首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We report Sr, Nd and Pb isotopic compositions of mid-Proterozoic anorthosites and related rocks (1.45-1.65 Ga) and of younger olivine diabase dikes (1.4 Ga) from two complexes on either side of the Grenville Front in Labrador. Anorthositic or diabasic samples from the Mealy Mountains (Grenville Province) and Harp Lake (Nain-Churchill Provinces) complexes have very similar major, minor and trace element compositions, but distinctly different isotopic signatures. All Mealy Mountains samples have ISr = 0.7025−0.7033, εNd = +0.6 to +5.6 and Pb isotopic compositions consistent with derivation from a mantle source depleted with respect to Nd/Sm and Rb/Sr. Pb isotopic compositions for the Mealy Mountains samples are slightly more radiogenic than model mantle compositions. All Harp Lake samples have ISr = 0.7032−0.7066, εNd = −0.3 to −4.4 and variable, but generally unradiogenic 207Pb/204Pb and 206Pb/204Pb compared to model mantle, suggesting mixing between a mantle-derived component and a U-depleted crustal contaminant. Crustal contaminants are probably a variety of Archean high-grade quartzofeldspathic gneisses with low U/Pb ratios and include a component that must be isotopically similar to the early Archean (>3.6 Ga) Uivak gneisses of Labrador or the Amitsoq gneisses of west Greenland. This would imply that the ancient gneiss complex of coastal Labrador and Greenland is larger than indicated by present surface exposure and may extend in the subsurface as far west as the Labrador Trough. If Harp Lake and Mealy Mountains samples were subjected to the same degree of contamination, as suggested by their chemical similarities, then the Mealy contaminants must be much younger, probably early or middle Proterozoic in age. The Labrador segment of the Grenville Front, therefore, appears to coincide with the southern margin of the Archean North Atlantic craton and may represent a pre mid-Proterozoic suture.  相似文献   

2.
Compositionally, high-Nb basalts are similar to HIMU (high U/Pb) ocean island basalts, continental alkaline basalts and alkaline lavas formed above slab windows. Tertiary alkaline basaltic lavas from eastern Jamaica, West Indies, known as the Halberstadt Volcanic Formation have compositions similar to high-Nb basalts (Nb > 20 ppm). The Halberstadt high-Nb basalts are divided into two compositional sub-groups where Group 1 lavas have more enriched incompatible element concentrations relative to Group 2. Both groups are derived from isotopically different spinel peridotite mantle source regions, which both require garnet and amphibole as metasomatic residual phases. The Halberstadt geochemistry demonstrates that the lavas cannot be derived by partial melting of lower crustal ultramafic complexes, metasomatised mantle lithosphere, subducting slabs, continental crust, mantle plume source regions or an upper mantle source region composed of enriched and depleted components. Instead, their composition, particularly the negative Ce anomalies, the high Th/Nb ratios and the similar isotopic ratios to nearby adakite lavas, suggests that the Halberstadt magmas are derived from a compositionally variable spinel peridotite source region(s) metasomatised by slab melts that precipitated garnet, amphibole, apatite and zircon. It is suggested that high-Nb basalts may be classified as a distinct rock type with Nb > 20 ppm, intraplate alkaline basalt compositions, but that are generated in subduction zones by magmatic processes distinct from those that generate other intraplate lavas.  相似文献   

3.
A well-developed, 1,000 m thick basaltic sequence in the Yangliuping region, northern part of the Emeishan basalt province, includes the Lower and Middle Units of tholeiitic basalts and an Upper Unit of both tholeiites and subalkalic basalts. The basalts contain 42–55 wt% SiO2 and 4.1–8.3 wt% MgO. Most of these lavas have Gd/Yb > 2.0, Zr/Nb < 12, and ɛNd(260 Ma) values from +2.5 to +4.7. The platinum-group elements (PGE) are very mildly depleted in most of the basalts which contain 8–19 ppb Pt and 7–27 ppb Pd. However, a significant proportion of the Middle Unit basalts are strongly depleted in PGE with some samples having concentrations lower than detection limits. They have extremely high Zr/Nb ratios (up to 14.5) and low ɛNd(260 Ma) values (+3.21 to +0.65), features of extensive lower crustal contamination. Some samples in this unit have high Ni/Pd (3,965–61,198) and low Pd/Cr (410,000–3,930,000) ratios, indicating sulfide segregation and PGE depletion prior to eruption. The primary magmas were S-undersaturated and derived from partial melting at variable depths in the upper mantle. The early and late stage magmas, as represented by the Lower and Upper Units, underwent AFC processes which induced mild S-saturation and PGE depletion in some of the basalts, whereas the magmas represented by the Middle Unit experienced more extensive crustal contamination resulting in stronger S-saturation and in most cases significant PGE depletion.  相似文献   

