首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K. Vijaya Kumar  K. Rathna 《Lithos》2008,104(1-4):306-326
Mesoproterozoic rift-zone magmatism in the Prakasam Alkaline Province of Eastern Ghats Belt, India is represented by three geochemically distinct primary mafic magmas and their plutonic differentiates. The three mafic magmas correspond to the alkali basaltic dykes, gabbroic dykes and lamprophyric dykes. The dyke activity is synchronous with the host plutons and belongs to the 1350–1250 Ma period Mesoproterozoic magmatism. Geochemical signatures suggest that the alkali basaltic dykes have a source in the thermal boundary layer, which has a history of prior melt extraction followed by enrichment. Both the gabbroic and lamprophyric dykes are derived from lithospheric sources and their geochemical variation can be explained by “vein-plus-wall-rock melting model”. Vein/wall-rock ratio is low for the sources of gabbroic dykes, whereas it is high for the lamprophyric dykes. Geochemistry of the gabbro dykes further indicates preservation of previous arc-signals by the lithosphere beneath the Prakasam Alkaline Province during the Mesoproterozoic. Geochemical signatures of lamproite, which could be a cratonic expression of the rift-triggered magmatism in the Prakasam Province, suggest a general increase in the metasomatic imprint with increasing lithosphere thickness from cratonic margin towards interior. It is found that geochemistry of continental rift-zone magmatism of the Prakasam rift is remarkably similar to that of the Gardar rift of South Greenland. It appears that the geodynamic conditions under which melting occurred in the Prakasam Alkaline Province are similar to that of a propagating rift with variable contributions from the convective mantle and subcontinental lithosphere mantle to the rift-zone magmas. The present study illustrates how fertility and chemical heterogeneity of the lithosphere play significant roles in the creation of enormous geochemical diversity characteristic of continental rift-zone magmatism.  相似文献   

2.
Sedimentary geochemistry of fine-grained strata of the Great Valley Group (GVG) in California documents a provenance signal that may better represent unstable, mafic minerals and volcanic clasts within sediment source regions than the provenance signal documented in the petrofacies and detrital zircon analysis of coarser sedimentary fractions. Geochemistry of the GVG provides an overall provenance framework within which to interpret sandstone petrofacies and detrital zircon age signatures. The geochemical signature for all Sacramento Valley samples records an overall continental arc source, with significant variation but no clear spatial or temporal trends, indicating that the geochemical provenance signal remained relatively consistent and homogenized through deposition of Sacramento basin strata. The San Joaquin basin records a distinct geochemical provenance signature that shifted from Early to Late Cretaceous time, with Lower Cretaceous strata recording the most mafic trace element geochemical signature of any GVG samples, and Upper Cretaceous strata recording the most felsic geochemical signature. These provenance results suggest that the early San Joaquin basin received sediment from the southern Sierran foothills terranes and intruding plutons during the Early Cretaceous, with sediment sources shifting east as the southern Sierran batholith was exhumed and more deeply eroded during the Late Cretaceous. The GVG provenance record does not require sediment sources inboard of the arc at any time during GVG deposition, and even earliest Cretaceous drainage systems may not have traversed the arc to link the continental interior with the margin. Because the GVG provenance signature is entirely compatible with sediment sources within the Klamath Mountains, the northern and western Sierran foothills belt, and the main Cretaceous Sierran batholith, the Klamath-Sierran magmatic arc may have formed a high-standing topographic barrier throughout the Cretaceous period.  相似文献   

3.
A comparison of late Mesoproterozoic palaeomagnetic poles from the Kalahari craton and its correlative Grunehogna craton in East Antarctica shows that the Kalahari–Grunehogna craton straddled the palaeo-Equator and underwent no azimuthal rotation between ca. 1130 and 1105 Ma. Comparison of the Kalahari palaeopoles with the Laurentia APWP between 1130 and 1000 Ma shows that there was a latitudinal separation of 30±14° between Kalahari and the Llano–West Texas margin of Laurentia at ca. 1105 Ma. The Kalahari craton could have converged with southwestern Laurentia between 1060 and 1030 Ma to become part of Rodinia by 1000 Ma. In Rodinia, the Kalahari craton lay near East Antarctica with the Namaqua–Natal orogenic belt facing outboard and away from the Laurentian craton.  相似文献   

