首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 74 毫秒
1.
Landslides are frequent natural disasters in mountainous regions, particularly in the Himalayas in India during the southwest monsoon season. Although scientific study of landslides has been in progress for years, no significant achievement has been made to preclude landsliding and allay disasters. This research was undertaken to understand the areal distribution of landslides based on geological formations and geomorphological processes, and to provide more precise information regarding slope instability and mechanisms of failure. After completing a landslide inventory, prepared through field investigation and satellite image analysis, 493 landslides, comprising 131 investigated in the field and 362 identified from satellite imagery, were identified and mapped. The areal distribution of these landslides shows that sites more prone to landsliding have moderate to steep slopes, the lithology of the Lesser Himalayan formations, and excavations for road corridors. Landslide susceptibility zones were delineated for the area using the weight-of-evidence method on the basis of the frequency and distribution of landslides. Weights of selected variables were computed on the basis of severity of triggering factors. The accuracy of landslide susceptibility zones, calculated statistically (R2 = .93), suggests high accuracy of the model for predicting landsliding in the area.  相似文献   

2.
Three hundred and sixty three landslides in three watersheds that totaled 382 km2 were identified from air photographs, beginning at a date that preceded logging to the present. The three watersheds all lie on Vancouver Island; however, they have different precipitation regimes, topography, and amounts logged. Landslide areas in the watersheds varied in size from 200 m2 to more than 1 ha. Nearly 80% of the landslides were debris slides; 15% were debris flows, and the remainder primarily rock falls. Following logging, the number of landslides increased substantially in all watersheds although the amount of increase was variable: approximately 11, 3, and 16 times in Macktush Creek, Artlish River, and Nahwitti River, respectively. Other analyses of changes in landslide density also produced highly variable results, with the number of landslides increasing between 2.4 and 24 times. Further, 2–12 times more landslides reached streams following logging activities. Densities for landslides impacting streams increased for the period of record from 1.5 to 10 times following logging activities. The densities were substantially greater where only landslides that reached streams since development began in a watershed were considered. Roads had the greatest spatial impact in the watersheds (compared to their total area), with frequencies determined to have increased by 27, 12, and 94 times for Macktush, Artlish, and Nahwitti, respectively. The results highlight the relative impact of roads and their role in slope stability.  相似文献   

3.
Sedimentary impacts from landslides in the Tachia River Basin, Taiwan   总被引:1,自引:0,他引:1  
Chien-Yuan Chen   《Geomorphology》2009,105(3-4):355-365
A case study of coseismic landslides and post-seismic sedimentary impacts of landslides due to rainfall events was conducted in the Tachia River basin, Taichung County, central Taiwan. About 3000 coseismic landslides occurred in the basin during the ML 7.3 Chi-Chi earthquake in 1999. The deposits from these landslides provided material for numerous debris flows induced by subsequent rainfall events. The estimated 4.1 × 107 m3 of landslide debris produced in the upland area caused sediment deposition in riverbeds, and flash floods inundated downstream areas with sediment during torrential rains. The landslide frequency-size distributions for the coseismic landslides and the subsequent rainfall-induced landslides were analyzed to determine the sediment budgets of the post-seismic geomorphic response in the landslide-dominated basin. Both the coseismic and the rainfall-induced landslides show a power–law frequency-size distribution with a rollover. It was found that the rainfall-induced landslide magnitude was smaller than the coseismic one, and that both have comparable negative scaling exponents in cumulative form, of about − 2.0 for larger landslides (> 10− 2 km2). This may be attributed to ongoing movement or reactivation of old landslides, and a natural stabilisation of small landslides between 10− 4 and 10− 2 km2. It is proposed that the characteristics of geological formations and rainfall as well as changes in landslide area are reflected in the power–law distribution.  相似文献   