4.
K. J. Fraser  C. J. Hawkesworth   《Lithos》1992,28(3-6):327-345
Major, trace element and radiogenic isotope results are presented for a suite of hypabyssal kimberlites from a single pipe, at the Finsch Mine, South Africa. These are Group 2 kimberlites characterised by abundant phlogopite ± serpentine ± diopside; they are ultrabasic (SiO2 < 42 wt.%%) and ultrapotassic (K2O/Na2O > 6.9) igneous rocks, they exhibit a wide range in major element chemistry with SiO2 = 27.6−41.9 wt. % and MgO = 10.4−33.4 wt. %. (87Sr/86Sr)i=0.7089 to 0.7106, εNd is −6.2 to −9.7 and they have unradiogenic (207Pb/204Pb)i contents which ensure that they plot below the Pb-ore growth curve. They have high incompatible and compatible element contents, a striking positive array between Y and Nb which indicates that garnet was not involved in the within suite differentiation processes, and a negative trend between K/Nb and Nb contents which suggests that phlogopite was involved. In addition, some elements exhibit an unexpected order of relative incompatibility for different trace elements which suggests that the intra-kimberlite variations are not primarily due to variations in the degree of partial melting. The effects of fractional crystallization are difficult to establish because for the most part they have been masked by the entrainment of 50–60% mantle peridotite. Thus, the Finsch kimberlites are interpreted as mixtures of a melt component and entrained garnet peridotite, with no evidence for significant contamination with crustal material. The melt component was characterised by high incompatible element contents, which require both very small degrees of partial melting, and source regions with higher incompatible element contents than depleted or primitive mantle. Since the melt component was the principal source of incompatible elements in the kimberlite magma, the enriched Nd, Sr and Pb isotope ratios of the kimberlite are characteristic of the melt source region. The melt fractions were therefore derived from ancient, trace elements enriched portions of the upper mantle, most probably situated within the sub-continental mantle lithosphere, and different from the low 87Sr/86Sr garnet peridotite xenoliths found at Finsch. Within the sub-continental mantle lithosphere old, incompatible element enriched source regions for the kimberlite melt fraction are inferred to have been overlain by depleted mantle material which became entrained in the kimberlite magma.  相似文献   

5.
Leone Melluso  John J. Mahoney  Luigi Dallai   《Lithos》2006,89(3-4):259-274
Near-primitive picritic basalts in the northwestern Deccan Traps have MgO > 10 wt.% and consist of two groups (low-Ti and high-Ti) with markedly different incompatible element and Nd–Sr–Pb isotope characteristics. Many elemental characteristics of the low-Ti picritic basalts are similar to those of transitional or normal ocean ridge basalts. However, values of ratios like Ba/Nb (13–30) and Ce/Pb (4–11), and isotopic ratios (e.g., εNd(t) + 0.3 to − 6.3, (207Pb/204Pb)t 15.63–15.75 at (206Pb/204Pb)t 18.19–18.84, δ18Oolivine as high as + 6.2‰) are far-removed from ocean-ridge-type values, indicating a significant contribution from continental crust. The crustal signature could represent crustal contamination of ascending magmas; alternatively, it could represent a minor component within the Indian lithospheric mantle of anciently subducted sedimentary material or fluids derived from subducted material. In contrast, the high-Ti picritic basalts are chemically and isotopically rather similar to recent shield lavas of the Réunion hotspot (e.g., εNd(t) + 2 to + 4) and to volcanic rocks along the postulated pre-Deccan track of this hotspot in Pakistan. Neither type of picritic basalt is parental to the voluminous flows comprising the bulk of the Deccan Traps. However, many of the Deccan primary magmas could have been derived from mixtures of a high-Ti-type, Réunion-like source component and a component more similar to, or even more incompatible-element-depleted than, average ocean-ridge mantle.  相似文献   

6.
The Meseta Chile Chico (MCC, 46.4°S) is the westernmost exposure of Eocene (lower basaltic sequence, LBS; 55–40 Ma, K–Ar ages) and Mio–Pliocene (upper basaltic sequence, UBS; 16–4 Ma, K–Ar ages) flood basalt volcanism in Patagonia. The MCC is located south of the Lago General Carrera-Buenos Aires (LGCBA), southeast from the present day Chile Triple Junction (CTJ), east of the actual volcanic gap between Southern South Volcanic Zone and Austral Volcanic Zone (SSVZ and AVZ, respectively) and just above the inferred location of the South Chile Ridge segment subducted at 6 Ma (SCR-1). Erupted products consist of mainly ne-normative olivine basalt with minor hy-normative tholeiites basalt, trachybasalt and basanite. MCC lavas are alkaline (42.7–53.1 wt.% SiO2, 3–8 wt.% Na2O+K2O) and relatively primitive (Ni: 133–360 ppm, Cr: 161–193 ppm, Co: 35–72 ppm, 4–16.5 MgO wt.%). They have a marked OIB-like signature, as shown by their isotopic compositions (87Sr/86Sro=0.70311–0.70414 and εNd=+4.7–+5.1) and their incompatible trace elements ratios (Ba/La=10–20, La/Nb=0.46–1.09, Ce/Pb=15.52–27.5, Sr/La<25), reflecting deep mantle origin. UBS-primitive lavas have characteristics similar to those of the Eocene LBS basalts, while UBS-intermediate lavas show geochemical imprints (La/Nb>1, Sr/La>25, low Ce/Pb, Nb/U) compatible with contamination by arc/slab-derived and/or crustal components. We propose that the genesis and extrusion of magmas is related to the opening of two slab windows due to the subduction of two active ridge segments beneath Patagonia during Eocene and Mio–Pliocene.  相似文献   

