首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We measured spatial and temporal variations in carbon concentrations, isotopic compositions and exports during a complete hydrological cycle in nine watercourses draining a lowland forested podzolized catchment, flowing into the Arcachon lagoon (France). In addition, integrated fluxes of CO2 across the water-atmosphere interface were estimated to assess the relative importance of CO2 evasion versus lateral carbon transport at the catchment scale. Watercourse similarities and specificities linked to the local catchment characteristics are discussed and compared with other riverine systems. Low concentrations of suspended particulate matter and particulate organic carbon (POC) were generally measured in all the watercourses (8.4 ± 3.4 and 1.6 ± 0.6 mg L?1, respectively), reflecting limited mechanical soil erosion. The generally high POC content in the suspended matter (20 %), low Chl a concentrations (1.3 ± 1.4 μg L?1) and the relatively constant δ13C-POC value (near ?28 ‰) throughout the year reveal this POC originates from terrestrial C3 plant and soil detritus. The presence of podzols leads to high levels of dissolved organic carbon (DOC; 6.6 ± 2.2 mg L?1). Similarly, high dissolved inorganic carbon (DIC) concentrations were measured in the Arcachon lagoon catchment (5.9 ± 2.2 mg L?1). The δ13C-DIC value around ?20 ‰ throughout the year in many small watercourses reveals the predominance of terrestrial carbon mineralisation and silicate rock weathering in soils as the major DIC source. With pCO2 between 1,000 and 10,000 ppmv, all watercourses were a source of CO2 to the atmosphere, particularly during the low river stage. Organic carbon parameters remained relatively stable throughout the year, whereas DIC parameters showed strong seasonal contrasts closely linked to the hydrological regime and hyporheic flows. In total, the carbon export from the Arcachon watershed was estimated at 15,870 t C year?1 or 6 t C km?2 year?1, mostly exported to the lagoon as DOC (35 %), DIC (24 %) and lost as CO2 degassing to the atmosphere (34 %).  相似文献   

2.
We investigated greenhouse gas emissions (CO2, CH4, and N2O) from reservoirs located across an altitude gradient in Switzerland. These are the first results of greenhouse gas emissions from reservoirs at high elevations in the Alps. Depth profiles were taken in 11 reservoirs located at different altitudes between the years 2003 and 2006. Diffusive trace gas emissions were calculated using surface gas concentrations, wind speeds and transfer velocities. Additionally, methane entering with the inflowing water and methane loss at the turbine was assessed for a subset of the reservoirs. All reservoirs were emitters of carbon dioxide and methane with an average of 970?±?340?mg?m?2?day?1 (results only from four lowland and one subalpine reservoir) and 0.20?±?0.15?mg?m?2?day?1, respectively. One reservoir (Lake Wohlen) emitted methane at a much higher rate (1.8?±?0.9?mg?m?2?day?1) than the other investigated reservoirs. There was no significant difference in methane emissions across the altitude gradient, but average dissolved methane concentrations decreased with increasing elevation. Only lowland reservoirs were sources for N2O (72?±?22???g?m?2?day?1), while the subalpine and alpine reservoirs were in equilibrium with atmospheric concentrations. These results indicate reservoirs from subalpine/alpine regions to be only minor contributors of greenhouse gases to the atmosphere compared to other reservoirs.  相似文献   

3.
Stable isotopic data are presented for 112 samples of francolite from 18 separate phosphate deposits. Values ofδ13C andδ34S in most offshore deposits suggest formation within oxic or suboxic environments either by carbonate replacement or direct precipitation of francolite from water of normal marine compositions. The exceptions are concretionary francolite from Namibia, which has an isotopic composition in keeping with its formation within organic-rich sediments, and that from offshore Morocco, which has an isotopic signature of the anoxic/suboxic interface. Onshore deposits from Jordan, Mexico, South Africa and, possibly, the Permian Phosphoria Formation in the western U.S.A., are substantially depleted in18O: they appear to be too altered for deductions to be made about their environments of formation. In other onshore deposits which are unaltered, or minimally altered, the isotopic composition suggests that some formed within sulphate-reducing sediments (Sedhura, Morocco) whilst francolite from the Georgina Basin of Australia formed at the oxic/anoxic boundary, where oxidation of biogenic H2S decreases theδ34S of pore water. In general, pelletal samples show non-oxic isotopic signatures, whilst non-pelletal samples show oxic isotopic signatures, but samples from Namibia, Peru (Ica Plateau) and the Californian and Moroccan margins are exceptions to this rule. Morphology may therefore be a misleading indicator of francolite genesis as no definitive relation exists between phosphorite type and isotopic signature.  相似文献   