4.
Landslides triggered by rainfall are the cause of thousands of deaths worldwide every year. One possible approach to limit the socioeconomic consequences of such events is the development of climatic thresholds for landslide initiation. In this paper, we propose a method that incorporates antecedent rainfall and streamflow data to develop a landslide initiation threshold for the North Shore Mountains of Vancouver, British Columbia. Hydroclimatic data were gathered for 18 storms that triggered landslides and 18 storms that did not. Discriminant function analysis separated the landslide-triggering storms from those storms that did not trigger landslides and selected the most meaningful variables that allow this separation. Discriminant functions were also developed for the landslide-triggering and nonlandslide-triggering storms. The difference of the discriminant scores, ΔCS, for both groups is a measure of landslide susceptibility during a storm. The variables identified that optimize the separation of the two storm groups are 4-week rainfall prior to a significant storm, 6-h rainfall during a storm, and the number of hours 1 m3/s discharge was exceeded at Mackay Creek during a storm. Three thresholds were identified. The Landslide Warning Threshold (LWT) is reached when ΔCS is −1. The Conditional Landslide Initiation Threshold (CTLI) is reached when ΔCS is zero, and it implies that landslides are likely if 4 mm/h rainfall intensity is exceeded at which point the Imminent Landslide Initiation Threshold (ITLI) is reached. The LWT allows time for the issuance of a landslide advisory and to move personnel out of hazardous areas. The methodology proposed in this paper can be transferred to other regions worldwide where type and quality of data are appropriate for this type of analysis.  相似文献   

5.
Terrain attributes such as slope gradient and slope shape, computed from a gridded digital elevation model (DEM), are important input data for landslide susceptibility mapping. Errors in DEM can cause uncertainty in terrain attributes and thus influence landslide susceptibility mapping. Monte Carlo simulations have been used in this article to compare uncertainties due to DEM error in two representative landslide susceptibility mapping approaches: a recently developed expert knowledge and fuzzy logic-based approach to landslide susceptibility mapping (efLandslides), and a logistic regression approach that is representative of multivariate statistical approaches to landslide susceptibility mapping. The study area is located in the middle and upper reaches of the Yangtze River, China, and includes two adjacent areas with similar environmental conditions – one for efLandslides model development (approximately 250 km2) and the other for model extrapolation (approximately 4600 km2). Sequential Gaussian simulation was used to simulate DEM error fields at 25-m resolution with different magnitudes and spatial autocorrelation levels. Nine sets of simulations were generated. Each set included 100 realizations derived from a DEM error field specified by possible combinations of three standard deviation values (1, 7.5, and 15 m) for error magnitude and three range values (0, 60, and 120 m) for spatial autocorrelation. The overall uncertainties of both efLandslides and the logistic regression approach attributable to each model-simulated DEM error were evaluated based on a map of standard deviations of landslide susceptibility realizations. The uncertainty assessment showed that the overall uncertainty in efLandslides was less sensitive to DEM error than that in the logistic regression approach and that the overall uncertainties in both efLandslides and the logistic regression approach for the model-extrapolation area were generally lower than in the model-development area used in this study. Boxplots were produced by associating an independent validation set of 205 observed landslides in the model-extrapolation area with the resulting landslide susceptibility realizations. These boxplots showed that for all simulations, efLandslides produced more reasonable results than logistic regression.  相似文献   

6.
Data on rock falls and landslides caused by strong earthquakes in the Zhetysu Alatau, Ile Alatau, Kungei Alatau and Teriskei Alatau mountain ranges on the territory of Southeastern Kazakhstan are presented. The study revealed more than 60 large seismogenic rock falls and landslides, the volume of 25 of them varies from 10 to 100 mil. m3, and the volume of the four largest exceeds 100 mil. m3. The volume of the largest rock fall in the valley of the Ulken Almaty river in the Ile Alatau mountain range is estimated at 380 mil. m3. The highest density of seismogenic landslides was recorded in the low-mountain zone of the northern slope of the Ile Alatau range where the magnitude 9 earthquake of 1887 caused a massive formation of landslides with the volume totaling more than 400 mil. m3 and a density of 1/5 km2. The proportion of landslide-affected areas is estimated at 5% of the area of their occurrence. In the mid- and high-mountain zones of Zhetysu, Ile and Kungei Alatau, the density of seismogenic rock falls varies from 1/100 to 1/50 km2, and the proportion of rock fall-affected areas varies from 1 to 1.5%. It is found that seismogenic rock falls have dammed 26 lakes, and the volume of nine such lakes exceeds 10 mil. m3. The largest rock fall-affected lakes is Upper Zhasylkol in the valley of the Aganakty river in Zhetysu Alatau with the volume of 44 mil. m3. Data from earthquake catalog were used to compile the map for the recurrence frequency of earthquakes of magnitude higher than 6, capable of causing seismogenic rock falls and landslides. It is found that during the last 130 years, in Ile and Kungei Alatau such earthquakes recurred four times. It is established that earthquakes with maximum magnitude 9 are possible in the mountainous regions of Southeastern Kazakhstan.  相似文献   