7.
The Emeishan continental flood basalt (ECFB) sequence in Dongchuan, SW China comprises a basal tephrite unit overlain by an upper tholeiitic basalt unit. The upper basalts have high TiO2 contents (3.2–5.2 wt.%), relatively high rare-earth element (REE) concentrations (40 to 60 ppm La, 12.5 to 16.5 ppm Sm, and 3 to 4 ppm Yb), moderate Zr/Nb and Nb/La ratios (9.3–10.2 and 0.6–0.9, respectively) and relatively high Nd (t) values, ranging from − 0.94 to 2.3, and are comparable to the high-Ti ECFB elsewhere. The tephrites have relatively high P2O5 (1.3–2.0 wt.%), low REE concentrations (e.g., 17 to 23 ppm La, 4 to 5.3 ppm Sm, and 2 to 3 ppm Yb), high Nb/La (2.0–3.9) ratios, low Zr/Nb ratios (2.3–4.2), and extremely low Nd (t) values (mostly ranging from − 10.6 to − 11.1). The distinct compositional differences between the tephrites and the overlying tholeiitic basalts cannot be explained by either fractional crystallization or crustal contamination of a common parental magma. The tholeiitic basalts formed by partial melting of the Emeishan plume head at a depth where garnet was stable, perhaps > 80 km. We propose that the tephrites were derived from magmas formed when the base of the previously metasomatized, volatile-mineral bearing subcontinental lithospheric mantle was heated by the upwelling mantle plume.  相似文献   

8.
We present new data on mineralogical, major and trace element compositions of lavas from the northernmost segment of the Kolbeinsey Ridge (North Kolbeinsey Ridge, NKR). The incompatible element enriched North Kolbeinsey basalts lie on a crystal fractionation trend which differs from that of the other Kolbeinsey segments, most likely due to higher water contents (~0.2%) in the NKR basalts. The most evolved NKR magmas erupt close to the Jan Mayen Fracture Zone, implying increased cooling and fractionation of the ascending magmas. Mainly incompatible element-enriched basalts, as well as some slightly depleted lavas, erupt on the NKR. They show evidence for mixing between different mantle sources and magma mixing. North Kolbeinsey Ridge magmas probably formed by similar degrees of melting to other Kolbeinsey basalts, implying that no lateral variation in mantle potential temperature occurs on the spreading axis north of the Iceland plume and that the Jan Mayen Fracture Zone does not have a cooling effect on the mantle. Residual garnet from deep melting in garnet peridotite or from enriched garnet pyroxenite veins does not play a role. The incompatible element-enriched source has high Ba/La and Nb/Zr, but must be depleted in iron. The iron-depleted mantle is less dense than surrounding mantle and leads to the formation of the North Kolbeinsey segment and its shallow bathymetry. The enriched NKR source formed from a relatively refractory mantle, enriched by a small degree melt rather than by recycling of enriched basaltic crust. The depleted mantle source resembles the mantle of the Middle Kolbeinsey segment with a depletion in incompatible elements, but a fertile major element composition.  相似文献   

9.
Many continental flood basalts (CFB) have isotope and trace-element signatures that differ from those of oceanic basalts and much interest concerns the extent to which these reflect differences in their upper mantle source regions. A review of selected data sets from the Mesozoic and Tertiary CFB confirms significant differences in their major- and trace-element compositions compared with those of basalts erupted through oceanic lithosphere. In general, those CFB suites characterised by low Nb/La, high (87Sr/86Sr)i and low εNdi tend to exhibit relatively low TiO2, CaO/Al2O3, Na2O and/or Fe2O3, and relatively high SiO2. In contrast, those which have high Nb/La, low (87Sr/86Sr)i and high εNdi ratios, like the upper units in the Deccan Traps, have major- and trace-element compositions similar to oceanic basalts. It would appear that those CFB that have distinctive isotope and trace-element ratios also exhibit distinctive major-element contents, suggesting that major and trace elements have not been decoupled significantly during magma generation and differentiation.