4.
Oxygen uptake rates by the sediment have been determined in a natural stratified sediment-water system from Lake Constance (Obersee, max. depth). After oxic preconditioning of the system the uptake rates ranged between 855 and 1,062 mg·m?2·d?1; after anoxic preconditioning of the system they ranged between 3,405 and 3,794 mg·m?2·d?1. These data, and the electron activity buffer capacity and oxygen consumption intensity as found in Lake Constance profundal water, show that the oxic-anoxic transition will happen here at the earliest after 142 days (about 4.5 months) of total oxygen isolation. Reoxygenation requires at least 3.7 times higher O2 input than supposed for a ‘normal’ winter circulation in Obersee.  相似文献   

5.
Distributions and oxidation rates of methane and ammonium were investigated during two cruises in Saanich Inlet, British Columbia in late summer. Distributions of inorganic nutrients were related to oxygen distribution, exhibiting large gradients associated with the oxic-anoxic interface. The depth distributions of oxidation rates were also defined by the oxic-anoxic interface: ammonium oxidation occurred at variable rates (up to 120 nM day−1) between the photic zone and the oxic-anoxic interface. Methane oxidation occurred throughout the oxic layer and increased near the interface. The possibility of interactions such as inhibition and competition between the two substrates, methane and ammonium, were investigated in kinetic experiments. Ammonium oxidation rate was independent of both ammonium and methane concentrations. Methane oxidation rates were linearly related to methane concentration, both in manipulation experiments, and in relation to ambient methane concentrations. There was no evidence of interaction between methane and ammonium as alternative substrates for methanotrophic and ammonium oxidizing populations, which were both present in the environment. In September, we observed a bolus-type mixing event, which introduced oxygenated deep water into the inlet beneath a wedge of anoxic, methane-rich water. This kind of event is probably important in determining the rate of methane loss, due to increased microbial oxidation at the boundaries of the anoxic wedge.  相似文献   

6.
The role of microbial sulfate reduction on organic matter oxidation was studied quantitatively in temperate intertidal surface sediments of the German Wadden Sea (southern North Sea) on a seasonal base in the years 1998–2007. The sampling sites represent the range of sediments found in the back-barrier tidal area of Spiekeroog Island: sands, mixed and muddy flats. The correspondingly different contents in organic matter, metals, and porosities lead to significant differences in the activity of sulfate-reducing bacteria with volumetric sulfate reduction rates (SRR) in the top 15 cm of up to 1.4 μmol cm?3 day?1. Depth-integrated areal SRR ranged between 0.9 and 106 mmol m?2 day?1, with the highest values found in the mudflat sediments and lower rates measured in sands at the same time, demonstrating the impact of both temperature and organic matter load. According to a modeling approach for a 154-km2 large tidal area, about 39, 122, and 285 tons of sulfate are reduced per day, during winter, spring/autumn, and summer, respectively. Hence, the importance of areal benthic organic matter mineralization by microbial sulfate reduction increases during spring/autumn and summer by factors of about 2 and 7, respectively, when compared to winter time. The combined results correspond to an estimated benthic organic carbon mineralization rate via sulfate reduction of 78 g C m?2 year?1.  相似文献   

7.
We report the first detailed study of spatial variations on the diffuse emission of carbon dioxide (CO2) and hydrogen sulfide (H2S) from Hengill volcanic system, Iceland. Soil CO2 and H2S efflux measurements were performed at 752 sampling sites and ranged from nondetectable to 17,666 and 722?g?m?2?day?1, respectively. The soil temperature was measured at each sampling site and used to evaluate the heat flow. The chemical composition of soil gases sampled at selected sampling sites during this study shows they result from a mixing process between deep volcanic/hydrothermal component and air. Most of the diffuse CO2 degassing is observed close to areas where active thermal manifestations occur, northeast flank of the Hengill central volcano close to the Nesjavellir power plant, suggesting a diffuse degassing structure with a SSW?CNNE trend, overlapping main fissure zone and indicating a structural control of the degassing process. On the other hand, H2S efflux values are in general very low or negligible along the study area, except those observed at the northeast flank of the Hengill central volcano, where anomalously high CO2 efflux and soil temperatures were also measured. The total diffuse CO2 emission estimated for this volcanic system was about 1,526?±?160?t?day?1 of which 453?t?day?1 (29.7?%) are of volcanic/hydrothermal origin. To calculate the steam discharge associated with the volcanic/hydrothermal CO2 output, we used the average H2O/CO2 mass ratio from 12 fumarole samples equal to 88.6 (range, 9.4?C240.2) as a representative value of the H2O/CO2 mass ratios for Hengill fumarole steam. The resulting estimate of the steam flow associated with the gas flux is equal to 40,154?t?day?1. The condensation of this steam results in thermal energy release for Helgill volcanic system of 1.07?×?1014?J?day?1 or to a total heat flow of 1,237?MWt.  相似文献   