7.
A comparison of landslide rates following helicopter and conventional, cable-based, clear-cut logging was carried out using results from two independent terrain attribute studies in the Eldred and Lois River watersheds in the Southwest Coast Mountains of British Columbia. Landslides initiating from directly within a road prism were excluded from the study in order to focus the comparison on landslides related primarily to conventional versus helicopter yarding methods. A landslide rate of 0.02 landslides/ha was observed in 162 terrain polygons logged by helicopter 8 years prior to this study. Landslide rates in 38 gullied polygons were 0.06 landslides/ha. No landslides were observed in 124 open-slope polygons. Over a similar 8-year average period, 0.03 landslides/ha were observed in 142 cable-yarded terrain polygons; 0.06 and 0.02 landslides/ha occurred in gullied and open-slope polygons, respectively. t-Tests indicate that total landslide rates are not significantly different following helicopter and conventional logging; however, a dichotomy exists between gullied and open-slope terrain polygons. Landslide rates are not significantly different in gullied terrain but are significantly higher on open-slopes following conventional cable logging. Consequently, landslides appear to have a greater potential to occur in open-slope terrain following conventional logging, but differences in gullied polygons are less likely. Increased post-logging landslide rates in conventionally logged, open slopes are more likely the result of undetected road-related drainage changes than differences between helicopter and conventional yarding-related ground disturbance.  相似文献   

8.
Mass failure deposits in lacustrine settings are some of the most understudied facies associations in the ancient or modern rock record. We integrated seismic data and well logs to investigate the external morphology, internal architecture and deformation and reservoir distribution of the sublacustrine landslides in the Cretaceous Nengjiang Formation of the Songliao Basin (SLB). A large‐scale sublacustrine landslide, named the Qi‐Jia sublacustrine landslide (QJSL), has been identified in the Nengjiang Formation of the SLB. The QJSL is currently the largest known sublacustrine landslide in the world. This landslide covers an area that exceeds 300 km2, with an estimated volume of 30 km3. Seismic imaging and mapping reveal that the QJSL can be recognized by several distinguishing seismic characteristics: discontinuous and internal chaotic seismic facies, compressional structures in the downslope region, irregular top and basal surfaces and erosional grooves in basal shear surfaces. The QJSL is 20–200 m thick, and is composed of a succession of fine‐grained deposits. Sandy layers are present but sparse and thinner than 16 m, and form reservoirs of the petroleum discoveries in this area. Our analyses show that the mechanism that triggered the collapse of the QJSL is attributed to rapid deposition and deltaic progradation. This study demonstrates that sand‐rich sublacustrine landslides formed at delta front slope can serve as conventional reservoirs in the lake centre, and provide a new target for subaqueous hydrocarbon exploration and development.  相似文献   

9.
《自然地理学》2013,34(6):501-516
Active landslides are evident throughout Bridger-Teton National Forest (BTNF), and northwestern Wyoming has one of the highest landslide densities in the country. Land use changes and increased demands for infrastructure challenge BTNF personnel to better understand landslide processes in order to make informed land management decisions. Despite recent population growth in the region, research on landslide phenomena is lacking. In this study, soil and geomorphic properties related to landslide occurrence were studied at 18 landslides in the BTNF. Landslides were categorized as active or inactive based on geomorphic features. Landslide soil characteristics including texture, shrink-swell potential, clay mineralogy, and horizonation were compared on active and inactive landslides. The results indicate that soil characteristics related to the degree of soil formation are different on active and inactive landslides. Soil characteristics such as plasticity, shrink-swell potential, and clay mineralogy influence slope stability and were distinctly different on active and inactive landslides, especially in C horizons. This study shows that soil characteristics and slope geomorphic properties may be useful for assessing landslide frequency. Our results support a hypothesis that landslide occurrence in the BTNF is related to weathering of soil and unconsolidated material, which affects clay mineralogy.  相似文献   

10.
Giant landslides, which usually have volumes up to several tens of km3, tend to be related to mountainous reliefs such as fault scarps or thrust fronts. The western flank of the Precordillera in southern Peru and northern Chile is characterized by the presence of such mega-landslides. A good example is the Latagualla Landslide (19°15′S), composed of ~ 5.4 km3 of Miocene ignimbritic rock blocks located next to the Moquella Flexure, a structure resulting from the propagation of a west-vergent thrust blind fault that borders the Precordillera of the Central Depression. The landslide mass is very well preserved, allowing reconstitution of its movement and evolution in three main stages. The geomorphology of the landslide indicates that it preceded the incision of the present-day valleys during the late Miocene. Given the local geomorphological conditions 8–9 Ma ago (morphology, slopes and probably a high water table), large-magnitude earthquakes could have provided destabilization forces enough to cause the landslide. On the other hand, present seismic forces would not be sufficient to trigger such landslides; therefore the hazard related to them in the region is low.  相似文献   