When compared (at 8% MgO) with oceanic basalt trends, the displacement of many CFB to lower Na2O, Fe2O3*, TiO2 and CaO/Al2O3, but higher SiO2, at similar Mg#, is not readily explicable by crustal contamination. Rather, it reflects source composition and/or the effects of the melting processes. The model compositions of melts produced by decompression of mantle plumes beneath continental lithosphere have relatively low SiO2 and high Fe2O3*. In contrast, the available experimental data indicate that partial melts of peridotite have low TiO2, Na2O and Fe2O3*CaO/Al2O3, if the peridotite has been previously depleted by melt extraction. Moreover, melting of hydrated, depleted peridotite yields SiO2-rich, Fe2O3- and CaO-poor melts. Since anhydrous, depleted peridotite has a high-temperature solidus, it is argued that the source of these CFB was variably melt depleted and hydrated mantle, inferred to be within the lithosphere. Isotope data suggest these source regions were often old and relatively enriched in incompatible trace elements, and it is envisaged that H2O±CO2 were added at the same time as the incompatible elements. An implication is that a significant proportion of the new continental crust generated since the Permian reflected multistage processes involving mobilization of continental mantle lithosphere that was enriched in minor and trace elements during the Proterozoic.  相似文献   


10.
《International Geology Review》2012,54(13):1569-1595
ABSTRACT

Palaeoarchaean (3.38–3.35 Ga) komatiites from the Jayachamaraja Pura (J.C. Pura) and Banasandra greenstone belts of the western Dharwar craton, southern India were erupted as submarine lava flows. These high-temperature (1450–1550°C), low-viscosity lavas produced thick, massive, polygonal jointed sheet flows with sporadic flow top breccias. Thick olivine cumulate zones within differentiated komatiites suggest channel/conduit facies. Compound, undifferentiated flow fields developed marginal-lobate thin flows with several spinifex-textured lobes. Individual lobes experienced two distinct vesiculation episodes and grew by inflation. Occasionally komatiite flows form pillows and quench fragmented hyaloclastites. J.C. Pura komatiite lavas represent massive coherent facies with minor channel facies, whilst the Bansandra komatiites correspond to compound flow fields interspersed with pillow facies. The komatiites are metamorphosed to greenschist facies and consist of serpentine-talc ± carbonate, actinolite–tremolite with remnants of primary olivine, chromite, and pyroxene. The majority of the studied samples are komatiites (22.46–42.41 wt.% MgO) whilst a few are komatiitic basalts (12.94–16.18 wt.% MgO) extending into basaltic (7.71 – 10.80 wt.% MgO) composition. The studied komatiites are Al-depleted Barberton type whilst komatiite basalts belong to the Al-undepleted Munro type. Trace element data suggest variable fractionation of garnet, olivine, pyroxene, and chromite. Incompatible element ratios (Nb/Th, Nb/U, Zr/Y Nb/Y) show that the komatiites were derived from heterogeneous sources ranging from depleted to primitive mantle. CaO/Al2O3 and (Gd/Yb)N ratios show that the Al-depleted komatiite magmas were generated at great depth (350–400 km) by 40–50% partial melting of deep mantle with or without garnet (majorite?) in residue whilst komatiite basalts and basalts were generated at shallow depth in an ascending plume. The widespread Palaeoarchaean deep depleted mantle-derived komatiite volcanism and sub-contemporaneous TTG accretion implies a major earlier episode of mantle differentiation and crustal growth during ca. 3.6–3.8 Ga.  相似文献   

11.
The study in this paper determined whole rock major and trace elements, zircon U-Pb age and Hf, O isotopes of 5 mafic dikes in the southwestern Fujian province. The 5 dikes are mainly diabase and the whole rock SiO2 content are between 45%~53%. Most zircons of the mafic dikes display obvious oscillatory zoning and fan-shaped zoning, and have the typical magmatic zircon crystallization characteristics. Zircon U-Pb age is dispersed with 96~2 400 Ma range. In addition to the minimum age (96~142 Ma) which might be the age of the formation of dikes, the remaining are captured zircon. The captured zircon age was mainly distributed in 4 groups: Early Proterozoic (2 467~1 796 Ma); Middle and late Proterozoic (1 343~647 Ma); Silurian to late Triassic Epoch (427~225 Ma); and Late Jurassic (159~140 Ma). Hf-O isotope shows that the early Proterozoic zircon was derived from the mantle of the homogeneous chondrite reservoir, and the others show magmatic mixing characteristics between depleted mantle and crust. Zircon’s εHf(t) and δ18O of the early Late Cretaceous clearly show the mixing trend of depleted mantle and crustal magma. The peak of zircon Hf two-stage depleted mantle model age TDM2 was mainly distributed in the 1.6~1.9 Ga. The Early Proterozoic mafic crust might be the main source for latter granite.  相似文献   