8.
The Auckland Volcanic Field (AVF) is a dormant monogenetic basaltic field located in Auckland, New Zealand. Though soil gas CO2 fluxes are routinely used to monitor volcanic regions, there have been no published studies of soil CO2 flux or soil gas CO2 concentrations in the AVF to date or many other monogenetic fields worldwide. We measured soil gas CO2 fluxes and soil gas CO2 concentrations in 2010 and 2012 in varying settings, seasons, and times of day to establish a baseline soil CO2 flux and to determine the major sources of and controlling influences on Auckland's soil CO2 flux. Soil CO2 flux measurements varied from 0 to 203 g m?2 day?1, with an average of 27.1 g m?2 day?1. Higher fluxes were attributed to varying land use properties (e.g., landfill). Using a graphical statistical approach, two populations of CO2 fluxes were identified. Isotope analyses of δ13CO2 confirmed that the source of CO2 in the AVF is biogenic with no volcanic component. These data may be used to assist with eruption forecasting in the event of precursory activity in the AVF, and highlight the importance of knowing land use history when assessing soil gas CO2 fluxes in urban environments.  相似文献   

9.
The global warming potential of methane (CH4) is about 30 times stronger than that of carbon dioxide (CO2) over a century timescale. Methane emission is hypothesized to have contributed to global climate change events and mass extinctions during Earth’s history. Therefore, the study of CH4 production processes is critically important to the understanding of global climate change. It has been a dogma that biogenic CH4 detectable in the oceans originates exclusively from the anaerobic metabolic activity of methanogenic archaea in hypoxic and anoxic environments, despite reports that many oxic surface and near-surface waters of the world’s oceans are CH4-supersaturated, thereby rendering net sea-to-air emissions of CH4. The phenomenon of CH4 production in oxic marine waters is referred to as the “ocean methane paradox”. Although still not totally resolved, recent studies have generated several hypotheses regarding the sources of CH4 production in oxic seawater. This review will summarize our current understanding of the importance of CH4 in the global climate and analyze the biological processes and their underpinning mechanisms that lead to the production of CH4 in oxic seawater environments. We will also tentatively explore the relationships of these microbial metabolic processes with global changes in climate and environment.  相似文献   

10.
Anomalous changes in the diffuse emission of carbon dioxide within the Masaya caldera have been observed before two seismic events that occurred at 10 and 30 km from the observation site. Their epicenters are located, respectively, south of Managua in Las Colinas (4.3 magnitude) and the Xiloa caldera (3.6 magnitude), in 2002 and 2003, recorded by the geochemical station located at El Comalito, Masaya volcano (Nicaragua). Anomalous increases were observed, which occurred around 50 and 8 days before the main seismic event that took place in Las Colinas, and 4 days before the seismic swarm at the Xiloa caldera, with a maximum CO2 efflux of 9.3 and 10.7 kg m?2 day?1, respectively. The anomalous CO2 efflux increases remained after filtering with multiple regression analysis was applied to the CO2 efflux time series, which indicated that atmospheric variables, during the first 4 months, explained 23 % CO2 variability, whereas, during the rest of the time series, CO2 efflux values are poorly controlled with only 6 %. The observed anomalies of the diffuse CO2 emission rate might be related to pressure changes within the volcanic–hydrothermal system and/or to geostructural changes in the crust due to stress/strain changes caused before and during the earthquakes’ formation, and seem not to be related to the activity of the main crater of Masaya volcano.  相似文献   

