首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Tree-ring analyses have often been used in the past for the reconstruction of spatiotemporal patterns of previous debris-flow activity, often yielding very precise and extensive data for torrents where information on former activity was largely missing. Unless dendrogeomorphology is slated for multimillion Euro developments, the large sets of tree-ring series that are usually used in these studies render analysis time-consuming and not necessarily very cost-effective. In this study, we present results on past debris flows obtained with 35 Larix decidua Mill. trees growing on the cone of the Torrent de Pétérey (Zinal, Valais, Swiss Alps). It is concluded that studies based on a limited number of samples may yield valuable data on past events, but that the reconstructed frequency remains widely incomplete and indications on the spatial aspects of past events are only fragmentary.  相似文献   

2.
Debris flows frequently occurred in Wenchuan earthquake region from 2008 to 2010, resulting in great damage to localities and being a prolonged threat to reconstruction. Forty three events' data including debris-flow volume, sediment volume and watershed area are analyzed and compared with other debris-flow events in Eastern Italian Alps, burned areas in USA and in Taiwan. The analysis reveals that there is a strong empirical relationship between debris-flow volume and loose materials volume in the earthquake region. In addition, the relationship between debris-flow volume and watershed area in the earthquake region has a wider variation range than that in other three regions while the debris volume also appears to be larger than that in the other three regions, which implies the volume of debris flows with strong influence of earthquakes is larger than that with no such influence and it is hard to predict the post-quake volume only by the watershed area. The comparison of the maximal debris-flow erosion modulus in the Wenchuan region and in Taiwan indicates that debris flows will be very active in a short time after strong earthquake.  相似文献   

3.
Guo  Xiaojun  Chen  Xingchang  Song  Guohu  Zhuang  Jianqi  Fan  Jianglin 《Natural Hazards》2021,106(3):2663-2687

Debris flows often occur in the mountainous watersheds of earthquake-affected areas, and in the Lushan earthquake area of southwestern China, they have become a significant hazard. In this study, the influencing factors and spatial distribution of debris flows were analyzed through a review of their occurrence history. Debris flows are mainly distributed in the northwestern part of the study area, which hosts the greatest density of active faults. The debris flows are generally formed by the ‘progressive bulking’ effect in channels, and deep incision, lateral erosion, and blockage breaking are common processes that amplify the magnitude of such debris flows. Rainfall thresholds for different types of debris flow were proposed to explain the spatial differences between debris-flow regions, and the temporal variations of those thresholds highlighted how the rainfall conditions required for the occurrence of debris flows have changed. Natural vegetation recovery, reduction in the availability of solid material, and artificial debris-flow control projects play important roles in raising the threshold of the rainfall conditions required for triggering debris flows.

  相似文献   

4.
We describe the development, implementation, and first analyses of the performance of a debris-flow warning system for the Illgraben catchment and debris fan area. The Illgraben catchment (9.5 km2), located in the Canton of Valais, Switzerland, in the Rhone River valley, is characterized by frequent and voluminous sediment transport and debris-flow activity, and is one of the most active debris-flow catchments in the Alps. It is the site of an instrumented debris-flow observation station in operation since the year 2000. The residents in Susten (municipality Leuk), tourists, and other land users, are exposed to a significant hazard. The warning system consists of four modules: community organizational planning (hazard awareness and preparedness), event detection and alerting, geomorphic catchment observation, and applied research to facilitate the development of an early warning system based on weather forecasting. The system presently provides automated alert signals near the active channel prior to (5–15 min) the arrival of a debris flow or flash flood at the uppermost frequently used channel crossing. It is intended to provide data to support decision-making for warning and evacuation, especially when unusually large debris flows are expected to leave the channel near populated areas. First-year results of the detection and alert module in comparison with the data from the independent debris-flow observation station are generally favorable. Twenty automated alerts (alarms) were issued, which triggered flashing lights and sirens at all major footpaths crossing the channel bed, for three debris flows and 16 flood flows. Only one false alarm was issued. The major difficulty we encountered is related to the variability and complexity of the events (e.g., events consisting of multiple surges) and can be largely solved by increasing the duration of the alarm. All of the alarms for hazardous events were produced by storms with a rainfall duration and intensity larger than the threshold for debris-flow activity that was defined in an earlier study, supporting our intention to investigate the use of rainfall forecasts to increase the time available for warning and implementation of active countermeasures.  相似文献   

