首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
A geologic analysis of 274 images acquired by the high-resolution MOC camera onboard the Mars Global Surveyor spacecraft within the Arabia Terra low neutron flux anomaly (which is indicative of an anomalously high abundance of hydrogen: up to 16 wt % of the equivalent amount of water) was performed. Correlation between the enhanced abundance of equivalent water with the presence of dust on the surface was found. Since dust plays a key role in condensation of water from the atmosphere, we suppose that the anomalies could result from the retention of atmospheric moisture. To analyze this suggestion, we performed a theoretical modeling that allowed us to map the planetary-scale distributions of several meteorological parameters responsible for the atmospheric moisture condensation. Two antipodal regions coinciding rather well with the Arabia Terra anomaly and the geographically antipodal anomaly southwest of Olympus Mons were found in the maps. This suggests that the anomalies are rather recent than ancient formations. They were probably formed by a sink of moisture from the atmosphere in the areas where present meteorological conditions support this sink. Geological parameters, primarily the presence of dust, only promote this process. We cannot exclude the possibility that the Martian cryosphere, rather than the atmosphere, supplied the studied anomalies with moisture during their formation: the thermodynamic conditions in the anomaly areas could block the moisture flux from the Martian interior in the upper regolith layer. The moisture coming from the atmosphere or from the interior is likely held as chemically bound water entering into the structure of water-bearing minerals (probably, hydrated magnesium sulfates) directly from the vapor; or the moisture precipitates as frost, penetrates into microfissures, and then is bound in minerals. Probably, another geologic factor—the magnesium sulfate abundance—works in the Arabia Terra anomaly.  相似文献   

2.
We studied the geological structure and characteristics of fluxes of fast and epithermal neutrons from the area of Mars within 50°S–50° N and 120°–240° W, the Medusae Fossae-Elysium region. The study area does not show any anomalies in the energy spectrum of fast neutrons, indicating that a thin (10–20 cm) subsurface layer in the equatorial region is characterized by quite a uniform distribution of hydrogen-containing phases. At the same time, the studied region is characterized by a distinct depression in the epithermal-neutron flux, which is outlined by a 0.150–0.170 counts/s contour line and does not show any seasonal changes in its shape, depth, and latitudinal position. This suggests that the depression is not associated with the short-term (seasonal) variations of the temperature regime and that it represents an aggregation of hydrogen-containing phases with longer lifetimes. The position of the epithermal-neutron-flux depression does not correlate with regional geology, and none of the geological units can be responsible for its appearance. To a rather greater degree, the flux of epithermal neutrons correlates with the amount of dust material on the surface. This indicates that the dust material presumably played a major role in the formation of the neutron-flux depression within the Medusae Fossae-Elysium region. The depression of the epithermal-neutron flux presumably has a polygenic nature. It can be related both to the primary accumulation of water-bearing material and to the later blowing of this material by wind and transportation of the dust fraction with its simultaneous enrichment in hydrogen-containing phases (most likely, in water-bearing minerals).Translated from Astronomicheskii Vestnik, Vol. 39, No. 1, 2005, pp. 3–25. Original Russian Text Copyright © 2005 by Ivanov, Kozyrev, Litvak, Mitrofanov.  相似文献   

3.
Litvak  M. L.  Mitrofanov  I. G.  Kozyrev  A. S.  Sanin  A. B.  Tret'yakov  V. I.  Boynton  W. V.  Shinohara  C.  Hamara  D.  Saunders  S.  Drake  D. M.  Zuber  M. T.  Smith  D. E. 《Solar System Research》2003,37(5):378-386
We analyze the flux of epithermal neutrons from the Martian surface recorded by the Russian High-Energy Neutron Detector (HEND) from February 19 through December 19, 2002. The HEND was installed onboard the NASA 2001 Mars Odyssey spacecraft and is designed to measure neutron fluxes with energies above 1 eV. Over the period of observations, statistically significant variations in the flux of epithermal (10–100 keV) neutrons were found in the northern and southern polar caps. The largest neutron-flux variations were found at subpolar latitudes, where the relative difference between the summer and winter values can reach severalfold. This correlation becomes weaker with increasing distance from the poles. Thus, the relative change in the neutron flux near the 60° parallel is slightly more than 10%. We assume that the detected variations result from the global circulation of atmospheric carbon dioxide in subpolar Martian regions. To additionally test this assumption, we compared the HEND neutron measurements onboard 2001 Mars Odyssey and the seasonal variations in the CO2-layer thickness as observed by the Mars Orbital Laser Altimeter (MOLA) onboard Mars Global Surveyor (MGS).  相似文献   