11.
Waters were sampled from 17 boreholes at Haut Glacier d'Arolla during the 1993 and 1994 ablation seasons. Three types of concentrated subglacial water were identified, based on the relative proportions of Ca2+, HCO3? and SO42? to Si. Type A waters are the most solute rich and have the lowest relative proportion of Si. They are believed to form in hydrologically inefficient areas of a distributed drainage system. Most solute is obtained from coupled sulphide oxidation and carbonate dissolution (SO–CD). It is possible that there is a subglacial source of O2, perhaps from gas bubbles released during regelation, because the high SO42? levels found (up to 1200 µeq/L) are greater than could be achieved if sulphides are oxidized by oxygen in saturated water at 0 °C (c.414 µeq/L). A more likely alternative is that sulphide is oxidized by Fe3+ in anoxic environments. If this is the case, exchange reactions involving FeIII and FeII from silicates are possible. These have the potential to generate relatively high concentrations of HCO3? with respect to SO42?. Formation of secondary weathering products, such as clays, may explain the low Si concentrations of Type A waters. Type B waters were the most frequently sampled subglacial water. They are believed to be representative of waters flowing in more efficient parts of a distributed drainage system. Residence time and reaction kinetics help determine the solute composition of these waters. The initial water–rock reactions are carbonate and silicate hydrolysis, and there is exchange of divalent cations from solution for monovalent cations held on surface exchange sites. Hydrolysis is followed by SO–CD. The SO42? concentrations usually are <414 µeq/L, although some range up to 580 µeq/L, which suggests that elements of the distributed drainage system may become anoxic. Type C waters were the most dilute, yet they were very turbid. Their chemical composition is characterized by low SO42? : HCO3? ratios and high pH. Type C waters were usually artefacts of the borehole chemical weathering environment. True Type C waters are believed to flow through sulphide‐poor basal debris, particularly in the channel marginal zone. The composition of bulk runoff was most similar to diluted Type B waters at high discharge, and was similar to a mixture of Type B and C waters at lower discharge. These observations suggest that some supraglacial meltwaters input to the bed are stored temporarily in the channel marginal zone during rising discharge and are released during declining flow. Little of the subglacial chemical weathering we infer is associated with the sequestration of atmospheric CO2. The progression of reactions is from carbonate and silicate hydrolysis, through sulphide oxidation by first oxygen and then FeIII, which drives further carbonate and silicate weathering. A crude estimate of the ratio of carbonate to silicate weathering following hydrolysis is 4 : 1. We speculate that microbial oxidation of organic carbon also may occur. Both sulphide oxidation and microbial oxidation of organic carbon are likely to drive the bed towards suboxic conditions. Hence, we believe that subglacial chemical weathering does not sequester significant quantities of atmospheric CO2 and that one of the key controls on the rate and magnitude of solute acquisition is microbial activity, which catalyses the reduction of FeIII and the oxidation of FeS2. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
Backwaters connected to large rivers retain nitrate and may play an important role in reducing downstream loading to coastal marine environments. A summer nitrogen (N) inflow-outflow budget was examined for a flow-regulated backwater of the upper Mississippi River in conjunction with laboratory estimates of sediment ammonium and nitrate fluxes, organic N mineralization, nitrification, and denitrification to provide further insight into N retention processes. External N loading was overwhelmingly dominated by nitrate and 54% of the input was retained (137 mg m−2 day−1). Ammonium and dissolved organic N were exported from the backwater (14 and 9 mg m−2 day−1, respectively). Nitrate influx to sediment increased as a function of increasing initial nitrate concentration in the overlying water. Rates were greater under anoxic versus oxic conditions. Ammonium effluxes from sediment were 26.7 and 50.6 mg m−2 day−1 under oxic and anoxic conditions, respectively. Since anoxia inhibited nitrification, the difference between ammonium anoxic–oxic fluxes approximated a nitrification rate of 29.1 mg m−2 day−1. Organic N mineralization was 64 mg m−2 day−1. Denitrification, estimated from regression relationships between oxic nitrate influx versus initial nitrate concentration and a summer lakewide mean nitrate concentration of 1.27 mg l−1, was 94 mg m−2 day−1. Denitrification was equivalent to only 57% of the retained nitrate, suggesting that another portion was assimilated by biota. The high sediment organic N mineralization and ammonium efflux rate coupled with the occurrence of ammonium export from the system suggested a possible link between biotic assimilation of nitrate, mineralization, and export.  相似文献   