4.
滇中地区中元古界"昆阳群"、"东川群"的地层层序是长期争议的重大基础地质问题。本次在峨山地区东川群黑山组中发育的厚近5m厚的流纹质碎斑熔岩采集样品D0023一件,选出120余粒锆石,获得的锆石LA-ICP-MS U-Pb加权平均年龄为(1569. 2±4. 5) Ma。样品锆石的Th/U值均大于0. 5,具有清晰的振荡环带结构,均为岩浆成因的锆石,表明东川群黑山组形成于中元古代早期,属非造山相关的火山岩系,可能是哥伦比亚超大陆裂解作用在扬子陆块的响应,为东川群的地层时代和层序研究增添了新资料。  相似文献   

5.
The Mesoproterozoic Granite-Rhyolite Provinces in North America consist of A-type granitic and rhyolitic rocks, and their formation is commonly ascribed to continental `extension' or `rifting'. The tectonic environment of the extension is, however, poorly understood. New Sm–Nd isotopic data from the Central Gneiss Belt, Grenville Province, Ontario, suggest that rocks compositionally and temporally similar to those in the Granite-Rhyolite Provinces formed in and behind an active continental arc undergoing intra-arc and back-arc extension. Basaltic underplating accompanied extension, providing heat and juvenile material. Source rocks vary from juvenile within the arc, to more mature with increasing distance behind the arc. Recent investigations from SW Baltica show that the Rjukan Group, a proposed Granite-Rhyolite Province correlative, also formed inboard of an active continental arc. A tectonically and temporally similar, and probably recurrent, evolution along the vast Laurentia–Baltica margin points to active continental-margin processes as first-order controls on back-arc granite-rhyolite magmatism.  相似文献   

6.
The Lower Palaeozoic sequences of the Rügen boreholes are composed of pelitic-clastic sediments which range in age from the Cambro-Ordovician boundary to the Late Ordovician. Provenance studies have been carried out on Cambro-Ordovician sandstones from the Loissin borehole and on Middle-Upper Ordovician greywackes of the Rugen 5 borehole.The Loissin sandstones were deposited as turbidites and debris flows in an unstable sedimentary basin. They form immature arkoses and subarkoses with high matrix contents. Their debris derived from a polycyclic, sedimentary cratonic provenance and from a monocyclic magmatic provenance. This is reflected in the heavy mineral spectrum, which is dominated by an anhedral, coloured zircon fraction and a euhedral, transparent zircon fraction.The Middle-Upper Ordovician Rügen greywackes derived from proximal, high energy turbidites which were transported into a deep marine basin. They form homogeneous lithic arkoses and arkosic litharenites. Their debris derived from a composite provenance with an ultramafic-mafic, ophiolitic source, an acidic magmatic source and a heterogeneous sedimentary cratonic source.Although the Loissin sandstones probably originated in an intracratonic, rift-related sedimentary basin, the debris of the Rugen greywackes is regarded as derived from a heterogeneous active continental margin. Results and interpretations of the provenance study are discussed in the light of proposed Lower Palaeozoic palaeogeographic reconstructions.  相似文献   

