Himalayas. The frequency-dependent attenuation of P and S waves was estimated using the extended coda normalization method. Data from 64 local earthquakes recorded at 10 broadband stations were used. The coda normalization of the spectral amplitudes of P and S waves was done at central frequencies of 1.5, 3, 6, 9, and 12 Hz. Q p increases from about 58 at 1.5 Hz to 706 at 12 Hz, and Q s increases from 105 at 1.5 Hz to 1,207 at 12 Hz. The results show that the quality factors for both P and S waves (Q p and Q s) increase as a function of frequency according to the relation Q?=?Q o f n , where Q o is the corresponding Q value at 1 Hz frequency and “n” is the frequency relation parameter. We obtained Q p?=?(47?±?2)f (1.04±0.04) and Q s?=?(86?±?4)f (0.96±0.03) by fitting power law dependency model for the estimated values of the entire study region. The Q 0 and n values show that the region is seismically very active and the crust is highly heterogeneous. There was no systematic variation of values of Q p and Q s at different frequencies from one tectonic unit to another. As a consequence, average values of these parameters were obtained for each frequency for the entire region, and these were used for interpretation and for comparison with worldwide data. Q p values lie within the range of values observed for some tectonically active regions of the world, whereas Q s values were the lowest among the values compared for different parts of the world. Q s/Q p values were >1 for the entire range of frequencies studied. All these factors indicate that the crust is highly heterogeneous in the study region. The high Q s/Q p values also indicate that the region is partially saturated with fluids.  相似文献   

7.
The attenuation characteristics based on coda waves of two areas—Jamnagar and Junagarh of Saurashtra, Gujarat (India)—have been investigated in the present study. The frequency dependent relationships have been developed for both the areas using single back scattering model. The broadband waveforms of the vertical components of 33 earthquakes (Mw 1.5–3.5) recorded at six stations of the Jamnagar area, and broadband waveforms of 68 earthquakes (Mw 1.6–5) recorded at five stations of the Junagarh area have been used for the analysis. The estimated relations for the Junagarh area are: Q c?=?(158?±?5)f(0.99±0.04) (lapse time : 20?s), Q c?=?(170?±?4.4)f(0.97±0.02) (lapse time : 30?s) and Q c?=?(229?±?6.6)f(0.94±0.03) (lapse time : 40?s) and for the Jamnagar area are: Q c?=?(178?±?3)f(0.95±0.05) (lapse time : 20?s), Q c?=?(224?±?6)f(0.98±0.06) (lapse time : 30?s) and Q c?=?(282?±?7)f(0.91±0.03) (lapse time : 40?s). These are the first estimates for the areas under consideration. The Junagarh area appears to be more attenuative as compared to the Jamnagar area. The increase in Q c values with lapse time found here for both the areas show the depth dependence of Q c as longer lapse time windows will sample larger area. The rate of decay of attenuation (Q ?1) with frequency for the relations obtained here is found to be comparable with those of other regions of the world though the absolute values differ. A comparison of the coda-Q estimated for the Saurashtra region with those of the nearby Kachchh region shows that the Saurashtra region is less heterogeneous. The obtained relations are expected to be useful for the estimation of source parameters of the earthquakes in the Saurashtra region of Gujarat where no such relations were available earlier. These relations are also important for the simulation of earthquake strong ground motions in the region.  相似文献   

