首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New40Ar/39Ar plateau ages from rocks of Changle-Nanao ductile shear zone are 107.9 Ma(Mus), 108.2 Ma(Bi), 107.1 Ma(Bi), 109.2 Ma(Hb) and 117.9 Ma(Bi) respectively, which are concordant with their isochron ages and record the formation age of the ductile shear zone. The similarity and apparent overlap of the cooling ages with respective closure temperatures of 5 minerals document initial rapid uplift during 107–118 Ma following the collision between the Min-Tai microcontinent and the Min-Zhe Mesozoic volcanic arc. The40Ar/39 Ar plateau ages, K-Ar date of K-feldspar and other geochronologic information suggest that the exhumation rate of the ductile shear zone is about 0.18–1.12 mm/a in the range of 107–70 Ma, which is mainly influenced by tectonic extension.  相似文献   

2.
Pacific-type orogeny revisited: Miyashiro-type orogeny proposed   总被引:30,自引:0,他引:30  
Shigenori  Maruyama 《Island Arc》1997,6(1):91-120
Abstract The concept of Pacific-type orogeny is revised, based on an assessment of geologic data collected from the Japanese Islands during the past 25 years. The formation of a passive continental margin after the birth of the Pacific Ocean at 600 Ma was followed by the initiation of oceanic plate subduction at 450 Ma. Since then, four episodes of Pacific-type orogeny have occurred to create an orogenic belt 400 km wide that gradually grew both oceanward and downward. The orogenic belt consists mainly of an accretionary complex tectonically interlayered with thin (<2 km thick), subhorizontal, high-P/T regional metamorphic belts. Both the accretionary complex and the high-P/T rocks were intruded by granitoids ~100 million years after the formation of the accretionary complex. The intrusion of calc-alkaline (CA) plutons was synchronous with the exhumation of high-P/T schist belts. Ages from microfossils and K-Ar analysis suggest that the orogenic climax happened at a time of mid-oceanic ridge subduction. The orogenic climax was characterized by the formation of major subhorizontal orogenic structures, the exhumation of high-P/T schist belts by wedge extrusion and subsequent domed uplift, and the intrusion-extrusion of CA magma dominantly produced by slab melting. The orogenic climax ended soon after ridge subduction, and thereafter a new Pacific-type orogeny began. A single Pacific-type orogenic cycle may correspond to the interaction of the Asian continental margin with one major Pacific oceanic plate. Ophiolites in Japan occur as accreted material and are not of island-arc but of plume origin. They presumably formed after the birth of the southern Pacific superplume at 600 Ma, and did not modify the cordilleran-type orogeny in a major way. Microplates, fore-arc slivers, intra-oceanic arc collisions and the opening of back-arc basins clearly contributed to cordilleran orogenesis. However, they were of secondary importance and served only to modify pre-existing major orogenic components. The most important cause of cordilleran-type orogeny is the subduction of a mid-oceanic ridge, by which the volume of continental crust increases through the transfer of granitic melt from the subducting oceanic crust to an orogenic welt. Accretionary complexes are composed mainly of recycled granitic sediments with minor amounts of oceanic material, which indicate that the accretion of oceanic material, including huge oceanic plateaus, was not significant for orogenic growth. Instead, the formation and intrusion of granitoids are the keys to continental growth, which is the most important process in Pacific-type orogeny. Collision-type orogeny does not increase the volume of continental crust. The name ‘Miyashiro-type orogeny’ is proposed for this revised concept of Pacific-type or cordilleran-type orogeny, in order to commemorate Professor A. Miyashiro's many contributions to a better understanding of orogenesis.  相似文献   