13.
Ecosystem metabolism is an important measure of wetland restoration efficiency, and serves to indicate if the system is capable of processing energetic resources. Despite its value, ecosystem metabolism has rarely been included in monitoring programs. In this study, we aimed to achieve the following objectives: (i) compare net ecosystem production (NEP) rates of constructed vs. natural wetlands; (ii) identify the highest NEP rate habitats; and (iii) define the main environmental factors regulating NEP in different wetland types. Pelagic and benthic NEP rates and physicochemical features were measured in three natural and five constructed wetlands in the middle Ebro River floodplain (NE Spain). Statistical analyses showed pelagic NEP rates peaked in natural wetlands, which produced up to 187.5 mg C m?3 h?1 compared to lower rates in constructed wetlands (up to 46.2 mg C m?3 h?1). Pelagic NEP responded positively to temperature, total dissolved solids, and nutrients. Benthic NEP rates were 3 to 30-fold greater than pelagic in natural (up to 994.9 mg C m?3 h?1) and constructed (up to 1,551.5 mg C m?3 h?1) wetlands, and were heavily influenced by habitat type, with NEP peaking in areas dominated by submerged vegetation and fine organic sediment. Rapid recovery in aquatic communities (i.e. macroinvertebrate diversity) has been previously reported for the studied wetlands; however, our study suggests a slower recovery of functional processes (i.e. pelagic NEP) in constructed habitats. We therefore strongly advocate the inclusion of ecosystem function in the design and evaluation of restoration projects to optimise long-term wetland ecosystem sustainability.  相似文献   

14.
A two‐dimensional variable‐density groundwater flow and transport model was developed to provide a conceptual understanding of past and future conditions of nitrate (NO3) transport and estimate groundwater nitrate flux to the Gulf of Mexico. Simulation results show that contaminant discharge to the coast decreases as the extent of saltwater intrusion increases. Other natural and/or artificial surface waters such as navigation channels may serve as major sinks for contaminant loading and act to alter expected transport pathways discharging contaminants to other areas. Concentrations of NO3 in the saturated zone were estimated to range between 30 and 160 mg?L?1 as NO3. Relatively high hydraulic vertical gradients and mixing likely play a significant role in the transport processes, enhancing dilution and contaminant migration to depth. Residence times of NO3 in the deeper aquifers vary from 100 (locally) to about 300 years through the investigated aquifer system. NO3 mass fluxes from the shallow aquifers (0 to 5.7 × 104 mg?m?2?day?1) were primarily directed towards the navigation channel, which intersects and captures a portion of the shallow groundwater flow/discharge. Direct NO3 discharge to the sea (i.e. Gulf of Mexico) from the shallow aquifer was very low (0 to 9.0 × 101 mg · m?2?day?1) compared with discharge from the deeper aquifer system (0 to 8.2 × 103 mg?m?2?day?1). Both model‐calibrated and radiocarbon tracer‐determined contaminant flux estimates reveal similar discharge trends, validating the use of the model for density‐dependent flow conditions. The modelling approach shows promise to evaluate contaminant and nutrient loading for similar coastal regions worldwide. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
16.
We studied for the first time the intertidal and subtidal gas seepage system in Mocha Island off Central Chile. Four main seepage sites were investigated (of which one site included about 150 bubbling points) that release from 150 to 240 tonnes CH4 into the atmosphere per year. The total amount of methane emitted into the atmosphere is estimated in the order of 800 tonnes per year. The gases emanated from the seeps contain 70% methane, and the stable carbon isotopic composition of methane, δ13C-CH4 averaged −44.4±1.4‰ which indicates a major contribution of thermogenic gas. Adjacent to one of the subtidal seeps, rocky substrates support a diverse community of microbial filaments, macroalgae, and benthic organisms. While stable carbon isotopic compositions of marine benthic organisms indicate a dominant photosynthesis-based food web, those of some hard-substrate invertebrates were in the range −48.8‰ to −36.8‰, suggesting assimilation of methane-derived carbon by some selected taxa. This work highlights the potential subsidy of the trophic web by CH4-C, and that its emission to the atmosphere justifies the need of evaluating the use of methane to support the energy requirements of the local community.  相似文献   

17.
The commercial recovery of methane from coal is well established in the coalbed methane (CBM) blocks at the east margin of Ordos Basin, China. CBM forms with various carbon isotopic ratios (δ13CPDB) due to the carbon isotopic fractionation in biogenical or thermogenical processes. Based on the geologic evolution of coalbed reservoir and studies on the characteristics of δ13CPDB values distributed spatially (e.g., horizontal CBM well location area, vertical coal burial zone, coal rank, etc.) and temporally (e.g., geologic evolution history), we explored the formation mechanism of carbon isotopic of methane. The relatively low δ13CPDB values are widely distributed along the research area, indicating a trend of “lighter-heavier-lighter” from north to south. From a combination analysis of the relationship between δ13CPDB and the relative effects, the essential aspects in determining CBM carbon isotope being light in the study area are: the genesis of secondary biogas in the north; water soluble effects in the active hydrodynamic areas in the middle; desorption fractionation effect promoted by tectonic evolution in the south; and the sudden warming hydrocarbon fractionation accelerated by magmatic event in particular areas (e.g., Linxian).  相似文献   