11.
Seven landslide dams of old seismic origin in southeastern Sicily (Italy)   总被引:3,自引:0,他引:3  
This paper focuses on origin, morphology and evolution of seven landslide dams in southeastern Sicily. These landforms are part of a set of 146 landslides recently recognised in this area, which was hitherto considered to have little or no slope instability. Southeastern Sicily consists of a plateau (the Hyblaean Mountains) incised by canyons and surrounded by lower lands. It is underlain mostly by subhorizontal, moderately to well-lithified carbonate rocks. Relief is low.Several lines of evidence justify the assumption of a seismic trigger for the landslides in this area: (1) the geo-climatic environment is not favourable to landsliding, (2) low-angle basal shear surfaces are very frequent, (3) landslide distribution is consistent with the known magnitude–distance relationships for earthquake-induced landslides, (4) historical documents testify to earthquake-triggered slope instability and (5) a specific landslide can be exactly dated.The phenomena illustrated here include six rock slides (one with a debris-flow component) and one rock fall. Slip surfaces are mostly non-circular. Landslide volume ranges from about 50×103 to 34×106 m3.With reference to the Costa and Schuster [Geol. Soc. Am. Bull. 100 (1988) 1054] classification of landslide dams, five cases belong to type II (spanning the entire valley), and two to type IV (failures from both valley sides, with frontal or side contact between failed masses). With reference to Crozier and Pillans [Catena 18 (1991) 471] classification of landslide lakes, all cases show a main valley lake while tributary valley, back and supra lakes are sporadically present. One damming is attributable to the 1693 earthquake with certainty; another damming, to the same earthquake with high probability. Three dams were reincised, one breached or reincised, one is slightly reincised and two more or less intact; correspondingly, five silting up deposits were reincised, one is being reincised at present and two are still under formation.  相似文献   

12.
太湖流域土地利用变化对流域产水量的影响   总被引:38,自引:2,他引:38  
高俊峰  闻余华 《地理学报》2002,57(2):194-200
根据土地详查和土地利用总体规划资料,分析太湖流域近20年土地利用的现状特点和将来变化趋势。并以 1991年降雨类型分别计算了 1986、1996和 2010年土地利用状况下流域的产水量。结果表明,太湖流域土地利用变化的主要特点是耕地面积的减少和建设用地面积的增加。同样降雨类型,1996年流域下垫面状况下的产水量比 1986年的多10.18 × 108 m3,2010年产水量将比 1986年多 12 × 108m3。太湖流域土地利用变化对流域产水量有较大影响,这与20世纪90年代以来太湖持续高水位的现象相吻合。  相似文献   

13.
Sandy desertification in the Shule River Basin has expanded dramatically during the past 30 years. We evaluated the status, evolution, and main causes of sandy desertification by interpreting Landsat images which were acquired in 1978, 1990, 2000, 2005, and 2010, and analyzing the relevant meteorological data. The results show there was 3,477.95 km2, 3,733.32 km2, 3,620.29 km2, 3,565.65 km2, and 3,557.88 km2 of sandy desertified land in 1978, 1990, 2000, 2005, and 2010, respectively. From 1978 to 1990, not only the area of sandy desertified land (SDL) but also the degree of SDL levels increased. From 1990 to 2010 there was widespread restoration of SDL but the recovery trend of SDL gradually slowed. Although climate change contributes to expanding sandy desertification, human activities can either accelerate or reverse trends of natural sandy desertification. Some detrimental human activities can accelerate sandy desertification, but, conversely, desertification control measures such as the Three-North Shelter Forest Project and watershed rehabilitation programs in areas including the Shule River Basin resulted in many SDL being turned into grasslands or forest lands when shrubs and trees were planted to fix mobile sands at the edges of oases and cities. With population growth, much SDL has been reclaimed as farm land using water-saving agricultural methods or has been turned into built-up land as a result of urbanization.  相似文献   