7.
The Mesoproterozoic Upper Kaimur Group consists of Bijaigarh Shale, Scarp Sandstone, and Dhandraul Sandstone. Based on the lithofacies data set, two major facies associations were identified, namely—tidal sand flat/sand bar facies association (TSFA) and tidally influenced fluvial channel facies/tidal channel facies association (TIFCFA). The Dhandraul Sandstone has been interpreted as a product of TIFCFA and the underlying Scarp Sandstone in TSFA which endorses a tidal dominated estuarine setting. Detrital modes of the Dhandraul and Scarp Sandstones fall in the quartz arenite to sub-litharenite types. Petrographical data suggest that the deposition of the Upper Kaimur Group sandstones took place in humid climate and was derived from mixed provenances. The sandstone composition suggests detritus from igneous rocks, metamorphic rocks, and recycled sedimentary rocks. The sandstone tectonic discrimination diagrams suggest that the provenances of the Upper Kaimur Group sandstones were continental block, recycled orogen, rifted continental margin to quartzose recycled tectonic regimes. It is envisaged that the Paleo- and Mesoproterozoic granite, granodiorite, gneiss, and metasedimentary rocks of Mahakoshal Group and Chotanagpur granite–gneiss present in the western and northwestern direction are the possible source rocks for the Upper Kaimur Group in the Son Valley.  相似文献   

8.
滇中玉溪—昆阳一带广泛出露的中元古界昆阳群是一套与晋宁运动密切相关的浅变质火山-沉积岩系,其形成时代、沉积充填序列及大地构造属性一直存在争议。出露于峨山县美党地区的昆阳群黑山头组富良棚段发育有厚近百米的安山质熔结凝灰岩、晶屑凝灰岩、玄武岩及岩屑凝灰岩。对样品D0121-1及D0121-2进行同位素年代学研究,分别获得LA-ICP-MS锆石U-Pb年龄加权平均值为1007±13Ma和1005±18Ma;同时,样品D0121-2中还获较多的2200±15Ma继承性锆石,推测滇中地区应存在古元古代的地质体。2件样品锆石的Th/U值均大于0.3,均具清晰的振荡环带结构,均为岩浆成因的锆石,表明黑山头组富良棚段形成于中元古代晚期,属于与造山作用相关的火山岩系,可能是罗迪尼亚超大陆事件在扬子陆块的响应,是全球格林维尔期造山过程的组成部分。  相似文献   

9.
The SE margin of the Yangtze Block, South China is composed of the Mesoproterozoic Lengjiaxi Group and the Neoproterozoic Banxi Group, with Sinian- and post-Sinian-cover. A geochemical study was undertaken on the Mesoproterozoic–Neoproterozoic clastic sediments in order to delineate the characteristics of the sediment source and to constrain the tectonic development and crustal evolution of South China.Our results show that the Mesoproterozoic clastic sediments have a dominant component derived from a metavolcanic-plutonic terrane, with a large of mafic component. There is a minor contribution of mafic rocks and older upper crustal rocks to the provenance. Strong chemical weathering in the source area occurred before transport and deposition. The provenance for the Neoproterozoic clastic sediments was most likely old upper continental crust composed of tonalite–granodiorite-dominated, tonalite–granodiorite–granite source rocks, which had undergone strong weathering and/or recycling. A minor component of older K-rich granitic plutonic rocks and younger volcanogenic bimodal rocks is also indicated.Based on the regional geology, the geochemical data and the inferred provenance, the Mesoproterozoic Group is interpreted as a successive sedimentary sequence, deposited in an extensional/rifting back-arc basin, adjacent to a >1.80 Ga continental margin arc-terrane. The progressive extension/rifting of the back-arc basin was followed by increasing subsidence and regional uplift during continental marginal arc-continent (the Cathaysian Block) collision at 1.0 Ga caused the deposition of the Neoproterozoic Group into back-arc to retro-arc foreland basin. Therefore, the depositional setting of the Proterozoic clastic sediments and associated volcanic rocks within the back-arc basin reflected basin development from an active continental margin (back-arc basin), with extension or rifting of the back-arc basin, to a passive continental margin.  相似文献   