12.
The Onega plateau constitutes part of a vast continental flood basalt province in the SE Baltic Shield. It consists of Jatulian-Ludikovian submarine volcanic, volcaniclastic and sedimentary sequences attaining in places 4.5?km in thickness. The parental magmas of the lavas contained ~10% MgO and were derived from melts generated in the garnet stability field at depths 80–100?km. The Sm-Nd mineral and Pb-Pb whole-rock isochron ages of 1975?±?24 and 1980?±?57 Ma for the upper part of the plateau and a SHRIMP U-Pb zircon age of 1976?±?9 Ma for its lower part imply the formation of the entire sequence within a short time span. These ages coincide with those of picrites in the Pechenga-Imandra belt (the Kola Peninsula) and komatiites and basalts in the Karasjok-Kittilä belt (Norway and Finnmark). Together with lithostratigraphic, chemical and isotope evidence, these ages suggest the derivation of the three provinces from a single large (~2000?km in diameter) mantle plume. These plume-generated magmas covered ~600,000?km2 of the Baltic Shield and represent a major contribution of juvenile material to the existing continental crust at 2.0 Ga. The uppermost Onega plateau lavas have high (Nb/Th)N?=?1.4–2.4, (Nb/La)N= 1.1–1.3, positive ?Nd(T) of +3.2 and unradiogenic Pb-isotope composition (μ1?= 8.57), comparable with those of modern oceanic plume-derived magmas (oceanic flood basalt and ocean island basalt). These parameters are regarded as source characteristics. The lower sequences have (Nb/Th)N= 0.58–1.2, (Nb/La)N= 0.52–0.88 and ?Nd(T) =?2.6. They have experienced mixing with 10–30% of continental crust and resemble contaminated lavas from other continental flood basalt provinces. The estimated Nb/U ratios of 53?±?4 in the uncontaminated rocks are similar to those found in the modern mantle (~47) suggesting that by 2.0 Ga a volume of continental crust similar to the present-day value already existed.  相似文献   

13.
Volcanic suites from Wawa greenstone belts in the southern Superior Province comprise an association of typical late Archean arc volcanic rocks including adakites, magnesian andesites (MA), niobium-enriched basalts (NEB), and ‘normal’ tholeiitic to calc-alkaline basalts to rhyolites. The adakites represent melts from subducted oceanic crust and all other suites were derived from the mantle wedge above the subducting oceanic lithosphere. The magnesian andesites are interpreted to be the product of hybridization of adakite melts with arc mantle wedge peridotite. The initial ?Hf values of the ∼2.7 Ga Wawa adakites (+3.5 to +5.2), magnesian andesites (+2.6 to +5.1), niobium-enriched basalts (+4.4 to +6.6), and ‘normal’ tholeiitic to calc-alkaline arc basalts (+5.3 to +6.4) are consistent with long-term depleted mantle sources. The niobium-enriched basalts and ‘normal’ arc basalts have more depleted ?Hf values than the adakites and magnesian andesites. The initial ?Nd values in the magnesian andesites (+0.4 to +2.0), niobium-enriched basalts (+1.4 to +2.4), and ‘normal’ arc tholeiitic to calc-alkaline basalts (+1.6 to +2.9) overlap with, but extend to lower values than, the slab-derived adakites (+2.3 to +2.8). The lower initial ?Nd values in the mantle-wedge-derived suites, particularly in the magnesian andesites, are attributed to recycling of an Nd-enriched component with lower ?Nd to the mantle wedge. As a group, the slab-derived adakites plot closest to the 2.7 Ga depleted mantle value in ?Nd versus ?Hf space, additionally suggesting that the Nd-enriched component in the mantle wedge did not originate from the 2.7 Ga slab-derived melts. Accordingly, we suggest that the enriched component had been added to the mantle wedge at variable proportions by recycling of older continental material. This recycling process may have occurred as early as 50-70 Ma before the initiation of the 2.7 Ga subduction zone. The selective enrichment of Nd in the sources of the Superior Province magmas can be explained by experimental studies and geochemical observations in modern subduction systems, indicating that light rare earth elements (e.g., La, Ce, Sm, Nd) are more soluble than high field strength elements (e.g., Zr, Hf, Nb, Ta) in aqueous fluids that are derived from subducted slabs. As a corollary, we suggest that the recycled Nd-enriched component was added to the mantle source of the Wawa arc magmas by dehydration of subducted sediments.  相似文献   