5.
In recent years, debris flows have represented a severe natural hazard in South-Gargano watersheds (Puglia Region, Southern Italy). Hill slopes erosion, caused by the inadequate protection of the degraded forests, produces large amounts of soil and debris that are conveyed downstream during heavy rainstorms. The involved material is characterized by limestone fragments and blocks in a sandy-silt matrix. In this paper, the rheological properties of such debris-flow materials have been investigated. Eight specimens of particulated sediments of particle diameter of d ≤ 4 mm have been analysed using a rheometric tool for large particle suspensions, the ball measuring system (BMS). The influence of sediment concentration on the bulk rheological behaviour has been evaluated at concentrations by volume obtained in fully water-saturated conditions (volumetric sediment concentration C V ~ 0.8) and with fixed water content (C V = 0.42). The rheological data were fitted to the Bingham, Herschel–Bulkley, and O’Brien and Julien models to define viscosity and yield stress dependency on sediment concentration, to provide viscosity information for hazard mitigation as well as for comparison to other debris-flow events.  相似文献   

6.
Debris-flow monitoring in instrumented areas is an invaluable way to gather field data that may improve the understanding of these hazardous phenomena. A new experimental site has been equipped in the Autonomous Province of Bozen-Bolzano (Eastern Alps, Italy) for both monitoring purposes and testing early warning systems. The study site (Gadria basin) is a 6.3 km2 catchment subjected to frequent debris flows. The monitoring system in the Gadria basin consists of rain gauges, radar sensors, geophones, video cameras, piezometers and soil moisture probes. Transmission of data and alerts from the instruments exploits in part radio technology. The paper presents the data gathered during the first three years of activity, with two debris-flow events recorded at the station varying in magnitude and characteristics, and discusses the perspectives of debris-flow monitoring and related research.  相似文献   

7.
A rainfall-induced debris flow warning is implemented employing real-time rain gauge data. The pre-warning for the time of landslide triggering derives the threshold or critical rainfall from historical events involving regional rainfall patterns and geological conditions. In cases of debris flow, the time taken cumulative runoff, to yield abundant water for debris triggering, is an important index that needs monitoring. In gathered historical cases, rainfall time history data from the nearest rain gauge stations to debris-flow sites connected to debris flow are used to define relationships between the rainfall intensity and duration. The effects by which the regional rainfall patterns (antecedent rainfall, duration, intensity, cumulative rainfall) and geological settings combine together to trigger a debris-flow are analyzed for real-time monitoring. The analyses focused on 61 historical hazard events with the timing of debris flow initiation and rainfall duration to burst debris-flow characteristics recorded. A combination of averaged rainfall intensity and duration is a more practical index for debris-flow monitoring than critical or threshold rainfall intensity. Because, the outburst timing of debris flows correlates closely to the peak hourly rainfall and the forecasting of peak hourly rainfall reached in a meteorological event could be a valuable index for real-time debris-flow warning.  相似文献   

8.
Debris-flow simulations on Cheekye River, British Columbia   总被引:4,自引:4,他引:0  
Cheekye River fan is the best-studied fan complex in Canada. The desire to develop portions of the fan with urban housing triggered a series of studies to estimate debris-flow risk to future residents. A recent study (Jakob and Friele 2010) provided debris-flow frequency-volume and frequency-discharge data, spanning 20-year to 10,000-year return periods that form the basis for modeling of debris flows on Cheekye River. The numerical computer model FLO-2D was chosen as a modelling tool to predict likely flow paths and to estimate debris-flow intensities for a spectrum of debris-flow return periods. The model is calibrated with the so-called Garbage Dump debris flow that occurred some 900  years ago. Field evidence suggests that the Garbage Dump debris flow has a viscous flow phase that deposited a steep-sided debris plug high in organics in centre fan, which then deflected a low-viscosity afterflow that travelled to Squamish River with slowly diminishing flow depths. The realization of a two-phase flow led to a modelling approach in which the debris-flow hydrograph was split into a high viscosity and low viscosity phase that were modelled in chronologic sequence as two separate and independent modelling runs. A perfect simulation of the Garbage Dump debris flow with modelling is not possible because the exact topography at the time of the event is, to some degree, speculative. However, runout distance, debris deposition and deposit thickness are well known and serve as a good basis for calibration. Predictive analyses using the calibrated model parameters suggest that, under existing conditions, debris flows exceeding a 50-year return period are likely to avulse onto the southern fan sector, thereby damaging existing development and infrastructure. Debris flows of several thousand years return period would inundate large portions of the fan, sever Highway 99, CN Rail, and the Squamish Valley road and would impact existing housing development on the fan. These observations suggest a need for debris-flow mitigation for existing and future development alike.  相似文献   