4.
We present the results of 20 months of observations of Mars by the Russian HEND instrument onboard the NASA 2001 Mars Odyssey spacecraft. We show that there are two extended subpolar regions with a soil water content of several tens of percent in the northern and southern hemispheres of Mars. The southern subpolar region is well described by a two-layer model, according to which a soil with a water content of up to 55% by mass lies under a relatively dry soil with a water mass fraction of 2% and a thickness of 15–20 g/cm2. The distribution of water in Martian regolith northern subpolar region is in good agreement with the homogeneous model and does not require invoking the more complex two-layer soil model. The water-ice content in the subsurface layer of the northern subpolar region reaches 53 % by mass. We show that there are two regions with a relatively high water content near the Martian equator. These are Arabia Terra and the Medusae Fossae formation region southwest of Olympus Mons. In these regions, a lower layer with 9–10% of water by mass may underlie the upper layer of relatively dry material 30 g/cm2 in thickness. The moistest spot near the equator is at about 30° E and 10° N. Its lower-layer soil may contain more than 16% of water by mass.  相似文献   

5.
Using Mars Global Surveyor Mars Orbiter Camera daily global maps, cloud areas have been measured daily for water ice clouds associated with the topography of the major volcanoes Olympus Mons, Ascraeus Mons, Pavonis Mons, Arsia Mons, Elysium Mons, and Alba Patera. This study expands on that of Benson et al. [Benson, J.L., Bonev, B.P., James, P.B., Shan, K.J., Cantor, B.A., Caplinger, M.A., 2003. Icarus 165, 34-52] by continuing their cloud area measurements of the Tharsis volcanoes, Olympus Mons and Alba Patera for an additional martian year (August 2001-May 2003) and by also including Elysium Mons measurements from March 1999 through May 2003. The seasonal trends in cloud activity established by Benson et al. [Benson, J.L., Bonev, B.P., James, P.B., Shan, K.J., Cantor, B.A., Caplinger, M.A., 2003. Icarus 165, 34-52] for the five volcanoes studied earlier are corroborated here with an additional year of coverage. For volcanoes other than Arsia Mons, interannual variations that could be associated with the large 2001 planet encircling dust storm are minimal. At Arsia Mons, where cloud activity was continuous in the first two years, clouds disappeared totally for ∼85° of LS (LS=188°-275°) due to the dust storm. Elysium Mons cloud activity is similar to that of Olympus Mons, however the peak in cloud area is near LS=130° rather than near LS=100°.  相似文献   

6.
New topographic maps of six large central volcanoes on Mars are presented and discussed. These features are Olympus Mons, Elysium Mons, Albor Tholus, Ceraunius Tholus, Uranius Tholus, and Uranius Patera. Olympus Mons has the general form of a terrestrial basaltic shield constructed almost entirely from lava flows; but with 20 to 23 km of relief it is far larger. Flank slopes average about 4°. A nominal density calculated from the shield volume and the local free-air gravity anomaly is so high that anomalously dense lithosphere probably underlies the shield. Uranius Patera is a similar feature of much lower present relief, about 2 km, but its lower flanks have been buried by later lava flood deposits. Elysium Mons has about 13 km of local relief and average slopes of 4.4°, not significantly steeper than those of Olympus Mons. Its upper flank slopes are significantly steeper than those of Olympus Mons. We suggest Elysium Mons is a shield volcano modified and steepened by a terminal phase of mixed volcanic activity. Alternatively, the volcano may be a composite cone. Albor Tholus is a partially buried 3-km-tall shield-like construct. Ceranius and Uranius Tholus are steeper cone-like features with relief of about 6 and 2 km, respectively. Slopes are within the normal range for terrestrial basaltic shields, however, and topographic and morphologic data indicate burial of lower flanks by plains forming lavas. These cones may be lava shield constructs modified by a terminal stage of explosive activity which created striking radial patterns of flank channels. Differences among these six volcanoes in flank slopes and surface morphology may be primarily consequences of different terminal phases of volcanic activity, which added little to the volume of any construct, and burial of shallow lower flanks by later geologic events. Additional topographic data for Olympus Mons, Arsia Mons, and Hadriaca Patera are described. The digital techniques used to extract topographiv data from Viking Orbiter stereo images are also described.  相似文献   