14.
1990—2010年黄河宁蒙段所处流域土地利用变化   总被引:1,自引:0,他引:1  
以Landsat TM和ETM+遥感影像为基础数据源,应用地理信息系统技术,对黄河宁蒙段所处流域1990-2010年土地利用变化进行了监测,并结合气候变化、人类活动和政策因素探讨了土地利用变化的驱动力,初步分析了土地利用/覆被变化对流域水-沙关系的影响。结果表明:(1)20年来研究区建设用地面积增加了1 310.04 km2,耕地面积增加了611.15 km2,水域和草地面积分别减少了1 499.51 km2和474.93 km2;(2)20年来黄河宁蒙段所处流域土地利用变化速度经历了缓慢变化-显著变化-急剧变化的过程。各土地利用类型在后10 年(2000-2010年)的变化速度均比前10年(1990-2000年)大;(3)研究时段内草地和未利用地转化为林地,草地和耕地被开发为建设用地,未利用地和草地被开垦为耕地;(4)人类活动和政策因素是影响20年来土地利用变化的主要驱动因子,但人口数量的增加、经济的发展及环境政策的调整对研究区土地利用变化的影响更为显著;(5)1990-2010年流域耕地和林地面积分别增加了611.15 km2和543.19 km2,植被覆盖度由1990年的34.7%增加到2010年的40.8%。林地和耕地面积的增加均使得流域总蒸发量增加,灌溉用水增加,从而径流量减少,植被覆盖度的增加使得流域径流量和输沙量均降低。  相似文献   

15.
GIS支持下三峡库区秭归县滑坡灾害空间预测   总被引:3,自引:1,他引:2  
彭令  牛瑞卿  陈丽霞 《地理研究》2010,29(10):1889-1898
基于GIS空间分析和统计模型相结合进行区域评价与空间预测是滑坡灾害研究的重要方向之一。以三峡库区秭归县为研究区,选择坡度、坡向、边坡结构、工程岩组、排水系统、土地利用和公路开挖作为评价因子。为提高模型的预测精度、可信度和推广能力,利用窗口采样规则降低训练样本之间的空间相关性。建立Logistic回归模型,对滑坡灾害与评价因子进行定量相关性分析。计算研究区滑坡灾害易发性指数,对其进行聚类分析,绘制滑坡易发性分区图,其中高、中易发区占整个研究区面积的38.9%,主要分布在人类工程活动频繁和靠近排水系统的区域。经过验证,该模型的预测精度达到77.57%。  相似文献   

16.
Road density (i.e., km/km2) is a useful broad index of the road network in a landscape and has been linked to several ecological effects of roads. However, previous studies have shown that road density, estimated by grid computing, has weak correlation with landscape fragmentation. In this article, we propose a new measure of road density, namely, kernel density estimation function (KDE) and quantify the relation between road density and landscape fragmentation. The results show that road density estimated by KDE (km/km2) elucidates the spatial pattern of the road network in the region. Areas with higher road density are dominated by a larger proportion of built-up landscape and less possession of forest and vice versa. Road networks segregated the landscape into smaller pieces and a greater number of patches. Furthermore, Spearman rank correlation model indicates that road density (km/km2) is positively related to landscape fragmentation. Our results suggest that road density, estimated by KDE, may be a better correlate with effects of the road on landscape fragmentation. Through KDE, the regional spatial pattern of road density and the prediction of the impact of the road on landscape fragmentation could be effectively acquired.  相似文献   

17.
In steep and rocky terrains, their rough surfaces make it difficult to create landslide inventories even with detailed maps/images produced from airborne LiDAR data. To provide objective clues in locating deep-seated landslides, the surface textures of a 5 km2 steepland area in Japan was investigated using the eigenvalue ratio and slope filters calculated from a very high resolution LiDAR-derived DEM. The range of filter values was determined for each of a number of surface features mapped in the field and these included: cracked bedrock outcrops, coarse colluvial deposits, gently undulating surfaces, and smooth surfaces. Recently active slides commonly contained patches of ground in which deposition and erosion occurred together near the erosion front, or where cracked bedrock outcrops and coarse colluvial deposits coexisted under a gently undulating surface. The characteristic eigenvalue and slope filter values representing this sliding process were applied to maps of the DEM derived filter values to extract potential sites of recent landslide activity. In addition, the relationships between the filter values of deep-seated landslides at various stages of evolution within the field mapped area were extended to the entire study area, to assess the contribution that landslide evolution makes to change in the landscape as a whole. While landslide components made up the steepest as well as the gentlest parts of the landscape depending on their evolutionary stage, landslides were constantly coarsened and steepened by progressive erosion, probably initiated by river bank erosion at the foot of slopes.  相似文献   