3.
秦岭造山带与其南北两侧华北克拉通和扬子克拉通属三大构造单元,不论其各构造单元体还是其界带构造均甚为复杂,并受到多期次构造运动的制约,形成了大陆内部特异的造山过程.尽管在这一地域曾做过大量的地表地质工作和一些相关的地球物理工作,但对其壳、幔精细结构、深层动力过程,特别是同步穿越华北克拉通、秦岭-大巴造山带和扬子克拉通系统的耦合研究甚少.为了研究和探索该地域的壳、幔精细速度结构和其形成的深层过程,专门布置了一条北起榆林,向南经咸阳、宁陕直抵涪陵长达1000 km的高精度地震宽角反射、折射波场探测剖面.通过剖面辖区高分辨率的数据采集,数据处理、反演和壳、幔层、块精细速度结构,发现剖面辖区深部壳、幔结构存在特异的速度和结构变化,并厘定了一系列的新认识.研究结果表明:(1)秦岭—大巴造山带具有同一基底,其形成乃为结晶基底隆升所致,即它的形成仅涉及到上地壳的受力变形和空间状态.造山带与其南、北两侧的前陆盆地为陆内造山过程中同一深层过程的产物,但其沉积速率和形态却不相同.华北克拉通与秦岭造山带之间前陆盆地Bfc拉张为该区Moho界面的局部隆升所致.(2)首次提出了沿1000 km长剖面连续的沉积建造、结晶基底、上地壳、下地壳和上地幔顶部的层、块速度结构和各界面的起伏变化与空间状态.基于地震波边界场响应厘定了华北克拉通、秦岭—大巴造山带和扬子克拉通的分区界带.论述了三大构造单元各自的内部结构和其相邻界域的速度变化特征.(3)该区大陆内部速度结构和不同类型断裂分布及层序在华北克拉通、秦岭—大巴造山带、扬子克拉通三大块体地域存在显著差异.不同规模、层次与产状的断裂分布反映出它们在变形行为和机制上及所受构造运动的制约上均存在明显的差异.  相似文献   

4.
The Mianlue tectonic zone (Mianlue zone), an ancient suture zone in addition to theShangdan suture in the Qinling-Dabie orogenic belt, marks an important tectonic division geo-logically separating north from south and connecting east with west in China continent. To de-termine present structural geometry and kinematics in the Mianlue tectonic zone and to recon-struct the formation and evolution history involving plate subduction and collision in theQinling-Dabie orogenic belt, through a multidisciplinary study, are significant for exploring themountain-building orogenesis of the central orogenic system and the entire process of the majorChinese continental amalgamation during the Indosinian.  相似文献   

5.
The Mianle tectonic zone, defined as a series of fault zones consisting mainly of south-verging thrusts and nappes, represents the south boundary of the Qinling-Dabie orogenic belt. The north side of the eastern end of the Mianle tectonic zone adjoins the exposure of the Dabieshan UHP rocks. Further to east, the zone was offset by the Tanlu faults and moved to eastern Shandong Province. While to its west, across the Qinghai-Tibetan Plateau, the zone was dislocated by the Altun fault, and…  相似文献   

6.
大陆下地壳层流作用及其大陆动力学意义   总被引:15,自引:0,他引:15       下载免费PDF全文
大量的地质和地球物理资料表明 ,年轻的大陆构造活动区的下地壳可能因热软化而出现透入性非地震式顺层韧性流动 ,这种下地壳层流作用驱动大陆上地壳发生地震式脆性断块运动 ,形成盆山格局 ,发生圈层耦合。大陆下地壳低粘度物质顺层流动可能是在地幔岩浆底侵作用为下地壳提供热能和添加幔源物质的基础上 ,并在地幔上升派生的重力和剪切力作用下 ,造成大陆下地壳热软化物质从盆地下部的幔隆区顺层流向相邻造山带之下的幔拗区。在下地壳层流过程中 ,地温场和速度场发生变  相似文献   

7.
东秦岭造山带的流变学及动力学分析   总被引:2,自引:0,他引:2       下载免费PDF全文
通过地质、地球物理和地球化学资料分析,建立了东秦岭地学断面带地壳二维深度-强度剖面,揭示了该造山带的地壳结构和流变学分层性.脆性的上地壳南薄北厚;中、下地壳包括莫霍面呈现水平流变状态,南端蠕变特征更明显;上地幔流变强度较大其地壳类型是栾川以南为H型地壳,构成中、新生代造山带的核部,具有伸展构造和走滑构造的特征,栾川以北为C型地壳,中、新生代的大陆汇聚带.东秦岭地学断面带整体上看为C-H型地壳,反映了后造山期陆内造山的构造特征.地壳物质为长英质-石英闪长质壳内软层具有低速、高热、强网状反射和低强度蠕变的地球物理特征,是后造山期经过调整的水平流变层.  相似文献   