10.
华北克拉通南缘汝阳群中以大型具刺疑源类为代表的真核生物群的时代归属问题一直存在争议。新近在豫西汝州阳坡村洛峪群洛峪口组中获得的凝灰岩锆石SHRIMP U-Pb年龄为1639±13Ma,结合熊耳群和汝阳群已获得的其他年龄数据,将这类形态复杂的真核生物群出现的时间限定在1.75—1.64Ga,即中元古代的早期。这说明,过去一直被认为的代表进化程度较高但仅属于新元古代的一些真核生物群,其实在中元古代早期就已经出现了;由此可以进一步推测,在更古老的地层中应有更原始的微体化石出现,从而华北克拉通南缘中元古界(>1.60Ga)将成为探寻最古老真核生物祖先的重要窗口。同时,将这些在中元古代早期就已经出现并在以后较长地史时期都存在的真核生物群用于标定地层形成时代或作为相关地层的对比标志,值得重新考虑和商榷。  相似文献   

11.
秦岭造山带东段秦岭岩群的年代学和地球化学研究   总被引:20,自引:14,他引:6  
时毓  于津海  徐夕生  邱检生  陈立辉 《岩石学报》2009,25(10):2651-2670
对东秦岭地区的陕西省洛南县、宁陕县、长安县和河南省淅川县出露的四个秦岭岩群变质岩进行的岩石学和地球化学研究表明,样品主要由变质火山岩和变质沉积岩组成.详细的锆石U-Pb定年结果显示三个正变质岩均形成于新元古代早期(971~843Ma),而副变质岩中富集大量新元古代碎屑锆石,根据最年轻的谐和年龄(859Ma)和早古生代的变质年龄,推测其沉积时代为新元古代中晚期.因此,北秦岭南部的秦岭岩群的变质岩主要由新元古代早期的火成岩和新元古代中晚期的沉积岩组成.变质作用主要发生在加里东期,局部有燕山期的变质作用叠加.指示北秦岭的造山作用主要发生在早古生代.岩石地球化学研究还显示秦岭岩群的新元古代火山岩均形成于火山弧构造环境,沉积岩沉积于大陆弧-活动大陆边缘环境,指示秦岭造山带在新元古代早期是一个火山弧.秦岭岩群的火山岩和沉积岩在形成时代和构造环境方面与扬子克拉通西缘的特征非常相似,表明位于北秦岭造山带的秦岭岩群应归属于扬子克拉通陆块,是扬子北缘的一个大陆边缘弧.  相似文献   

12.
西秦岭南缘白水江群主要由碎屑岩基质和不同性质的岩块组成,碎屑岩为一套深水浊流沉积.碎屑岩的稀土元素球粒陨石标准化曲线以轻稀土元素富集、Eu负异常和重稀土元素平坦为特征;主量元素和微量元素的特征指示白水江群碎屑岩的物质来源具有多源性,但主要以岛弧环境为主.这表明白水江群的构造环境为活动大陆边缘,而非被动大陆边缘.  相似文献   

13.
The Neoproterozoic Bhander Group in the Son Valley, central India conformably overlying the Rewa Group, is the uppermost subdivision of the Vindhyan Supergroup dominantly composed of arenites, carbonates and shales. In Maihar-Nagod area, a thick pile of unmetamorphosed clastic sedimentary rocks of Bhander Group is exposed, which provides a unique opportunity to study Neoproterozoic basin development through provenance and tectonic interpretations. The provenance discrimination and tectonic setting interpretations are based on modal analysis and whole rock geochemistry. The average framework composition of the detrital sediments composed of quartz and sedimentary lithic fragments are classified as quartz arenite to sublitharenite. The sandstone geochemically reflects high SiO2, moderate Al2O3 and low CaO and Na2O type arenite. The high concentration of HFSE such as Zr, Hf, and Th/Sc, Th/U ratios in these sandstones indicate a mixed provenance. The chondrite normalized REE pattern shows moderate to strong negative Eu anomaly which suggests that major part of the sediments were derived from the granitic source area. The sandstone tectonic discrimination diagrams and various geochemical plots suggest that the provenance of the lower and upper Bhander sandstone formations was continental interior to recycled orogen.  相似文献   