18.
《Geomorphology》2003,49(1-2):71-88
Knowledge of long-term average rates of erosion is necessary if factors affecting sediment yields from catchments are to be understood. Without such information, it is not possible to assess the potential influence of extreme storms, and, therefore, to evaluate the relative importance of various components of a sediment budget. A study of the sediment budget for the Waipaoa catchment, North Island, New Zealand, included evaluation of long-term rates of landsliding for six landslide-prone land systems in the catchment. The number of landslides per unit area generated by each of several storms was counted on sequential aerial photographs and correlated with the magnitude of the corresponding storm. The resulting relationships were combined with magnitude–frequency relationships derived for storms from 70- to 100-year rainfall records in the area to estimate a long-term magnitude–frequency relationship for landsliding for each land system. The long-term average values of the areal landslide frequency (number of slides per unit area per unit time) were then calculated from these relationships. The volumes of a sample of landslide scars were measured in the field, and the proportion of slides that deliver sediment to channels was determined from aerial photographs. These measurements then allowed calculation of the long-term average rate of sediment production to streams from landslides for different land systems and types of vegetation. Results suggest that shallow landslides currently contribute about 15±5% of the suspended sediment load in the Waipaoa River above the Kanakanaia gauging station, and that 75% of the sediment production from the landslides occurs during storms with recurrence intervals of less than 27 years. Reforestation of 6.3% (93 km2) of the slide-prone lands in the catchment between 1990 and 1995 resulted in a calculated decrease in slide-derived sediment of 10%. Calculations suggest that reforestation of an additional 3% (66 km2) of the catchment in areas with the most sensitive combinations of land system and storm regime could decrease the total sediment inputs from landsliding by about 20%.  相似文献   

19.
滑坡是怒江流域主要的地质灾害,对流域内人民生命财产和生态系统安全带来了极大的危害,因此本研究针对研究区内滑坡灾害主要诱发因子进行判识。利用1991~2006年云南省减灾年鉴、长系列流域内相关站点的年平均降雨量、2006年云南省1:5万的TM影像数据等,以GIS技术为平台对其相关因子关联性进行统计与分析。研究发现:沿怒江干流发生的滑坡灾害主要受到坡度、植被盖度、降雨强度及公路建设等因子的影响,分析灾害点的分布与相关因子间的相关性,发现相关性比较密切的是坡度〉25。的地带;植被盖度为30%~70%的地带;年降水量达到1250—1500mm的地带,以及公路沿线的地带,并以相关性作为灾害发生风险度评价的权重,建立了基于GIS的滑坡灾害危险性评价模型,实现了对怒江干流区域滑坡灾害危险性区划。  相似文献   

20.
During the last decade, slope failures were reported in a 500 km2 study area in the Geba–Werei catchment, northern Ethiopia, a region where landslides were not considered an important hazard before. Field observations, however, revealed that many of the failures were actually reactivations of old deep-seated landslides after land use changes. Therefore, this study was conducted (1) to explore the importance of environmental factors controlling landslide occurrence and (2) to estimate future landslide susceptibility. A landslide inventory map of the study area derived from aerial photograph interpretation and field checks shows the location of 57 landslides and six zones with multiple landslides, mainly complex slides and debris flows. In total 14.8% of the area is affected by an old landslide. For the landslide susceptibility modelling, weights of evidence (WofE), was applied and five different models were produced. After comparison of the models and spatial validation using Receiver Operating Characteristic curves and Kappa values, a model combining data on elevation, hillslope gradient, aspect, geology and distance to faults was selected. This model confirmed our hypothesis that deep-seated landslides are located on hillslopes with a moderate slope gradient (i.e. 5°–13°). The depletion areas are expected on and along the border of plateaus where weathered basalts rich in smectite clays are found, and the landslide debris is expected to accumulate on the Amba Aradam sandstone and upper Antalo limestone. As future landslides are believed to occur on inherently unstable hillslopes similar to those where deep-seated landslides occurred, the classified landslide susceptibility map allows delineating zones where human interventions decreasing slope stability might cause slope failures. The results obtained demonstrate that the applied methodology could be used in similar areas where information on the location of landslides is essential for present-day hazard analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号