8.
In this paper, the methods for Q value inversion in 2-D lateral inhomogeneous medium have been introduced. The 2-D Q value inversion has been conducted using seismic wide-angle reflection/refraction data of the profile from Korla to Jimsar. The result shows that the 2-D Q value structure of the transect from Korla to Jimsar is characterized by vertical stratifying and lateral zoning. Vertically, the crust can be divided into upper crust, middle crust and lower crust with the Q value increasing downwards. Horizontally, the total transect can be classified as three regions— the northern margin of the Tarim Basin, the Tianshan orogenic belt (TOB) and the southern margin of the Junggar Basin. At the northern margin of the Tarim Basin the Q value increases northwards, indicating a northward subduction of the Tarim Basin into the The Q value within the TOB jumps near Kumux, making a stage-like difference in Q value. The Q value distribution at the southern margin of the JB suggests a southward subduction of the Junggar Basin (JB) into the The double subduction pattern of the and JB into the TOB revealed by the transect from Korla to Jimsar has a big difference from the model “lithospheric subduction with intrusion of the layers into the crust” developed according to the results of the geoscience transect from Xayar to Burjing. The differences between the two provide some dynamic evidence at lithospheric scale for the segmentation of the Zhang Xiankang, Zhang Chengke, Jia Shixu et al., A summary report on exploration and research on GGT (in Chinese), 1999 Xu Xinzhong, A summary report on the results of seismic exploration on the comprehensive geophysical profile from Kktuohai to Aksai (in Chinese), 1990  相似文献   

9.
The Qinling–Dabie–Sulu orogenic belt in east-central China is the largest high and ultrahigh pressure (HP and UHP) metamorphic zone in the world. The Dabie Mountains are the central segment of this orogenic belt between the North China and Yangtze cratons. This work studies the nature of the crustal structure beneath the Dabie orogenic belt to better understand the orogeny. To do that, we apply ambient noise tomography to the Dabie orogenic belt using ambient noise data from 40 stations of the China National Seismic Network (CNSN) between January 2008 and December 2009. We retrieve high signal noise ratio (SNR) Rayleigh waves by cross-correlating ambient noise data between most of the station pairs and then extract phase velocity dispersion measurements from those cross-correlations using a spectral method. Taking those dispersion measurements, we obtain high-resolution phase velocity maps at 8–35 second periods. By inverting Rayleigh wave phase velocity maps, we construct a high-resolution 3D shear velocity model of the crust in the Dabie orogenic belt.The resulting 3D model reveals interesting crustal features related to the orogeny. High shear wave velocities are imaged beneath the HP/UHP metaphoric zones at depths shallower than 9 km, suggesting that HP/UHP metaphoric rocks are primarily concentrated in the upper crust. Underlying the high velocity HP/UHP metamorphic zones, low shear velocities are observed in the middle crust, probably representing ductile shear zones and/or brittle fracture zones developed during the exhumation of the HP/UHP metamorphic rocks. Strong high velocities are present beneath the Northern Dabie complex unit in the middle crust, possibly related to cooling and crystallization of intrusive igneous rocks in the middle crust resulting from the post-collisional lithosphere delamination and subsequent magmatism. A north-dipping Moho is revealed in the eastern Dabie with the deepest Moho appearing beneath the Northern Dabie complex unit, consistent with the model of Triassic northward subduction of the Yangtze Craton beneath the North China Craton.  相似文献   

10.
TheTOBisoneoftheyoungestandhighestintracontinentalorogenicbeltsinMiddleAsia.ItplaysaveryimportantroleinaccommodatingtheconvergencebetweenIndianContinentandtheSiberianContinent,andtherefore,itiswidelynoticedbygeoscientistsworldwide.Uptonow,severalgeoscienc…  相似文献   

11.
The Satpura Mountains of central India represents an ancient orogenic belt of the Mesoproterozoic time. It has a distinct sygmoidal (S-shaped) geometry with long EW and short NE–SW alignments. The mountain belt has been affected by tectonic activities throughout the geological past. The association of high seismicity, high heat flow and high Bouguer gravity anomaly with high topography of the region is a very distinct feature of the mountain range. Present analysis demonstrates that the average velocity for central India has a value of ~54 mm/year towards N050°. The velocity field vector can be partitioned into an eastward component parallel to the Satpura Mountain Belt and a northward component across the belt. The partitioned components provide evidence for sinistral strike–slip deformation of anomalously high shear strain rate of ~3 × 10−9/year in the region. Similar high shear strain rates are also found from the strain determined by GPS data. An extremely high rate of extensional strain (~600 × 10−9/year), which is comparable to that of the continental rift systems, is recorded from geodetic data of the Satpura Mountain Belt and the adjacent regions. Regional sinistral shape of the Satpura Mountains involved in a sinistral-slip transtension regime is interpreted to be the cause of high extensional and shear strain regime of the area. The occurrence of normal faulting detected in several deep seismic sounding profiles, the Moho upwarp, crustal thinning, high heat flow and high seismicity of the Satpura region are explained by this tectonic model.  相似文献   