14.
Paleogene volcanic rocks crop out in three sedimentary basins, namely, Sanshui, Heyuan and Lienping, in the attenuated continental margin of south China. Lavas from the Sanshui basin which erupted during 64-43 Ma are bimodal, consisting of intraplate tholeiitic basalt and trachyte/rhyolite associations. Similar to Cretaceous A-type granites from the nearby region, the felsic member shows peralkaline nature [Na2O + K2O ≈ 10–12%; (Na + K)/Al≈ 0.98−1.08], general enrichment in the incompatible trace elements and significant depletion in Ba, Sr, Eu, P and Ti. Although both types of the Sanshui lavas have rather uniform Nd isotope compositions [Nd(T) ≈ +6 to +4]that are comparable to Late Cenozoic basalts around the South China Sea, the felsic rocks possess apparently higher initial Sr isotope ratios (ISr up to 0.713) and form a horizontal array to the right in the Nd vs. Sr isotope plot. Closed system differentiation of mantle-derived magmas in a ‘double diffusive’ magma chamber is considered for the bimodal volcanism, in which the trachytes and rhyolites represent A-type melts after extensive crystal fractionation in the upper portion of the chamber. Such A-type melts were later contaminated by small amounts (1–3%) of upper crustal materials during ascent. On the other hand, composition of lavas in the other two basins varies from tholeiitic basalt to andesite. Their Sr and Nd isotope ratios [ISr ≈ 0.705 to 0.711; Nd(T) ≈ +1 to − 5] and generally correlative Nb-Ta depletions suggest a distinct magma chamber process involving fractional crystallization concomitant with assimilation of the country rock. We conclude that these Paleogene volcanic activities resulted from the lithospheric extension in south China that migrated southwards and eventually led to opening of the South China Sea during 30-16 Ma.  相似文献   

15.
We report elemental and Nd–Sr isotopic data for three types of Ordovician volcanic and gabbroic rocks from the Sharburti Mountains in the West Junggar (Xinjiang), Northwest China. Gabbros and Type I lavas occur in the Early Ordovician Hongguleleng ophiolite whereas Type II and III lavas are parts of the Middle Ordovician Bulukeqi Group. Gabbros and Type I lavas are tholeiites with a depleted light rare earth element (LREE) and mid-oceanic ridge basalt (MORB)-like signature with a crystallization sequence of plagioclase–clinopyroxene, suggesting formation at a mid-oceanic ridge. Type II lavas are Nb-enriched basalts (NEBs, Nb = 14–15 ppm), which have E-MORB-like REE patterns and Nb/Yb and Th/Yb ratios. They come from mantle metasomatized by slab melts. Type III lavas are further divided into two sub-types: (1) Type IIIa is tholeiitic to calc-alkaline basalts and andesites, with REE patterns that are flat or slightly LREE enriched, and with a negative Nb anomaly and Th/Yb enrichment, indicating that they were generated above a subduction zone; (2) Type IIIb is calc-alkaline basalts and andesites, which are strongly enriched in LREE with a marked negative Nb anomaly and Th/Yb enrichment, suggesting generation in a normal island-arc setting. The initial 87Sr/86Sr ratios of Type III lavas range from 0.70443 to 0.70532 and ?Ndt ranges from +1.5 to +4.5, suggesting that these melts were derived from mantle wedge significantly modified by subducted material (enriched mantle I (EMI)) above a subduction zone. Contemporary tholeiitic to calc-alkaline basalt–andesite and NEB association suggest that the NEBs erupted during development of the tholeiitic to calc-alkaline arc. We propose a model of intra-oceanic subduction influenced by ridge subduction for the Ordovician tectono-magmatic evolution of the northern West Junggar.  相似文献   

16.
Primitive olivine-mica-K-feldspar lamprophyre dykes, dated at 1831 ± 6 Ma, intrude lower greenschist facies rocks of the Early Proterozoic Pine Creek Inlier, of northern Australia. They are spatially, temporally and probably genetically associated with a post-tectonic composite granite-syenite pluton (Mt. Bundey pluton). The dykes have unusually high contents of large-ion-lithophile (LILE) and LREE elements (e.g. Ba up to 10,000 ppm, Ce up to 550 ppm, K2O up to 7.5 wt. %) that resemble the concentrations found in the West Kimberley olivine and leucite lamproites. However, mineralogically the Mt. Bundey lamprophyres resemble shoshonitic lamprophyres and lack any minerals diagnostic of lamproites; leucite or leucite-pseudomorphs are absent. Mineral compositions are also unlike those in lamproites: micas contain higher Al2O3 than lamproitic mica; amphiboles are secondary actinolites after diopside; and oxides consist of zincian-chromian magnetite and groundmass magnetite. Heavy mineral concentrates contain mantle-derived xenocrysts of magnesiochromite, pyrope, Cr-diopside and rutile indicating a depth of sampling > 70 km. The Mt. Bundey lamprophyres are non-peralkaline to borderline peralkaline (molar (K + Na)/Al = 0.8 − 1.0) and potassic rather than ultrapotassic (molar K/Na < 2.5). They have distinctive major element compositions (≈46−49 wt. % SiO2, ≈1.5−2 wt. % MgO, ≈7 wt. % CaO), and element ratios (e.g. molar Al/Ti ≈10, K/Na ≈2) that indicate they are best classified amongst transitional lamproites, i.e. potassic rocks such as cocites, jumillites and Navajominettes, that have geochemical characteristics transitional between Groups I and III. (Foley et al., 1987). The Mt. Bundey lamprophyres have LILE enrichment patterns that resemble the W. Kimberley pamproites but have moderate negative Ta---Nb---Ti anomalies and HREE abundances that are closely similar to the jumillites of southeastern Spain and Mediterranean-type lamproites. Single-stage modelling of Rb---Sr data is consistent with enrichment of the source-region of the Mt. Bundey lamprophyres ≈ 120–170 Ma before partial melting; i.e. at 1.95–2.10 Ga. Source enrichment does not appear to be associated with subduction processes, but may instead relate to incipient rifting of the Archaean basement. Negative Ta---Nb---Ti anomalies in the Mt. Bundey dykes may, therefore, relate to stability of residual titanate minerals in an oxidized subcontinental mantle source. This view is supported by high Fe3+/ΣFe ratios of mantle-derived magnesiochromite xenocrysts which indicate oxidized mantle conditions (ƒo2 ≈ FMQ + 1 long units), and by the presence of xenocrystic Cr-bearing rutile. Although the Mt. Bundey dykes have sampled upper mantle material, the oxidized nature of the magma source-region, and of the magma itself, suggests that conditions may not be favourable for diamond survival at depth nor for diamond transport in transitional lamproite magmas of this kind.  相似文献   