9.
Facies analysis of widely distributed exposures of the 32·6 km2 and 8·1-km-long Warm Spring Canyon fan, central Death Valley, shows that it has been built principally by debris-flow deposits. These deposits were derived from a mature Panamint Range catchment mostly underlain by Precambrian mudrock, quartzite and dolomite. Stacked, clast-rich and matrix-supported debris-flow lobes of slightly bouldery, muddy, pebble–cobble gravel in beds 20–150 cm thick dominate the fan from apex to toe, accounting for 75–98% of most exposures. Interstratified with the debris flows are less abundant (2–25% of cuts), thinner (5–30 cm) and more discontinuous beds of clast-supported and imbricated, pebble–cobble gravel deposited by overland flows and gully flows. This facies formed by the surficial fine-fraction water winnowing of the debris flows primarily during recessional flood stage of the debris-flow events. Two other facies associations make up a small part of the fan. The incised-channel tract consists of a 250-m-wide clast-supported ribbon of irregularly to thickly bedded, boulder, pebble, cobble gravel nested within debris-flow deposits. This channel fill is oriented generally perpendicular to the Panamint range front. It formed by extensive erosion and winnowing of debris flows deposited within the incised channel, into which all water discharge from the catchment is funnelled. The limited presence of this facies only straddling the present incised channel indicates that this channel overall has maintained a consistent position on the fan except for slight lateral shifts, some caused by strike-slip offset. Fault offset temporarily closed the upper incised channel, causing recessional debris-flow mud to be ponded behind the dam. The other local facies assemblage consists of subrounded to rounded, moderately sorted pebble gravel in low-angle cross-beds that slope both basinwards and fanwards. This gravel was deposited in beachface, backshore and shoreface barrier-spit environments that developed where Lake Manly impinged on the Warm Spring fan during late Pleistocene time. These deposits straddle headcuts into, and were derived from, erosion of the debris-flow deposits. Wave energy sorted finer sediment from the shore zone, concentrated coarser sediment and rounded the coarse to very coarse pebble fraction by selective reworking.  相似文献   

10.
Because the flexible net barrier is a gradually developed open-type debris-flow counter-measure, there are still uncertainties in its design criterion. By using several small-scale experimental flume model tests, the dynamical evolution properties of debris flows controlled by large and small mesh-sized (equal to D90 and D50, respectively) flexible net barriers are studied, including the debris flow behaviors, segregation, and permeability of sediments, as well as the energy absorption rates and potential overtopping occurring when debris flows impact the small mesh-sized one. Experimental results reveal that (a) two sediment deposition patterns are observed depending on variations in debris flow textures and mesh sizes; (b) the aggregation against flexible net barriers is dominated by flow dynamics; (c) the segregation and permeable functions of the barrier are determined by the mesh size, concentration, and flow dynamics; and (d) the smaller mesh-sized flexible net barrier tends to be more efficient in restraining more turbulent debris flows and can absorb greater rate of kinematic energy, and finally, the great kinematic energy dissipation that occurs when secondary debris flows interact with the post-deposits in front of the small mesh-sized flexible net barrier is believed to cause the failure of overtopping phenomenon. The mesh size is concluded to be the decisive parameter that should be associated with debris flow textures to design the control functions of flexible net barriers.  相似文献   

11.
On 6 December 2004, the Villagrande Strisaili area (middle-east Sardinia), was struck by debris flows; 330 mm of rainfall took place within 3 h with an hourly intensity of 120 mm, which is far more above than normal for the study area. In the urban center stony and driftwood deposits accounted for a total volume estimated as 10,000 m3. The event claimed huge amount of infrastructural loss and two human lives. According to the chronicle reports, the area experienced two debris-flow events in the last century. The present paper is the outcome of an intensive study of such debris-flow events including their physical processes and geomorphological effects through both field survey and laboratory analysis.  相似文献   