12.
为了研究天山造山带的地球动力学,自1970年代以来,国内外在天山造山带开展了大量的深部探测工作,并取得了丰富的成果,本文对这些工作和成果进行了梳理和综述.已有研究结果表明:天山造山带的地壳厚度较大,但并无明显山根;地壳结构具有垂向分层和横向分块特征;壳幔界面不清晰,莫霍面在盆山接合部下方发生错断;壳内普遍发育低速异常体,地壳泊松比较高,暗示了地壳力学上的弱化作用;上地幔也存在波速异常体,低速异常可能与地幔热物质上涌有关,高速体可能是古老板块的岩石圈拆离碎片;莫霍面错断、Q值结构和波速异常特征可以用天山南北侧稳定地质块体往天山造山带之下俯冲来解释,这也得到高分辨率层析成像结果的支持;剪切波分裂结果暗示有相当厚的上地幔卷入了造山过程.上述资料表明天山造山带的变形和隆升是其南北侧稳定地质块体的构造挤压与壳—幔复杂耦合作用的共同结果.  相似文献   

13.
The traveling time of the reflection waves of each shot point from the crust-mantle transitional zone has been obtained by data processing using wavelet transform to the waves reflected from the crust-mantle transitional zone. The crust-mantle transitional zone of the Xayar-Burjing geoscience transect can be divided into three sections: the northern margin of the Tarim Basin, the Tianshan orogenic belt and Junggar Basin. The crust-mantle transitional zone is composed mainly of first-order discontinuity in the Tarim Basin and the Junggar Basin, but in the Tianshan orogenic belt, it is composed of 7–8 thin layers which are 2-3 km in thickness and high and low alternatively in velocity, with a total thickness of about 20km. The discovery of the crust-mantle transitional zone of the Tianshan orogenic belt and Junggar Basin and their differences in tectonic features provide evidence for the creation of the geodynamic model “lithospheric subduction with intrusion layers in crust” for the Tianshan orogenic belt.  相似文献   

14.
从2013年3月至2014年11月,我们布设了一条延川—涪陵的流动宽频带地震台阵,剖面由70个流动台站组成,全长约900km,穿越华北克拉通、秦岭—大巴造山带和扬子克拉通东北缘陆内三大构造单元.利用记录到的远震波形资料,提取得到5638个远震P波接收函数,使用H-κ叠加扫描和CCP偏移叠加方法刻划了秦岭造山带与南北相邻地带的地壳厚度、泊松比以及构造界带.研究结果显示,(1)关于地壳厚度:地壳最厚的区域出现在大巴山,地壳厚度集中在47~51km之间,秦岭的地壳厚度相对大巴山较薄,且呈向北减薄趋势,集中在37~46km之间,渭河盆地地壳厚度为本区域最薄地带,在34°N左右处达到最薄为35km,剖面北侧的南鄂尔多斯盆地的地壳厚度变化缓慢,多为44km左右,南侧的四川盆地东北缘的地壳厚度向南缓慢减薄,集中在42~48km之间;(2)关于泊松比:使用接收函数H-κ叠加扫描法得到了沿剖面各台站下方地壳的平均纵、横波速度比VP/VS(κ),进一步计算得到泊松比σ,泊松比具有明显的横向分块特征,秦岭造山带的泊松比明显低于南北两侧区域,其小于0.26的泊松比表征着该区域地壳物质组分主要为酸性岩石,亦即其酸性长英质组分上地壳相对于基性铁镁质组分下地壳较厚,该区域没有高泊松比分布则表明不存在广泛的部分熔融.(3)关于构造界带:秦岭—大巴造山带与扬子克拉通的边界并非在勉略构造带,应向南移至四川盆地的东北缘,华北克拉通和扬子克拉通分踞秦岭—大巴造山带南、北两侧,且分别以较陡倾角向南和相对较缓的倾角向北俯冲于秦岭—大巴造山带之下,使得秦岭—大巴造山带呈不对称状扇形向外扩展与向上抬升的空间几何模型.秦岭和大巴山之间33°N附近存在分界面,两区域地壳厚度与泊松比特征各异.  相似文献   