17.
There is little concensus on the relative importance of crystal fractionation and differential partial melting to the chemical diversity observed within most types of volcanic suites. A resolution to this controversy is best sought in suites containing high MgO lavas such as the Chukotat volcanics of the Proterozoic Cape Smith foldbelt, Ungava, Quebec. The succession of this volcanic suite consists of repetitive sequences, each beginning with olivine-phyric basalt (19-12 wt% MgO), grading upwards to pyroxene-phyric basalt (12-8 wt% MgO) and then, in later sequences, to plagioclase-phyric basalt (7-4 wt% MgO). Only the olivine-phyric basalts have compositions capable of equilibrating with the upper mantle and are believed to represent parental magmas for the suite. The pyroxene-phyric and plagioclase-phyric basalts represent magmas derived from these parents by the crystal fractionation of olivine, with minor chromite, clinopyroxene and plagioclase. The order of extrusion in each volcanic sequence is interpreted to reflect a density effect in which successively lighter, more evolved magmas are erupted as hydrostatic pressure wanes. The pyroxene-phyric basalts appear to have evolved at high levels in the active part of the conduit system as the eruption of their parents was in progress. The plagioclase-phyric basalts may represent residual liquids expelled from isolated reservoirs along the crust-mantle interface during the late stages of volcanic activity.A positive correlation between FeO and MgO in the early, most basic olivine-phyric basalts is interpreted to reflect progressive adiabatic partial melting in the upper mantle. Although this complicates the chemistry, it is not a significant factor in the compositional diversification of the volcanic suite. The preservation of such compositional melting effects, however, suggests that the most basic olivine-phyric basalts represent primitive magmas. The trace element characteristics of these magmas, and their derivatives, indicate that the mantle source for the Chukotat volcanics had experienced a previous melting event.  相似文献   

18.
Taiwan is an active mountain belt formed by oblique collision between the Luzon arc and the Asian continent. Regardless of the ongoing collision in central and southern Taiwan, a post-collisional extension regime has developed since the Plio–Pleistocene in the northern part of this orogen, and led to generation of the Northern Taiwan Volcanic Zone. Emplaced at 0.2 Ma in the southwest of the Volcanic Zone, lavas from the Tsaolingshan volcano are highly magnesian (MgO≈15 wt.%) and potassic (K2O≈5 wt.%; K2O/Na2O≈1.6–3.0). Whereas these basic rocks (SiO2≈48 wt.%) have relatively low Al2O3≈12 wt.%, total Fe2O3≈7.5 wt.% and CaO≈7.2 wt.%, they are extremely enriched in large ion lithophile elements (LILE, e.g. Cs, Rb, Ba, Th and U). The Rb and Cs abundances, >1000 and 120 ppm, respectively, are among the highest known from terrestrial rocks. In addition, these rocks are enriched in light rare earth elements (LREE), depleted in high field strength elements (HFSE), and display a positive Pb spike in the primitive mantle-normalized variation diagram. Their REE distribution patterns mark with slight Eu negative anomalies (Eu/Eu*≈0.90–0.84), and Sr and Nd isotope ratios are uniform (87Sr/86Sr≈0.70540–0.70551; 143Nd/144Nd≈0.51268–0.51259). Olivine, the major phenocryst phase, shows high Fo contents (90.4±1.8; 1σ deviation), which are in agreement with the whole rock Mg-values (83–80). Spinel inclusions in olivine are characterized by high Cr/Cr+Al ratios (0.94–0.82) and have compositions similar to those from boninites that originate from highly refractory peridotites. Such petrochemical characteristics are comparable to the Group I ultrapotassic rocks defined by Foley et al. [Earth-Sci. Rev. 24 (1987) 81], such as orogenic lamproites from central Italy, Span and Tibet. We therefore suggest that the Tsaolingshan lavas resulted from a phlogopite-bearing harzburgitic source in the lithospheric mantle that underwent a recent metasomatism by the nearby Ryukyu subduction zone processes. The lavas exhibit unique incompatible trace element ratios, with Rb/Cs≈8, Ba/Rb≈1, Ce/Pb≈2, Th/U≈1 and Nb/U≈0.8, which are significantly lower than the continental crust values and those of most mantle-derived magmas. Nonmagmatic enrichment in the mantle source is therefore required. Based on published experimental data, two subduction-related metasomatic components, i.e., slab-released hydrous fluid and subducted sediment, are proposed, and the former is considered to be more pervasive for causing the extraordinary trace element ratios observed. Our observations lend support to the notion that dehydration from subducting slabs at convergent margins, as a continuing process through geologic time, can account for the fractionation of these elemental pairs between the Earth's crust and mantle.  相似文献   