8.
In the present study, a digital waveform dataset of 216 local earthquakes recorded by the Egyptian National Seismic Network (ENSN) was used to estimate the attenuation of seismic wave energy in the greater Cairo region. The quality factor and the frequency dependence for Coda waves and S-waves were estimated and clarified. The Coda waves (Q c) and S-waves (Q d) quality factor were estimated by applying the single scattering model and Coda Normalization method, respectively, to bandpass-filtered seismograms of frequency bands centering at 1.5, 3, 6, 12, 18 and 24?Hz. Lapse time dependence was also studied for the area, with the Coda waves analyzed through four lapse time windows (10, 20, 30 and 40?s). The average quality factor as function of frequency is found to be Q c?=?35?±?9f 0.9±0.02 and Q d?=?10?±?2f 0.9±0.02 for Coda and S-waves, respectively. This behavior is usually correlated with the degree of tectonic complexity and the presence of heterogeneities at several scales. The variation of Q c with frequency and lapse time shows that the lithosphere becomes more homogeneous with depth. In fact, by using the Coda Normalization method we obtained low Q d values as expected for a heterogeneous and active zone. The intrinsic quality factor (Q i ?1 ) was separated from the scattering quality factor (Q s ?1 ) by applying the Multiple Lapse Time Domain Window Analysis (MLTWA) method under the assumption of multiple isotropic scattering with uniform distribution of scatters. The obtained results suggest that the contribution of the intrinsic attenuation (Q i ?1 ) prevails on the scattering attenuation (Q s ?1 ) at frequencies higher than 3?Hz.  相似文献   

9.
Multi-phase long-period t* measurements are among the key evidences for the frequency-dependent mantle attenuation factor, Q. However, similarly to Q, poorly constrained variations of Earth’s structure may cause spurious frequency-dependent effects in the observed t*. By using an attenuation-coefficient approach which incorporates measurements of geometric spreading (GS), such effects can be isolated and removed. The results show that the well-known increase of body P-wave t* from ~0.2 s at short periods to ~1–2 s at long periods may be caused by a small and positive bias in the underlying GS, which is measured by a dimensionless parameter γ*?≈?0.06. Similarly to the nearly constant t* at teleseismic distances, this GS bias is practically range-independent and interpreted as caused by velocity heterogeneity within the crust and uppermost mantle. This bias is accumulated within a relatively thin upper part of the lithosphere and may be closely related to the crustal body-wave GS parameter γ?~?4–60 mHz reported earlier. After a correction for γ, P-wave t P * becomes equal ~0.18 s at all frequencies. By using conventional dispersion relations, this value also accounts for ~40 % of the dispersion-related delay in long-period travel times. For inner-core attenuation, the attenuation coefficient shows a distinctly different increase with frequency, which is remarkably similar to that of fluid-saturated porous rock. As a general conclusion, after the GS is accounted for, no absorption-band type or frequency-dependent upper-mantle Q is required for explaining the available t* and velocity dispersion observations. The meaning of this Q is also clarified as the frequency-dependent part of the attenuation coefficient. At the same time, physically justified theories of elastic-wave attenuation within the Earth are still needed. These conclusions agree with recent re-interpretations of several surface, body and coda-wave attenuation datasets within a broad range of frequencies.  相似文献   

10.
Attenuation of P and S waves has been investigated in Alborz and north central part of Iran using the data recorded by two permanent and one temporary networks during October 20, 2009, to December 22, 2010. The dataset consists of 14,000 waveforms from 380 local earthquakes (2 < M L < 5.6). The extended coda normalization method (CNM) was used to estimate quality factor of P (Q P) and S waves (Q S) at seven frequency bands (0.375, 0.75, 1.5, 3, 6, 12, 24 Hz). The Q P and Q S values have been estimated at lapse times from 40 to 100 s. It has been observed that the estimated values of Q P and Q S are time independent; therefore, the mean values of Q P and Q S at different lapse times have been considered. The frequency dependence of quality factor was determined by using a power-law relationship. The frequency-dependent relationship for Q P was estimated in the form of (62 ± 7)f (1.03 ± 0.07) and (48 ± 5)f (0.95 ± 0.07) in Alborz region and North Central Iran, respectively. These relations for Q S for Alborz region and North Central Iran have estimated as (83 ± 8)f (0.99 ± 0.07) and (68 ± 5)f (0.96 ± 0.05), respectively. The observed low Q values could be the results of thermoelastic effects and/or existing fracture. The estimated frequency-dependent relationships are comparable with tectonically active regions.  相似文献   