7.
The images of the western part of Olympus Mons and adjacent plains acquired by the HRSC camera onboard the Mars Express spacecraft were studied. The morphology, topography, and color of the surface were investigated. The surface age was determined by the frequencies of impact craters. The examination of the HRSC images combined with an analysis of the MOC imagery and MOLA altitude profiles have shown that the Olympus Mons edifice, at least in its western part, is composed of not only lavas but also of sedimentary and volcanic-sedimentary rocks consisting of dust, volcanic ash, and, probably, H2O ice that precipitated from the atmosphere. These data also indicate that glaciations, traces of which are known on the western foot of Olympus Mons (Lucchitta, 1981; Milkovich and Head, 2003), probably also covered the gentle upper slopes of the mountain. It is probable that the ice is still there, protected from sublimation by a dust blanket. Confirming (or rejecting) its presence is a challenge for the scheduled radar sounding with the MARSIS instrument mounted on the Mars Express spacecraft as well.__________Translated from Astronomicheskii Vestnik, Vol. 39, No. 2, 2005, pp. 99–116.Original Russian Text Copyright © 2005 by Basilevsky, Neukum, Ivanov, Werner, S. van Gesselt, Head, Denk, Jaumann, Hoffmann, Hauber, McCord, the HRSC Co-Investigator Team.  相似文献   

8.
The Medusae Fossae Formation (MFF) has long been thought to be of Amazonian age, but recent studies propose that a significant part of its emplacement occurred in the Hesperian and that many of the Amazonian ages represent modification (erosional and redepositional) ages. On the basis of the new formational age, we assess the hypothesis that explosive eruptions from Apollinaris Patera might have been the source of the Medusae Fossae Formation. In order to assess the likelihood of this hypothesis, we examine stratigraphic relationships between Apollinaris Patera and the MFF and analyze the relief of the MFF using topographic data. We predict the areal distribution of tephra erupted from Apollinaris Patera using a Mars Global Circulation Model (GCM) combined with a semi-analytical explosive eruption model for Mars, and compare this with the distribution of the MFF. We conclude that Apollinaris Patera could have been responsible for the emplacement of the Medusae Fossae Formation.  相似文献   

9.
The Mars Global Surveyor Mars Orbiter Camera was used to obtain global maps of the martian surface with equatorial resolution of 7.5 km/pixel in two wavelength ranges: blue (400-450 nm) and red (575-625 nm). The maps used were acquired between March 15, 1999 (Ls=110°) and July 31, 2001 (Ls=205°), corresponding to approximately one and a quarter martian years. Using the global maps, cloud area (in km2) has been measured daily for water ice clouds topographically corresponding to Olympus Mons, Ascraeus Mons, Pavonis Mons, Arsia Mons, Alba Patera, the western Valles Marineris canyon system, and for other small surface features in the region. Seasonal trends in cloud activity have been established for the three Tharsis volcanoes, Olympus Mons, and Alba Patera. Olympus, Ascraeus, and Pavonis Mons show cloud activity from about Ls=0°-220° with a peak in cloud area near Ls=100°. One of our most interesting observational results is that Alba Patera shows a double peaked feature in the cloud area with peaks at Ls=60° and 140° and a minimum near Ls=100°. Arsia Mons shows nearly continuous cloud activity. The altitudes of several of these clouds have been determined from the locations of the visual cloud tops, and optical depths were measured for a number of them using the DISORT code of Stamnes et al. (1988, Appl. Opt. 27, 2502-2509). Several aspects of the observations (e.g., cloud heights, effects of increased dust on cloud activity) are similar to simulations in Richardson et al. (2002, J. Geophys. Res. 107, 5064). A search for short period variations in the cloud areas revealed only indirect evidence for the diurnal cloud variability in the afternoon hours; unambiguous evidence for other periodicities was not found.  相似文献   