18.
In 2013, the China Geological Survey and Guangzhou Marine Geological Survey conducted the second Chinese gas hydrate expedition in the northern South China Sea(SCS) and successfully obtained visible gas hydrate samples. Five of the thirteen drilling sites were cored for further research. In this work, Site GMGS2-08 is selected for the stable isotopic analysis of foraminifera present in the boreholes in order to reveal the carbon isotopic characteristics of the foraminifera and their response to methane release in the gas hydrate geological system. Our results show that the methane content at Site GMGS2-08 is extremely high, with headspace methane concentrations up to 39300 μmol L~(-1). The hydrocarbon δ~(13)C values, ranging from-69.4‰ to-72.3‰ PDB, distinctly indicate biogenic generation. Based on the δD analytical results(~(-1)83‰ to~(-1)85‰ SMOW), headspace methane is further discriminated to be microbial gas, derived from CO_2 reduction. By isotopic measurement, five light δ~(13)C events are found in the boreholes from Site GMGS2-08, with foraminiferal δ~(13)C values being apparently lower than the normal variation range found in the glacial-interglacial cycles of the SCS. The δ~(13)C values of benthic Uvigerina peregrina are extremely depleted(as low as~(-1)5.85‰ PDB), while those of planktonic Globigerinoides ruber reach-5.68‰ PDB. Scanning electron micrograph(SEM) studies show that foraminiferal tests have experienced post-depositional alteration, infilled with authigenic carbonate, and the diagenetic mineralization is unlikely to be related to the burial depths. The correlation calculation suggests that the anaerobic oxidation of organic matter has only weak influences on the δ~(13)C composition of benthic foraminifera. This means that the anomalous δ~(13)C depletions are predominantly attributed to the overprinting of secondary carbonates derived from the anaerobic oxidation of methane(AOM). Furthermore, the negative δ~(13)C anomalies, coupled with the positive δ18O anomalies observed at Site GMGS2-08, are most likely the critical pieces of evidence for gas hydrate dissociation in the geological history of the study area.  相似文献   

19.
Four field campaigns are carried out to quantify the methane (CH4) oxidation rate in Xiangxi Bay (XXB) of the Three Gorges Reservoir (TGR), China. The water depth of the sampling site varied from 13 to 30 m resulting from the water level fluctuation of the TGR. The CH4 oxidation rates are measured in situ as the decline of dissolved CH4 concentration versus time in incubated, and those rates. The CH4 oxidation rates range from 1.18 × 10?3 to 3.69 × 10?3 µmol L?1 h?1, with higher values and stronger variation during summer. A static floating chamber method is used to measure CH4 emitted to the atmosphere resulting in an annual mean flux of 4.79 µmol m?2 h?1. The CH4 emission rate is significantly negatively correlated with the water level. The results show that a large fraction of CH4 is consumed in the water column with a range of 28.97–55.90 µmol m?2 h?1, accounting for ≈69–98% of the total CH4 input into the water column, and more than 90% is consumed outside the summer, when the water level is lowest. Water depth, which is dominated by water level of the TGR, is a potentially important driver for CH4 oxidation and atmospheric emission in the tributary bay.  相似文献   

20.
Most-probable-number (MPN) dilution series were used to enumerate and isolate bacteria from bulk water, suspended aggregates, the oxic layer, and the oxic–anoxic transition zone of the sediment of a tidal flat ecosystem in the southern North Sea. The heterotrophic aerobic bacteria were able to grow on agar-agar, alginate, cellulose, chitin, dried and ground Fucus vesiculosus, Marine Broth 2216, palmitate, and starch. MPN counts of bulk water and aggregate samples ranged between 0.18?×?101 and 1.1?×?106 cells per milliliter and those of the sediment surface and the transition zone between 0.8?×?101 and 5.1?×?107 cells per gram dry weight. Marine Broth and F. vesiculosus yielded the highest values of all substrates tested and corresponded to 2.3–32% of 4,6-diamidinophenyl indole cell counts. Strains of seven phylogenetic classes were obtained: Actinobacteria, Bacilli, α- and γ-Proteobacteria, Sphingobacteria, Flavobacteria, and Planctomycetacia. Only with agar-agar as substrate could organisms of all seven classes be isolated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号