11.
Small local earthquakes from two aftershock sequences in Porto dos Gaúchos, Amazon craton—Brazil, were used to estimate the coda wave attenuation in the frequency band of 1 to 24 Hz. The time-domain coda-decay method of a single backscattering model is employed to estimate frequency dependence of the quality factor (Q c) of coda waves modeled using Qc = Q0 fhQ_{\rm c} =Q_{\rm 0} f^\eta , where Q 0 is the coda quality factor at frequency of 1 Hz and η is the frequency parameter. We also used the independent frequency model approach (Morozov, Geophys J Int, 175:239–252, 2008), based in the temporal attenuation coefficient, χ(f) instead of Q(f), given by the equation c(f)=g+\fracpfQe \chi (f)\!=\!\gamma \!+\!\frac{\pi f}{Q_{\rm e} }, for the calculation of the geometrical attenuation (γ) and effective attenuation (Qe-1 )(Q_{\rm e}^{-1} ). Q c values have been computed at central frequencies (and band) of 1.5 (1–2), 3.0 (2–4), 6.0 (4–8), 9.0 (6–12), 12 (8–16), and 18 (12–24) Hz for five different datasets selected according to the geotectonic environment as well as the ability to sample shallow or deeper structures, particularly the sediments of the Parecis basin and the crystalline basement of the Amazon craton. For the Parecis basin Qc = (98±12)f(1.14±0.08)Q_{\rm c} =(98\pm 12)f^{(1.14\pm 0.08)}, for the surrounding shield Qc = (167±46)f(1.03±0.04)Q_{\rm c} =(167\pm 46)f^{(1.03\pm 0.04)}, and for the whole region of Porto dos Gaúchos Qc = (99±19)f(1.17±0.02)Q_{\rm c} =(99\pm 19)f^{(1.17\pm 0.02)}. Using the independent frequency model, we found: for the cratonic zone, γ = 0.014 s − 1, Qe-1 = 0.0001Q_{\rm e}^{-1} =0.0001, ν ≈ 1.12; for the basin zone with sediments of ~500 m, γ = 0.031 s − 1, Qe-1 = 0.0003Q_{\rm e}^{-1} =0.0003, ν ≈ 1.27; and for the Parecis basin with sediments of ~1,000 m, γ = 0.047 s − 1, Qe-1 = 0.0005Q_{\rm e}^{-1} =0.0005, ν ≈ 1.42. Analysis of the attenuation factor (Q c) for different values of the geometrical spreading parameter (ν) indicated that an increase of ν generally causes an increase in Q c, both in the basin as well as in the craton. But the differences in the attenuation between different geological environments are maintained for different models of geometrical spreading. It was shown that the energy of coda waves is attenuated more strongly in the sediments, Qc = (78±23)f(1.17±0.14)Q_{\rm c} =(78\pm 23)f^{(1.17\pm 0.14)} (in the deepest part of the basin), than in the basement, Qc = (167±46)f(1.03±0.04)Q_{\rm c} =(167\pm 46)f^{(1.03\pm 0.04)} (in the craton). Thus, the coda wave analysis can contribute to studies of geological structures in the upper crust, as the average coda quality factor is dependent on the thickness of sedimentary layer.  相似文献   

12.
In this study, continuous wavelet transform is applied to estimate the frequency-dependent quality factor of shear waves, Q S , in northwestern Iran. The dataset used in this study includes velocigrams of more than 50 events with magnitudes between 4.0 and 6.5, which have occurred in the study area. The CWT-based method shows a high-resolution technique for the estimation of S-wave frequency-dependent attenuation. The quality factor values are determined in the form of a power law as Q S (f)?=?(147?±?16)f 0.71?±?0.02 and (126?±?12)f 0.73?±?0.02 for vertical and horizontal components, respectively, where f is between 0.9 and 12 Hz. Furthermore, in order to verify the reliability of the suggested Q S estimator method, an additional test is performed by using accelerograms of Ahar-Varzaghan dual earthquakes on August 11, 2012, of moment magnitudes 6.4 and 6.3 and their aftershocks. Results indicate that the estimated Q S values from CWT-based method are not very sensitive to the numbers and types of waveforms used (velocity or acceleration).  相似文献   