14.
Marine geophysical data from the southern Natal Valley and northern Transkei Basin, offshore southeast Africa, were used to study the structure of the crust and sedimentary cover in the area. The data includes seismic reflection, gravity and magnetics and provides information on the acoustic basement geometry (where available), features of the sedimentary cover and the basin's development. Previously mapped Mesozoic magnetic anomalies over a part of the basin are now recognized over wider areas of the basin. The ability to extend the correlation to the southeast within the Natal Valley further confirms an oceanic origin for this region and provides an opportunity to amplify the existing plate boundary reconstructions.The stratigraphic structure of the southern Natal Valley and the northern Transkei Basin reflects processes of the ocean crust formation and subsequent evolution. The highly variable relief of the acoustic basement may relate to the crust formation in the immediate vicinity of the continental transform margin. Renewed submarine seismicity and neotectonic activity in the area is probably related to the diffuse boundary between the Nubia and Somalia plates.2.5-D crustal models show that a 1.7–3.2-km-thick sediment sequence overlies a 6.3±1.2-km-thick normal oceanic crust in the deep southern Natal Valley and Transkei Basin. The oceanic crust in the study area is heterogeneous, made up of blocks of laterally varying remanent magnetization (0.5–3.5 A/m) and density (2850–2900 kg/m3). Strong modifications of accretionary processes near ridge/fracture zone intersections may be a reason of such heterogeneity.  相似文献   

15.
三叠系西康群碎屑岩主体为一套浊积岩复理石建造。通过对西康群砂、泥岩地球化学组成特征研究,认为其物源来自康滇古陆表壳岩及其上覆的盖层沉积,大地构造属性为被动大陆边缘到活动大陆边缘再到多岛弧的转化。  相似文献   

16.
八里房金矿床位于黑龙江省漠河县西北部,是一个新发现的金矿床。矿体赋存于闪长岩和中侏罗统额木尔河组长石砂岩中,矿石由含金、黄铁矿的长石砂岩和石英细脉组成。岩石地球化学研究表明:闪长岩稀土总量中到低,富集大离子亲石元素(如K、Rb、Ba)和化学性质活泼不相容元素(如U、Th、Pb),相对亏损高场强元素(如Ta、Nb、P、Sr、Ti),球粒陨石标准化稀土配分模式为轻稀土富集、重稀土亏损的右倾型,具有弱的Eu负异常(δEu平均值为0.8),无Ce异常(δCe=0.9~1.0),元素地球化学性质反映出八里房闪长岩具有岛弧岩浆岩的特征;长石砂岩稀土元素总量(∑REE)变化较大,具弱Eu负异常(δEu平均值为0.8),无Ce异常(δCe=0.9~1.0),为活动边缘砂岩系列。含金石英脉中流体包裹体有气液两相、含CO2三相和纯CO2流体包裹体3种类型。气液两相包裹体均一温度为107.9~247.4 ℃,盐度(w(NaCl))为3.05%~8.55%,密度为0.84~1.00 g·cm-3;含CO2三相包裹体完全均一温度为269.8~332.7 ℃,盐度为4.41%~10.29%,成矿流体为中低温、低盐度的热液流体体系。基于矿床地质特征、岩石地球化学和成矿流体特征的研究,笔者认为八里房金矿床为造山型金矿床。  相似文献   

17.
喀纳斯群为一套巨厚的中低压型浅变质碎屑岩系,主要由片岩、片麻岩、变质砂岩等组成,其形成时代未有统一的认识,致使阿尔泰构造带的构造演化过程争议较大。对喀纳斯群变质岩进行原岩恢复,认为该套变质岩为副变质岩,考虑到变质碎屑岩的成岩物质继承母岩特征和变质程度的影响,利用碎屑岩研究方法对元素地球化学特征进行探讨,显示出喀纳斯群变质碎屑岩原岩形成环境以大陆岛弧为主,兼有活动大陆边缘的特征,CIA、ICV指数反应出原岩经历了相对温暖、湿润的风化作用,成熟度较低。锆石U-Pb定年结果表明,最年轻的锆石年龄集中在(500±3.0)Ma,代表喀纳斯群的上限年龄,认为该套地层形成于晚寒武世晚期之前,为一套形成于大陆岛弧或活动大陆边缘的复理石建造。新元古代青白口纪初期基底裂解事件,暗示着阿尔泰构造带存在前寒武纪大陆地壳基底。  相似文献   