12.
Flow motion and deposition characteristics of debris flows are of concern regarding land use planning and management. A simple model for the prediction of mentioned characteristics has been developed, incorporating a friction–collision rheological model. It demonstrated to be able to satisfactorily simulate the two-dimensional behavior of laboratory results and the one-dimensional behavior of two real debris-flow events. The numerical results show that the topography of the channel bed, the yield stress level of the debris flows, and the inflow pattern have significant influence on the simulated flow motion and deposition characteristics of debris flows. In addition, the predicted run-out distance has been compared with analytical solutions and field observations. The model could be employed for the preliminary evaluation of one-dimensional run-out distance of granular debris flows provided that the volume of the debris involved in the initial mobilization is assumed.  相似文献   

13.
Landslides and debris flows occurr in China frequently and cause disastrous losses of life and property. The risk assessment of landslides and debris flows and their spatial variations were comparatively analyzed in this paper, which has great significance for disaster prevention. This article selected 1 km×1 km grid as the assessment unit and with support of GIS technique, analyzed landslide and debris-flow risk distribution and their spatial variations from 2000 to 2010. The research results indicated that the spatial distribution of risk classes in 2000 and 2010 was obviously discrepant. Overall, taking the Heihe-Tengchong population density line as the boundary, the west of the line is mainly low risk area; the east of the line is mainly high risk area. Compared with the risk of 2000, the risk values of 2010 increased, with the high risk area and low risk area enlarged, moderate risk area reduced. The moderate risk area is the most unstable and sensitive risk area, and its risk class variation is significant. However, China is not a region with the high risk of landslide and debris-flow hazard at present. In the following next 10 years, the risk of landslides and debris flows in China will continue to increase.  相似文献   

14.
Storms of high-intensity rainfall, including hurricanes, occur about once every 3 years in small areas of the mountains of the eastern United States posing a high debris-flow hazard. Reported casualties and monetary losses are often an insufficient and inadequate means for comparing the impact from debris flows. A simple GIS technique was used to characterize the distribution and density of debris flows for making a preliminary assessment of risk of impact on roads. This technique was used for comparison of three major severe storms resulting in numerous debris flows: August 10–17, 1940, near Deep Gap, North Carolina; August 19–20, 1969, in Nelson County, Virginia; and June 27, 1995, in Madison County, Virginia. Based on the criteria of the number of debris flows and area covered by debris flows, the August 19–20, 1969, Nelson County, Virginia, event was the most severe of the three storms and posed the greatest risk of debris-flow impact on roads.  相似文献   

15.
Annual risk assessment on high-frequency debris-flow fans   总被引:1,自引:0,他引:1  
  相似文献   

16.
Abstract

Large debris flows in steep-sloped ravines debouching to the Rimac River, in metropolitan Lima (Peruvian capital), have resulted in considerable loss of life and property adversely impacting communities in the region. Temporal, spatial and volumetric features of debris flows are difficult to predict, and it is of utmost importance that achievable management solutions are found to reduce the impact of these catastrophic events. The emotional and economic toll of these debris flows on this increasingly densely populated capital city in South America is devastating where communities must live in such inadequate and dangerous conditions. To address this problem, the application of advanced Japanese technology, Sustainable Actions Basin Orientation (SABO), has been investigated using a geomorphological modelling to develop an implementation plan. Rayos de Sol stream basin in Chosica, was selected as a pilot to develop the proposal, as it is considered high risk due to the presence of ancient debris flows and recent flows in 2012, 2015 and 2017. The recurrence of debris flows in this location has resulted in numerous deaths and catastrophic property losses. This study combines geologic and geomorphic mapping and hydraulic and landform evolution numerical modelling. The implementation of a SABO Master Plan based on the multidisciplinary assessment hazard scenarios, will allow the implementation of feasible mitigation actions. The SABO technology has been applied successfully in Japan and other countries in areas with steep short slopes, similar to the conditions surrounding the Peruvian capital. Results from this study will be presented to the Peruvian Government as part of an action plan to manage debris-flow impact.
  1. KEY POINTS
  2. High-risk mass slope failure is linked to poor urban planning in urban developing regions of Lima the capital of Peru.

  3. A multidisciplinary study including geotechnical and hydrological analysis, engineering design, and socio-economic research is required to implement a SABO Master Plan, and this basin is pilot study basin.

  4. At the present time, a maintenance programme for existing hydraulic structures should be implemented, and a flood risk management plan developed may propose the relocation of some communities and infrastructure.