13.
The attenuation property of Andaman Island has been investigated analyzing coda waves from 57 local earthquakes in the magnitude range of 2.0–4.9, using the single backscattering model. These earthquakes waveforms, recorded on five broadband seismographs sited over the island from north to south during Nov. 2003 to March 2004, have been used to calculate the frequency dependent Coda Q (Q c ) applying the time domain coda-decay method. The Coda Q, computed at central frequencies from (0.5–12) Hz and five-lapse time windows from 40 to 80 s, progressively increases from 105 f 0.88 in the north Andaman to 135 f 0.79 in the south Andaman with an average of 119 f 0.80. The average Q c values vary from 75 ± 42 at 0.5 Hz to 697 ± 54 at 12 Hz central frequency for 40 s lapse time window, while for 80 s lapse time window its variation is from 117 ± 38 at 0.5 Hz to 1256 ± 115 at 12 Hz. The Q c estimated at different lapse times manifests a significant variation from 122f 0.75 to 174f 0.73, corresponding to lapse time window lengths of 40 and 80 s, respectively. The variation of Q c with frequency, lapse time and also with the location of seismograph reflects the marked structural and compositional inhomogeneity with depth along the Andaman Islands. These observations are well correlated with the seismicity pattern and distinct high angle subduction beneath the island.  相似文献   

14.
The attenuation properties of the lithosphere in the Bam region, East-Central Iran, have been investigated. For this purpose, 42 local earthquakes having focal depths less than 25 km have been used. The quality factor of coda waves (Qc) has been estimated using the single back-scattering model. The quality factors Qp, Qd (P and direct S-waves) have been estimated using the extended-coda normalization method. Qi and Qs (the intrinsic and scattering attenuation parameters) have been estimated for the region. The values of Qp, Qd, Qc, Qi and Qs show a dependence on frequency in the range of 1.5–24 Hz for the Bam region. The average frequency-dependent relationships estimated for the region are Qp=(36±6)f(1.03±0.06), Qd=(59±8)f(1.00±0.03), Qc=(79±5)f(1.01±0.04), Qs=(131±4)f(1.01±0.04) and Qi=(104±6)f(1.01±0.05). A comparison between Qi and Qs shows that intrinsic absorption is predominant over scattering.The variation of Q has also been estimated at different lapse times to observe heterogeneities variation with depth. The variation of Q with frequency and lapse time shows that the lithosphere becomes more homogeneous with depth.The estimated Qo values at different stations suggest a low value of Q indicating a heterogeneous and attenuative crust beneath the entire region.  相似文献   

15.
This paper aims at investigating possible regional attenuation patterns in the case of Vrancea(Romania) intermediate-depth earthquakes.Almost 500 pairs of horizontal components recorded during 13 intermediate-depth Vrancea earthquakes are employed in order to evaluate the regional attenuation patterns.The recordings are grouped according to the azimuth with regard to the Vrancea seismic source and subsequently,Q models are computed for each azimuthal zone assuming similar geometrical spreading.Moreover,the local soil amplification which was disregarded in a previous analysis performed for Vrancea intermediate-depth earthquakes is now clearly evaluated.The results show minor differences between the four regions situated in front of the Carpathian Mountains and considerable differences in attenuation of seismic waves between the forearc and backarc regions(with regard to the Carpathian Mountains).Consequently,an average Q model of the type Q(f) = 115×f~(1.25) is obtained for the four forearc regions,while a separate Q model of the type Q(f) = 70×f~(0.90) is computed for the backarc region.These results highlight the need to evaluate the seismic hazard of Romania by using ground motion models which take into account the different attenuation between the forearc/backarc regions.  相似文献   