10.
Karl R. Blasius 《Icarus》1976,29(3):343-361
Mariner 9 images of the four great volcanic shields of the Tharsis region of Mars show many circular craters ranging in diameter from 100mm to 20 km. Previous attempts to date the volcanoes from their apparent impact crater densities yielded a range of results. The principal difficulty is sorting volcanic from impact craters for diameters ?1 km. Many of the observed craters are aligned in prominent linear and concentric patterns suggestive of volcanic origin. In this paper an attempt is made to date areas of shield surface, covered with high resolution images using only scattered small (?1 km) craters of probable impact origin. Craters of apparent volcanic origin are systematically excluded from the dating counts.The common measure of age, deduced for all surfaces studied, is a calculated “crater age” F′ defined as the number of craters equal to or larger than 1 km in diameter per 106km2. The conclusions reached from comparing surface ages and their geological settings are: (1) Lava flow terrain surfaces with ages, F′, from 180 to 490 are seen on the four great volcanoes. Summit surfaces of similar ages, F′ = 360 to 420, occur on the rims of calderas of Arsia Mons, Pavonis Mons, and Olympus Mons. The summit of Ascraeus Mons is possibly younger; F′ is calculated to be 180 for the single area which could be dated. (2) One considerably younger surface, F′ < 110, is seen on the floor of Arsia Mon's summit caldera. (3) Nearly crater free lava flow terrain surfaces seen on Olympus Mons are estimated to be less than half the age of a summit surface. The summit caldera floor is similarly young. (4) The pattern of surface ages on the volcanoes suggests that their eruption patterns are similar to those of Hawaiian basaltic shields. The youngest surfaces seem concentrated on the mid-to-lower flanks and within the summit calderas. (5) The presently imaged sample of shield surface, though incomplete, clearly shows a broad range of ages on three volcanoes—Olympus, Arsia, and Pavonis Mons.Estimated absolute ages of impact dated surfaces are obtained from two previously published estimates of the history of flux of impacting bodies on Mars. The estimated ranges of age for the observed crater populations are 0.5 to 1.2b.y. and 0.07 to 0.2b.y. Areas which are almost certainly younger, less than 0.5 or 0.07b.y., are also seen. The spans of surface age derived for the great shields are minimum estimates of their active lifetimes, apparently very long compared to those of terrestrial volcanoes.  相似文献   

11.
Geological mapping of Elysium Planitia has led to the recognition of five major surface units, in addition to the three volcanic constructs Elysium Mons, Hecates Tholus, and Albor Tholus. These units are interpreted to be both volcanic and sedimentary or erosional in origin. The volcano Elysium Mons is seen to have dominated constructional activity within the whole region, erupting lava flows which extend up to 600km from the summit. A major vent system, covering an area in excess of 75 000 km2, is identified within the Elysium Fossae area. Forty-one sinuous channels are visible within Elysium Planitia; these channels are thought to be analogous to lunar sinuous rilles and their formation in this region of Mars is attributed to unusually high regional topographic slopes (up to ~ 1.7). Numerous circumferential graben are centered upon Elysium Mons. These graben, located at radial distances of 175, 205–225, and 330km from the summit, evidently post-dated the emplacement of the Elysium Mons lava flows but pre-dated the eruption of extensive flood lavas to the west of the volcano. A great diversity of channel types is observed within Elysium Fossae. The occurrences of streamlined islands and multiple floor-levels within some channels suggests a fluvial origin. Conversely, the sinuosity and enlarged source craters of other channels suggests a volcanic origin. Impact crater morphology, the occurrence of chaotic terrain, probable pyroclastic deposits upon Hecates Tholus and fluvial channels all suggest extensive volcano-ground ice interactions within this area.NASA Summer Intern.  相似文献   

12.
A number of voluminous, fine-grained, friable deposits have been mapped on Mars. The modes of origin for these deposits are debated. The feasibility for an origin by volcanic airfall for the friable deposits is tested using a global circulation model to simulate the dispersal of pyroclasts from candidate source volcanoes near each deposit. It is concluded that the Medusae Fossae Formation and Electris deposits are easily formed through volcanic processes, and that the Hellas deposits and south polar pitted deposits could have some contribution from volcanic sources in specific atmospheric regimes. The Arabia and Argyre deposits are not well replicated by modeled pyroclast dispersal, suggesting that these deposits were most likely emplaced by other means.  相似文献   

13.
We report results of the analysis of the data on global mapping of neutron fluxes from the Martian surface, which have been obtained during the first ten months of measurements carried out by the Russian high-energy neutron detector HEND mounted aboard the AmericanMars Odysseyorbiter. This analysis allowed us to separate regions where free water (in ice form) prevailed in the surface layer (with a thickness of up to 2 m) of the Martian ground from regions where physically and chemically bound ground water was most likely to be the dominant form of water. The global mapping of regions with increased ice content in the ground-surface layer revealed a direct correlation with regions of polygonal terrains morphologically similar to terrestrial polygonal forms of permafrost origin. The potential content of bound water forms in the ground of circumpolar areas of the planet is also estimated.  相似文献   