18.
ABSTRACT The Sumeini Group formed along the passive continental margin slope that bounded the northeastern edge of the Arabian carbonate platform. With the initial development of this passive continental margin in Oman during Early to Middle Triassic time (possibly Permian), small carbonate submarine fans of the C Member of the Maqam Formation developed along a distally steepened slope. The fan deposits occur as several discrete lenticular sequences of genetically related beds of coarsegrained redeposited carbonate (calciclastic) sediment within a thick interval of basinal lime mudstone and shale. Repeated pulses of calciclastic sediment were derived from ooid shoals on an adjacent carbonate platform and contain coarser intraclasts eroded from the surrounding slope deposits. Sediment gravity flows, primarily turbidites with lesser debris flows and grain flows, transported the coarse sediments to the relatively deep submarine fans. Channel erosion was a major source of intraformational calcirudite. Two small submarine fan systems were each recurrently supplied with calciclastic sediment derived from point sources, submarine canyons. The northern fan system retrogrades and dies out upsection. The southern fan system was apparently longer-lived; calciclastic sediments in it are more prevalent and occur throughout the section. The proximal portions of this fan system are dominated by channelized beds of calcirudite which represent inner- to mid-fan channel complexes. The distal portions include mostly lenticular, unchannelized beds of calcarenite, apparently mid- to outer-fan lobes. Carbonate submarine fans appear to be rare in the geological record in comparison with more laterally continuous slope aprons of coarse redeposited sediment. The carbonate submarine fans of the C Member apparently formed by the funnelling of coarse calciclastic sediment into small submarine canyons which may have developed due to rift and/or transform tectonics. The alternation of discrete sequences of calciclastic sediment with thick intervals of ‘background’ sediment resulted from either sea-level fluctuations or pulses of tectonic activity.  相似文献   

19.
张魁武  邵济安 《岩石学报》1997,13(2):168-172
跃进山群出露位于佳木斯地块和那丹哈达地体之间,是完达山造山带的组成部分。它由大陆斜坡相沉积物、大洋中脊型玄武岩和洋岛型玄武岩组成,其中有镁铁-超镁铁质岩块体。它不是一个地层单位,而是与活动大陆边缘板块俯冲作用有关的蛇绿混杂岩  相似文献   

20.
The 2.0 Ga supracrustal Kolhan Group to the south of Chaibasa in Singhbhum Craton, eastern India is a shale-dominated succession deposited in continental rift setting. It begins with thin plane- and cross-bedded red and purple sandstones consisting of ferric oxide-rich quartz arenite with beds/lenses of conglomerates deposited in shallow, ephemeral braided streams. The thick and extensive shale deposited in lacustrine environment overlies the sandstone. The shale succession consisting of thin and even bedded shale and silty shale contains lenticular bodies of finely laminated thin-bedded limestones and manganese-rich interval towards the basal part. It lacks subaerial exposure and tidal features and at places exhibits small wave ripples on bed surfaces.

Petrography, geochemistry and CIA values of Kolhan siliciclastics, suggest passive margin tectonic setting, an intensely weathered low-relief provenance dominantly composed of granitoid rocks and a warm and humid palaeoclimate. Based on similarities in age, lithology, petrography, depositional environment and type of mineralization, the Kolhan Group in Singhbhum Craton is correlated with manganese bearing Wyllies Poort Formation of the Soutpansberg Group, northeast Kaapvaal Craton, South Africa. This correlation suggests the two cratonic blocks may formerly have been juxtaposed and represents the sundered fragments of an Archean Craton.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号