16.
The local earthquake waveforms recorded on broadband seismograph network of Institute of Seismological Research in Gujarat, India have been analyzed to understand the attenuation of high frequency (2–25 Hz) P and S waves in the region. The frequency dependent relationships for quality factors for P (Q P) and S (Q S) waves have been obtained using the spectral ratio method for three regions namely, Kachchh, Saurashtra and Mainland Gujarat. The earthquakes recorded at nine stations of Kachchh, five stations of Saurashtra and one station in mainland Gujarat have been used for this analysis. The estimated relations for average Q P and Q S are: Q P = (105 ± 2) f 0.82 ± 0.01, Q S = (74 ± 2) f 1.06 ± 0.01 for Kachchh region; Q P = (148 ± 2) f 0.92 ± 0.01, Q S = (149 ± 14) f 1.43 ± 0.05 for Saurashtra region and Q P = (163 ± 7) f 0.77 ± 0.03, Q S = (118 ± 34) f 0.65 ± 0.14 for mainland Gujarat region. The low Q (<200) and high exponent of f (>0.5) as obtained from present analysis indicate the predominant seismic activities in the region. The lowest Q values obtained for the Kachchh region implies that the area is relatively more attenuative and heterogeneous than other two regions. A comparison between Q S estimated in this study and coda Q (Qc) previously reported by others for Kachchh region shows that Q C > Q S for the frequency range of interest showing the enrichment of coda waves and the importance of scattering attenuation to the attenuation of S waves in the Kachchh region infested with faults and fractures. The Q S/Q P ratio is found to be less than 1 for Kachchh and Mainland Gujarat regions and close to unity for Saurashtra region. This reflects the difference in the geological composition of rocks in the regions. The frequency dependent relations developed in this study could be used for the estimation of earthquake source parameters as well as for simulating the strong earthquake ground motions in the region.  相似文献   

17.
This paper presents the results of a modified two-step inversion algorithm approach to find S wave quality factor Q β(f) given by Joshi (Bull Seis Soc Am 96:2165–2180, 2006). Seismic moment is calculated from the source displacement spectra of the S wave using both horizontal components. Average value of seismic moment computed from two horizontal components recorded at several stations is used as an input to the first part of inversion together with the spectra of S phase in the acceleration record. Several values of the corner frequency have been selected iteratively and are used as inputs to the inversion algorithm. Solution corresponding to minimum root mean square error (RMSE) is used for obtaining the final estimate of Q β(f) relation. The estimates of seismic moment, corner frequency and Q β(f) from the first part of inversion are further used for obtaining the residual of theoretical and observed source spectra which are treated as site amplification terms. The acceleration record corrected for the site amplification term is used for determination of seismic moment from source spectra by using Q β(f) obtained from first part of inversion. Corrected acceleration record and new estimate of seismic moment are used as inputs to the second part of the inversion scheme which is similar to the first part except for use of input data. The final outcome from this part of inversion is a new Q β(f) relation together with known values of seismic moment and corner frequency of each input. The process of two-step inversion is repeated for this new estimate of seismic moment and goes on until minimum RMSE is obtained which gives final estimate of Q β(f) at each station and corner frequency of input events. The Pithoragarh district in the state of Uttarakhand in India lies in the border region of India and Nepal and is part of the seismically active Kumaon Himalaya zone. A network of eight strong motion recorders has been installed in this region since March, 2006. In this study we have analyzed data from 18 local events recorded between March, 2006 and October, 2010 at various stations. These events have been located using HYPO71 and data has been used to obtain frequency-dependent shear-wave attenuation. The Q β(f) at each station is calculated by using both the north-south (NS) and east-west (EW) components of acceleration records as inputs to the developed inversion algorithm. The average Q β(f) values obtained from Q β(f) values at different stations from both NS and EW components have been used to compute a regional average relationship for the Pithoragarh region of Kumaon Himalaya of form Q β(f)?=?(29?±?1.2)f (1.1 ± 0.06).  相似文献   