15.
A model involving buoyancy, wedging and thermal doming is postulated to explain the differential exhumation of ultrahigh-pressure (UHP) metamorphic rocks in the Dabie Mountains, China, with an emphasis on the exhumation of the UHP rocks from the base of the crust to the upper crust by opposite wedging of the North China Block (NCB). The Yangtze Block was subducted northward under the NCB and Northern Dabie microblock, forming UHP metamorphic rocks in the Triassic (240–220 Ma). After delamination of the subduction wedge, the UHP rocks were exhumed rapidly to the base of the crust by buoyancy (220–200 Ma). Subsequently, when the left-lateral Tan–Lu transform fault began to be activated, continuous north–south compression and uplifting of the orogen forced the NCB to be subducted southward under the Dabie Orogen (`opposite subduction'). Opposite subduction and wedging of the North China continental crust is responsible for the rapid exhumation of the UHP and South Dabie Block units during the Early Jurassic, at ca 200–180 Ma at a rate of ∼ 3.0 mm/year. The UHP eclogite suffered retrograde metamorphism to greenschist facies. Rapid exhumation of the North Dabie Block (NDB) occurred during 135–120 Ma because of thermal doming and granitoid formation during extension of continental margin of the Eurasia. Amphibolite facies rocks from NDB suffered retrograde metamorphism to greenschist facies. Different unit(s) and terrane(s) were welded together by granites and the wedging ceased. Since 120–110 Ma, slow uplift of the entire Dabie terrane is caused by gravitational equilibrium.  相似文献   

16.
Geology of the Grove Mountains in East Antarctica   总被引:2,自引:0,他引:2  
Grove Mountains consists mainly of a series of high-grade (upper amphibolite to granulite facies) metamorphic rocks, including felsic granulite, granitic gneiss, mafic granulite lenses and charnockite, intruded by late tectonic gneissic granite and post-tectonic granodioritic veins. Geochemical analysis demonstrates that the charnockite, granitic gneiss and granite belonged to aluminous A type plutonic rocks, whereas the felsic and mafic granulite were from supracrustal materials as island-arc, oceanic island and middle oceanic ridge basalt. A few high-strained shear zones disperse in regional stable sub-horizontal foliated metamorphic rocks. Three generations of ductile deformation were identified, in which D1 is related to the event before Pan-African age, D2 corresponds to the regional granulite peak metamorphism, whereas D3 reflects ductile extension in late Pan-African orogenic period. The metamorphic reactions from granitic gneiss indicate a single granulite facies event, but 3 steps from mafic granulite, with P-T condition of M1 800°C, 9.3×105 Pa; M2 800–810°C, 6.4 × 105 Pa; and M3 650°C have been recognized. The U-Pb age data from representative granitic gneiss indicate (529±14) Ma of peak metamorphism, (534±5) Ma of granite emplacement, and (501±7) Ma of post-tectonic granodioritic veins. All these evidences suggest that a huge Pan-African aged mobile belt exists in the East Antarctic Shield extending from Prydz Bay via Grove Mountains to the southern Prince Charles Mountains. This orogenic belt could be the final suture during the Gondwana Land assemblage.  相似文献   

17.
对包含大别-苏鲁碰撞造山带在内的东经 112°-124°,北纬28°-39°区域进行地 震层析成像研究,重建其地壳及上部地幔的三维速度图像.结果表明:造山带岩石圈速度横 向不均匀性显著;大别造山带以商城-麻城断裂为界,东侧的大别地块与西侧红安地块在地 壳速度上是两个不同的速度块体;中地壳 15-25km深度范围内存在低速带,与伸展滑脱构造 有关;南、北大别构造单元之下,莫霍面下凹,地壳内发育了速度为6.5-6.6km/s、向北倾斜的 相对高速体,与超高压变质岩体相对应;在大别-苏鲁造山带下方的上部地幔中存在向北倾 斜的板片状高速体,结合已有地质、地球化学证据推测,它是三叠纪俯冲的扬子地块的残留 体;俯冲板片在深部发生了断离.本文利用地震层析成像方法揭示的造山带岩石圈速度结构 细节,对研究与地表地质有关的地球动力学无疑是十分重要的.  相似文献   