14.
Using images from the Mars Orbiter Camera, we have identified several linear ridges located 10-60 km north of the volcano Olympus Mons, Mars, at the edge of the Olympus Mons aureole materials. These ridges appear to be made of unconsolidated material by virtue of the many dust avalanche scars seen on their upper slopes. Based upon their morphology (several ridges have crater-like central depressions) and superposition relationships, the ridges appear to have formed very recently and post-date the formation of the youngest lava flows spilling over the northern escarpment of Olympus Mons. Several possible origins for the ridges, including an eolian, periglacial, or depositional origin have been considered, but we favor a ridge origin by a series of small explosive eruptions initiated by the intrusion of a dike into a volatile-rich substrate. To explore this process, we develop a numerical model for dike intrusion into a volatile-rich substrate that yields plausible dike widths between 2.4-3.5 m. The total volume of a single ridge system is ∼65×106 m3, and we calculate that it may have taken only a few minutes to form. Viable solutions only exist when the thicknesses of the ice-rich layer is less than ∼1000-2000 m. This strongly suggests that the ice-rich region is limited in its vertical extent to a value of this order.  相似文献   

15.
Kenneth L. Tanaka 《Icarus》1985,62(2):191-206
Gravity sliding and spreading at low strain rates can account for the general morphology and structure of the aureoles and basal scarp of Olympus Mons. Detachment sliding could have occurred around the volcano if either pore-fluid pressures were exceptionally high (greater than 90%) or the rocks had very low resistance to shear (about 1 × 105 Pa or 1 bar). Because of the vast areal extent and probable shallow depth of the detachment zone, development of ubiquitous, high pore-fluid pressures beneath aureole-forming material was unlikely. However, a zone of sufficiently weak material consisting of about 10% interstitial or interbedded ice could have been present. If so, a simple rheologic model for the aureole deposits can be applied that consists of a thin ductile layer overlain by a thicker brittle layer. According to this model, extensional deformation would have occurred near the shield and compressional deformation in its distal parts. Proximal grabens and distal corrugations on aureole surfaces support this model. A submarine slide at Kitimat Arm, British Columbia, is a valid qualitative analogy for the observed features and inferred emplacement style of the aureole deposits. Ground-ice processes have been considered the cause of many geologic features on Mars; a 3% average concentration of ground ice in the regolith is predicted by theoretical models for the ice budget and cryosphere. Ice may have been deposited in higher concentrations below the aureole-forming material; the source of the ice could have been juvenile water circulated hydrothermally by Olympus Mons volcanism. The basal scarp of Olympus Mons apparently demarcates the transition between the upper, stable part of the shield and its lower part that decoupled and formed the aureole deposits. This transition may reflect a change in the bulk shear strength of the shield, caused either by a radial dependence in the abundance of ice or fluid in the shield materials or by the concentration of intrusive dikes within the volcano. Other Martian volcanoes exhibit virtually no evidence of similar large-scale gravity spreading and basal scarps. Perhaps such evidence, if it existed, has been buried by lava flows, or perhaps the smaller size of other volcanoes did not permit the development of these features.  相似文献   

16.
A multidisciplinary approach involving various remote sensing instruments is used to investigate Apollinaris Mons, a prominent volcano on Mars, as well as the surrounding plains for signs of prolonged hydrologic and volcanic, and possibly hydrothermal activity. The main findings include (1) evidence from laser altimetry indicating the large thickness (1.5–2 km at some locations) of the fan deposits draping the southern flank contrary to previous estimates, coupled with possible layering which point to a significant emplacement phase at Apollinaris Mons, (2) corroboration of Robinson et al. (Robinson, M.S., Mouginis-Mark, P.J., Zimbelman, J.R., Wu, S.S.C., Ablin, K.K., Howington-Kraus, A.E. [1993]. Icarus 104, 301–323) hypothesis regarding the formation of incised valleys on the western flanks by density current erosion which would indicate magma–water interaction or, alternatively, volatile-rich magmas early in the volcano’s history, (3) mounds of diverse geometric shapes, many of which display summit depressions and occur among faults and fractures, possibly marking venting, (4) strong indicators on the flanks of the volcano for lahar events, and possibly, a caldera lake, (5) ubiquitous presence of impact craters displaying fluidized ejecta in both shield-forming (flank and caldera) materials and materials that surround the volcano that are indicative of water-rich target materials at the time of impact, (6) long-term complex association in time among shield-forming materials and Medusae Fossae Formation.The findings point to a site of extensive volcanic and hydrologic activity with possibly a period of magma–water interaction and hydrothermal activity. Finally, we propose that the mound structures around Apollinaris should be prime targets for further in situ exploration and search for possible exobiological signatures.  相似文献   