18.
A total number of 46 local earthquakes (2.0≤ML≤4.0) recorded in the period 2000–2011 by the Egyptian seismographic network (ENSN) were used to estimate the total (Qt−1), intrinsic (Qi1) and scattering attenuation (Qsc1) in Cairo metropolitan area, Egypt. The multiple lapse time window analysis (MLTWA) under the assumption of multiple isotropic scattering with uniform distribution of scatters was firstly applied to estimate the pair of Le1, the extinction length inverse, and B0, the seismic albedo, in the frequency range 3–24 Hz. To take into account the effect of a depth-dependent earth model, the obtained values of B0 and Le1 were corrected for an earth structure characterized by a transparent upper mantle and a heterogeneous crust. The estimated values of Qt−1, Qsc1 and Qi1 exhibited frequency dependences. The average frequency-dependent relationships of attenuation characteristics estimated for the region are found to be: Qt1=(0.015±0.008)f (−1.02±0.02), Qsc−1=(0.006±0.001)f (−1.01±0.02), and Qi1=(0.009±0.008)f (−1.03±0.02); showing a predominance of intrinsic absorption over scattering attenuation. This finding implies that the pore-fluid contents may have great effect on the attenuation mechanism in the upper crust where the River Nile is passing through the study area. The obtained results are comparable with those obtained in other tectonic regions.  相似文献   

19.
Quality factor Q, which describes the attenuation of seismic waves with distance, was determined for South Africa using data recorded by the South African National Seismograph Network. Because of an objective paucity of seismicity in South Africa and modernisation of the seismograph network only in 2007, I carried out a coda wave decay analysis on only 13 tectonic earthquakes and 7 mine-related events for the magnitude range 3.6?≤?M L ?≤?4.4. Up to five seismograph stations were utilised to determine Q c for frequencies at 2, 4, 8 and 16 Hz resulting in 84 individual measurements. The constants Q 0 and α were determined for the attenuation relation Q c(f)?=?Q 0 f α . The result was Q 0?=?396?±?29 and α?=?0.72?±?0.04 for a lapse time of 1.9*(t s???t 0) (time from origin time t 0 to the start of coda analysis window is 1.9 times the S-travel time, t s) and a coda window length of 80 s. This lapse time and coda window length were found to fit the most individual frequencies for a signal-to-noise ratio of at least 3 and a minimum absolute correlation coefficient for the envelope of 0.5. For a positive correlation coefficient, the envelope amplitude increases with time and Q c was not calculated. The derived Q c was verified using the spectral ratio method on a smaller data set consisting of nine earthquakes and one mine-related event recorded by up to four seismograph stations. Since the spectral ratio method requires absolute amplitudes in its calculations, site response tests were performed to select four appropriate stations without soil amplification and/or signal distortion. The result obtained for Q S was Q 0?=?391?±?130 and α?=?0.60?±?0.16, which agrees well with the coda Q c result.  相似文献   

20.
—Measurements of seismic attenuation (Q ?1) can vary considerably when made from different parts of seismograms or using different techniques, particularly at high frequencies. These discrepancies may be methodological, or may reflect earth processes. To investigate this problem, we compare body wave with coda Q ?1 results utilizing three common techniques i) parametric fit to spectral decay, ii) coda normalization of S waves, and iii) coda amplitude decay with lapse time. Q ?1 is measured from both body and coda waves beneath two mountain ranges and one platform, from recordings made at seismic arrays in the Caucasus and Kopet Dagh over paths ≤ 4° long. If Q is assumed frequency independent, spectral decay fits show Q s and Q coda near 700–800 for both mountain paths and near 2100–2200 for platform paths. Similar values are determined with the coda normalization technique. However, frequency-dependent parameterizations fit the data significantly better, with Q s ?(1 Hz) and Q coda?(1 Hz) near 200–300 for mountain paths and near 500–600 for platform paths. Lapse decay measurements are close to the frequency-dependent values, showing that both spectral and lapse decay methods can give similar results when Q has comparable parameterizations. Above 6 Hz, coda measurements suggest some enrichment relative to body waves, perhaps due to scattering, but intrinsic absorption appears to dominate at lower frequencies. All approaches show sharp path differences between the Eurasian platform and adjacent mountains, and all are capable of resolving spatial variations in Q.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号