18.
The time evolution of negative buoyancy of a subducting slab is modelled from the beginning of subduction under various kinematic conditions (dip angle and subduction velocity). The calculations take into account the thermal and density effects of the variations of the thermophysical parameters with temperature and pressure, and of phase transitions. The magnitude of the negative buoyancy increases during subduction of oceanic lithosphere, up to values in the (2–4) × 1013 N m−1 range when the tip of the slab reaches a depth of 600–700 km. If continental material arrives at the trench and is subducted, the downward buoyancy decreases by an amount proportional to the volume of the subducted continental crust. Assuming that subduction stops when the buoyancy becomes zero, and that delamination of the continental crust or slab breakoff do not occur, the maximum downdip length of the subductable continental crust is estimated as a function of the dip angle, subduction velocity and geometry of the margin. In most cases, subduction of continental material down to depths of 100–250 km is possible, and continental subduction can continue for times up to 10–15 Ma if the velocity is low. These estimates are not significantly affected by the hypothetical occurrence of a metastable olivine wedge within the slab, and could be lower bounds if the lower continental crust is mafic and transforms to eclogite.  相似文献   

19.
库尔勒—吉木萨尔剖面横跨塔里木盆地北缘、天山造山带和准噶尔盆地南缘.沿剖面完成了重磁联合反演,获得了岩石圈二维密度结构与二维磁性结构.结果发现,塔里木盆地与准噶尔盆地向天山造山带对冲.在地壳范围内,塔里木盆地北缘与准噶尔盆地南缘的平均密度较高,天山造山带的地壳平均密度较低.天山造山带具有较高的磁化强度,尤其表现在准噶尔盆地南缘至天山造山带中部的整个地壳范围内,预示着天山南北可能具有不同的构造演化历史、构造运动方式以及构造运动强度.在塔里木盆地与天山造山带以及准噶尔盆地与天山造山带的接触部位的上地幔顶部分别发现了低密度体,推测在塔里木盆地由南而北向天山造山带“层间插入与俯冲消减”,以及准噶尔盆地由北而南向天山造山带俯冲的过程中塔里木盆地北缘和准噶尔盆地南缘下地壳物质被带进天山造山带上地幔顶部.库尔勒—吉木萨尔剖面岩石圈二维密度结构与磁性结构为天山造山带的构造分段提供了岩石圈尺度的依据.  相似文献   

20.
Cretaceous episodic growth of the Japanese Islands   总被引:1,自引:0,他引:1  
G. Kimura 《Island Arc》1997,6(1):52-68
Abstract The Japanese Islands formed rapidly in situ along the eastern Asian continental margin in the Cretaceous due to both tectonic and magmatic processes. In the Early Cretaceous, huge oceanic plateaus created by the mid-Panthalassa super plume accreted with the continental margin. This tectonic interaction of oceanic plateau with continental crust is one of the significant tectonic processes responsible for continental growth in subduction zones. In the Japanese Islands, Late Cretaceous-Early Paleogene continental growth is much more episodic and drastic. At this time the continental margin uplifted regionally, and intra-continent collision tectonics took place in the northern part of the Asian continent. The uplifting event appears to have been caused by the subduction of very young oceanic crust (i.e. the Izanagi-Kula Plate) along the continental margin. Magmatism was also very active, and melting of the young oceanic slab appears to have resulted in ubiquitous plutons in the continental margin. Regional uplift of the continental margin and intra-continent collision tectonics promoted erosion of the uplifted area, and a large amount of terrigenous sediment was abruptly supplied to the trench. As a result of the rapid supply of terrigenous detritus, the accretionary complexes (the Hidaka Belt in Hokkaido and the Shimanto Belt in Southwest Japan) grew rapidly in the subduction zone. The rapid growth of the accretionary complexes and the subduction of very young, buoyant oceanic crust caused the extrusion of a high-P/T metamorphic wedge from the deep levels of the subduction zone. Episodic growth of the Late Cretaceous Japanese Islands suggests that subduction of very young oceanic crust and/or ridge subduction are very significant for the formation of new continental crust in subduction zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号