  相似文献   

17.
Dongchuan City is highly threatened by debris-flow disasters originating from Shengou gully, a typical debris-flow gully along Xiaojiang River in Yunnan Province (Kang et al. 2004). Shengou gully is studied, and a hazard assessment with numerical simulation is developed using ArcGIS 9.2 software. Debris-flow numerical simulation is an important method for predicting debris-flow inundation regions, zoning debris-flow risks, and helping in the design of debris-flow control works. Meanwhile, vulnerability measurement is essential for hazard and risk research. Based on the self-organized map neural network method, we combine the six vulnerability indicators to create an integrated debris-flow vulnerability map that depicts the vulnerability levels of Dongchuan City in Shengou Basin. Based on the risk assessment (including hazard assessment and vulnerability assessment), we adopt the principal–agent theory and use the risk degree of debris flows as an important index to build the insurance model and analyze the insurance premium of debris-flow disasters in Dongchuan City. This paper discusses the model and mechanism of property insurance in debris-flow risk regions and aims to provide technical support for insurance companies to participate in disaster prevention and reduction.  相似文献   

18.
Three debris-flow simulation model software have been applied to the back analysis of a typical alpine debris flow that caused significant deposition on an urbanized alluvial fan. Parameters used in the models were at first retrieved from the literature and then adjusted to fit field evidence. In the case where different codes adopted the same parameters, the same input values were used, and comparable outputs were obtained. Results of the constitutive laws used (Bingham rheology, Voellmy fluid rheology and a quadratic rheology formulation which adds collisional and turbulent stresses to the Bingham law) indicate that no single rheological model appears to be valid for all debris flows. The three applied models appear to be capable of reasonable reproduction of debris-flow events, although with different levels of detail. The study shows how different software can be used to predict the debris-flow motion for various purposes from a first screening, to predict the runout distance and deposition of the solid material and to the different behaviour of the mixtures of flows with variation of maximum solid concentration.  相似文献   

19.
We use pairs of parallel mounted laser profile scanners to measure main debris-flow variables in two debris-flow channels in central and southern Switzerland. The scanners measure the instantaneous cross-sectional geometry of debris flows at rates of 25–100 Hz, and we apply large-scale particle image velocimetery to estimate velocity. The scanners also provide direct measurements of flow depth. From these data, we were able to estimate debris-flow depth, velocity and discharge for 16 out of 17 events. These results are consistent with discharge estimated from a system of geophones and a radar gauge for two available datasets. We also investigated debris-flow geometry to quantify rheology-controlled cross-flow convexity and found that four events manifest strong surface convexity at their surge fronts where we expect the largest boulders and low pore-fluid pressures. The scanners provide a completely new view of debris-flow dynamics and channel morphology and present novel opportunities to measure discharge and investigate debris-flow geometries.  相似文献   

20.
The Chitral district of northern Pakistan lies in the eastern Hindu Kush Range. The population in this high-relief mountainous terrain is restricted to tributary-junction fans in the Chitral valley. Proximity to steep valley slopes renders these fans prone to hydrogeomorphic hazards, including landslides, floods and debris flows.This paper focuses on debris-flow hazards on tributary-junction fans in Chitral. Using field observations, satellite-image analyses and a preliminary morphometry, the tributary-junction fans in the Chitral valley are classified into (1) discrete and (2) composite. The discrete fans are modern-day active landforms and include debris cones associated with ephemeral gullies, debris fans associated with ephemeral channels and alluvial fans formed by perennial streams. The composite fans are a collage of sediment deposits of widely different ages and formed by diverse alluvial-fan forming processes. These include fans formed predominantly during MIS-2/Holocene interglacial stages superimposed by modern-day alluvial and debris fans. Composite fans are turned into relict fans when entrenched by modern-day perennial streams. These deeply incised channels discharge their sediment load directly into the trunk river without significant spread on fan surface. In comparison, when associated with ephemeral streams, active debris fans develop directly at composite-fan surfaces. Major settlements in Chitral are located on composite fans, as they provide large tracts of leveled land with easy accesses to water from the tributary streams. These fan surfaces are relatively more stable, especially when they are entrenched by perennial streams (e.g., Chitral, Ayun, and Reshun). When associated with ephemeral streams (e.g., Snowghar) or a combination of ephemeral and perennial streams (e.g., Drosh), these fans are subject to frequent debris-flow hazards.Fans associated with ephemeral streams are prone to high-frequency (∼10 years return period) debris-flow hazards. By comparison, fans associated with perennial streams are impacted by debris-flow hazards during exceptionally large events with return periods of ∼30 years. This study has utility for quick debris-flow hazard assessment in high-relief mountainous regions, especially in arid- to semi-arid south-central Asia where hazard zonation maps are generally lacking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号