17.
G. Hulme 《Icarus》1976,27(2):207-213
A new technique for the interpretation of lava flow morphology was applied to a lava flow on Olympus Mons. The yield stress of the flowing lava was determined subject to uncertainties in the estimates of the slope of Olympus Mons. The lava is most probably more silicic than the basaltic lavas of the Hawaiian shield volcanoes and its effusion rate appears to have been greater than those of typical Hawaiian flows.  相似文献   

18.
The aureole materials that form an annulus of corrugated terrain surrounding Olympus Mons are considered to be the product of mass movement. The scarp at the mountain's foot formed as a result of this massive removal of material from the volcano's outer flanks. This interpretation is supported by a comparison of the amount of material originally available before scarp formation, and the present volume of aureole materials. On the basis of distribution, surface textures and theoretical considerations it is considered that the aureole was produced by a series of megaslides, rather than by a flow mechanism. Production of the megaslides may have been assisted by a period of widespread melting of permafrost.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademia Nazionale del Lincei in Rome, Italy.  相似文献   

19.
We use Viking and new MGS and Odyssey data to characterize the lobate deposits superimposed on aureole deposits along the west and northwest flanks of Olympus Mons, Mars. These features have previously been interpreted variously as landslide, pyroclastic, lava flow or glacial features on the basis of Viking images. The advent of multiple high-resolution image and topography data sets from recent spacecraft missions allow us to revisit these features and assess their origins. On the basis of these new data, we interpret these features as glacial deposits and the remnants of cold-based debris-covered glaciers that underwent multiple episodes of advance and retreat, occasionally interacting with extrusive volcanism from higher on the slopes of Olympus Mons. We subdivide the deposits into fifteen distinctive lobes. Typical lobes begin at a theater-like alcove in the escarpment at the base of Olympus Mons, interpreted to be former ice-accumulation zones, and extend outward as a tongue-shaped or fan-shaped deposit. The surface of a typical lobe contains (moving outward from the basal escarpment): a chaotic facies of disorganized hillocks, interpreted as sublimation till in the accumulation zone; arcuate-ridged facies characterized by regular, subparallel ridges and interpreted as the ridges of surface debris formed by the flow of underlying ice; and marginal ridges interpreted as local terminal moraines. Several lobes also contain a hummocky facies toward their margins that is interpreted as a distinctive type of sublimation till shaped by structural dislocations and preferential loss of ice. Blocky units are found extending from the escarpment onto several lobes; these units are interpreted as evidence of lava-ice interaction and imply that ice was present at a time of eruptive volcanic activity higher on the slopes of Olympus Mons. Other than minor channel-like features in association with lava-ice interactions, we find no evidence for the flow of liquid water in association with these lobate features that might suggest: (1) near-surface groundwater as a source for ice in the alcoves in the lobe source region at the base of the scarp, or (2) basal melting and drainage emanating from the lobes that might indicate wet-based glacial conditions. Instead, the array of features is consistent with cold-based glacial processes. The glacial interpretations outlined here are consistent with recent geological evidence for low-latitude ice-rich features at similar positions on the Tharsis Montes as well as with orbital dynamic and climate models indicating extensive snow and ice accumulation associated with episodes of increased obliquity during the Late Amazonian period of the history of Mars.  相似文献   

20.
A.B. Whitehead 《Icarus》1974,22(2):189-196
Using a novel photogrammetric technique, the relative elevations of a set of control points on the Martian volcano Olympus Mons (Nix Olympica) have been measured from Mariner 9 limb pictures that include the volcano in the foreground. The summit of Olympus Mons is found to be 22 ± 1 km above the mean level of the surrounding plain by correlating the elevation results with previously reported planet radii at nearby occultation points. Vertical elevation differences as great as 5 km were measured between close points on the basal scarp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号