19.
Late Neoarchean metavolcanic rocks are widely distributed in the Western Shandong Terrane (WST). They are classified as ~2590–2580 Ma tholeiites (Group MB-1), ~2550–2530 Ma tholeiites (Group MB-2), calc-alkaline basalts (Group MB-3), high-Si adakites (Group MAD) and ~2520–2500 Ma tholeiites (Group MB-4) based on zircon U-Pb chronological and geochemical data. Their parental magmas have complex origins and were derived from a depleted mantle wedge enriched by slab-derived melts or fluids (Group MB-1); an unaltered depleted mantle (Group MB-2); the delaminated lower crustal materials (Group MAD); a strongly melt- and fluid-metasomatized depleted mantle (Group MB-3); and a fluid- and sediment-metasomatized asthenospheric mantle (Group MB-4). The late Neoarchean geodynamic evolution of the WST revealed by these multi-genetic volcanic rocks can be summarized as follows: (1) an ~2.62–2.53 Ga eastward subduction operated along the ancient continental margin, followed by delamination of unstable continental lithosphere in the back-arc region during ~2.60–2.53 Ga; and (2) delamination-derived mantle magmas ascended and caused the regional extension, further inducing the asthenosphere to passively rise and the back-arc basin to open during ~2.52–2.50 Ga. The above intense mantle magmatism and crust-mantle interactions have consumed abundant mantle energy and facilitated the continental stratification and final cratonization of the WST.  相似文献   

20.
为了进一步了解中国东北新生代玄武岩地幔源区的物质属性,报道了大兴安岭哈拉哈河-柴河地区新生代玄武岩的全岩主量、微量元素和Sr、Nd、Pb、Hf同位素组成.哈拉哈河-柴河玄武岩属钠质碱性系列,具有与洋岛玄武岩相似的微量元素特征,如富集大离子亲石元素(LILEs)、明显的Nb、Ta正异常等.它们具有中等亏损的Sr-Nd-Hf同位素组成(87Sr/86Sr=0.703 5~0.703 9、εNd=5.21~6.55、εHf=10.00~11.25),接近中国东部新生代玄武岩的亏损端元.这些玄武岩具有中等的放射成因Pb同位素组成(206Pb/204Pb=18.37~18.57、207Pb/204Pb=15.52~15.54和208Pb/204Pb=38.24~38.43),在206Pb/204Pb-207Pb/204Pb相关图上位于4.42~4.45 Ga的地球等时线之间.它们在Sr-Nd-Pb同位素相关图中均落入地幔柱来源的、高3He/4He比(>30Ra)的洋岛玄武岩范围内,暗示其源区可能存在来自深部地幔的古老原始地幔物质.此外,这些玄武岩具有高MgO(8.49%~11.58%)、高Ni(174×10-6~362×10-6)和高Mg#(59.1~66.9)的特征,表明它们接近于原始岩浆的成分.反演的哈拉哈河-柴河玄武岩的原始岩浆组成具有中等的SiO2、低Al2O3以及高CaO/Al2O3比的特征,与石榴子石橄榄岩高压(>2.5 GPa)实验熔体的成分相当,暗示玄武岩的源区岩性最可能为橄榄岩.对以原始地幔(而不是亏损地幔)的微量元素为初始成分的饱满石榴子石二辉橄榄岩进行低程度(1%~2%)部分熔融的模拟计算,产生的熔体与哈拉哈河-柴河玄武岩具有一致的微量元素特征,这进一步支持了上述推断.综上所述,认为大兴安岭地区哈拉哈河-柴河玄武岩的源区含有来自深部地幔的古老的橄榄岩质原始地幔组分.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号