首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The deposits of three eruptions in the last 5000 years are described in detail in order to constrain eruptive parameters and allow a quantitative assessment of the hazard from a range of explosive eruption types at Sete Cidades volcano, São Miguel, Azores. These deposits include: the Caldeira Seca eruption (P17) which occurred around 600 yr BP, which was the last explosive event from inside the Sete Cidades caldera, the P11 eruption, dated at 2220 ± 70 yr BP, and the undated P8 eruption (< 3000 yr BP). These deposits were chosen to represent the range of likely explosive activity from the caldera.  相似文献   

2.
 A radar and gravity survey of the ice-filled caldera at Volcán Sollipulli, Chile, indicates that the intra-caldera ice has a thickness of up to 650 m in its central part and that the caldera harbours a minimum of 6 km3 of ice. Reconnaissance geological observations show that the volcano has erupted compositions ranging from olivine basalt to dacite and have identified five distinct volcanic units in the caldera walls. Pre- or syn-caldera collapse deposits (the Sharkfin pyroclastic unit) comprise a sequence which evolved from subglacial to subaerial facies. Post-caldera collapse products, which crop out along 17 of the 20 km length of the caldera wall, were erupted almost exclusively along the caldera margins in the presence of a large body of intra-caldera ice. The Alpehué crater, formed by an explosive eruption between 2960 and 2780 a. BP, in the southwest part of the caldera is shown to post date formation of the caldera. Sollipulli lacks voluminous silicic pyroclastic rocks associated with caldera formation and the collapse structure does not appear to be a consequence of a large-magnitude explosive eruption. Instead, lateral magma movement at depth resulting in emptying of the magma chamber may have generated the caldera. The radar and gravity data show that the central part of the caldera floor is flat but, within a few hundred metres of the caldera walls, the floor has a stepped topography with relatively low-density rock bodies beneath the ice in this region. This, coupled with the fact that most of the post-caldera eruptions have taken place along the caldera walls, implies that the caldera has been substantially modified by subglacial marginal eruptions. Sollipulli caldera has evolved from a collapse to a constructional feature with intra-caldera ice playing a major role. The post-caldera eruptions have resulted in an increase in height of the walls and concomitant deepening of the caldera with time. Received: 12 June 1995 / Accepted: 7 December 1995  相似文献   

3.
During the past 1.2 m.y., a magma chamber of batholithic proportions has developed under the 100 by 30 km Toba Caldera Complex. Four separate eruptions have occurred from vents within the present collapse structure, which formed from eruption of the 2800 km3 Youngest Toba Tuff (YTT) at 74 ka. Eruption of the three older Toba Tuffs alternated from calderas situated in northern and southern portions of the present caldera. The northern caldera apparently developed upon a large andesitic stratovolcano. The calderas associated with the three older tuffs are obscured by caldera collapse and resurgence resulting from eruption of the YTT. Samosir Island and the Uluan Block are two sides of a single resurgent dome that has resurged since eruption of the YTT. Samosir Island is composed of thick YTT caldera fill, whereas the Uluan Block consists mainly of the Oldest Toba Tuff (OTT). In the past 74000 years lava domes have been extruded on Samosir Island and along the caldera's western ring fracture. This part of the ring fracture is the site of the only current activity at Toba: updoming and fumarolic activity. The Toba eruptions document the growth of the laterally continuous magma body which eventually erupted the YTT. Repose periods between the four Toba Tuffs range between 0.34 and 0.43 m.y. and give insights into pluton emplacement and magmatic evolution at Toba.  相似文献   

4.
The ring fractures that form most collapse calderas are steeply inward-dipping shear fractures, i.e., normal faults. At the surface of the volcano within which the caldera fault forms, the tensile and shear stresses that generate the normal-fault caldera must peak at a certain radial distance from the surface point above the center of the source magma chamber of the volcano. Numerical results indicate that normal-fault calderas may initiate as a result of doming of an area containing a shallow sill-like magma chamber, provided that the area of doming is much larger than the cross-sectional area of the chamber and that the internal excess pressure in the chamber is smaller than that responsible for doming. This model is supported by the observation that many caldera collapses are preceded by a long period of doming over an area much larger than that of the subsequently formed caldera. When the caldera fault does not slip, eruptions from calderas are normally small. Nearly all large explosive eruptions, however, are associated with slip on caldera faults. During dip slip on, and doming of, a normal-fault caldera, the vertical stress on part of the underlying chamber suddenly decreases. This may lead to explosive bubble growth in this part of the magma chamber, provided its magma is gas rich. This bubble growth can generate an excess fluid pressure that is sufficiently high to drive a large fraction of the magma out of the chamber during an explosive eruption. Received: 2 January 1997 / Accepted: 22 April 1998  相似文献   

5.
Rabaul Caldera is the most recently active (1937–1943) of four adjoining volcanic centres aligned north-south through the northern extremity of eastern New Britain. Geological mapping after the 1983–1985 Rabaul seismic and deformation crisis has partially revealed a long and complex eruption history dominated by numerous explosive eruptions, the largest accompanied by caldera collapse. The oldest exposed eruptives are the basaltic pre-caldera cone Tovanumbatir Lavas K/Ar dated at 0.5 Ma. The dacitic Rabaul Quarry Lavas exposed in the caldera wall and K/Ar dated at 0.19 Ma, are overlain by a sequence of dacitic and andesitic pyroclastic flow and fall deposits. Uplifted coral reef limestones, interbedded within the pyroclastic sequence on the northeast coast, suggest that explosive eruptions in the Rabaul area had commenced prior to the 0.125 Ma last interglacial high sea level stand. The pyroclastic sequence includes the large Boroi Ignimbrites and Malaguna Pyroclastics both 40Ar/39Ar dated at about 0.1 Ma, and the Barge Tunnel Ignimbrite 40Ar/39Ar dated at around 0.04 Ma. Few reliable ages exist for the many younger eruptives. These include Holocene ignimbrites of the latest caldera-forming eruptions—the Raluan Pyroclastics variously dated (14C) at either about 3500 or 7000 yr B.P., and the ca. 1400 yr B.P. Rabaul Pyroclastics. At least eight intracaldera eruptions have occurred since the 1400 yr B.P. collapse, building small pyroclastic and lava cones within the caldera.A major erosional episode is evident as a widespread unconformity in the upper pyroclastic stratigraphy at Rabaul. Lacking relevant radiometric ages, this episode is assumed to have occurred during last glaciation low sea levels and is here arbitarily dated at ca. ?20 ka. At least five, possibly nine, significant ignimbrite eruptions have occurred at Rabaul during the last ?20 ka. The new eruptive history differs considerably from that previously published, which considered ignimbrite eruption and caldera collapse to have first occurred at 3500 yr B.P.Rabaul volcanism has been dominated by two main types: (a) basaltic and basaltic andesite cone building eruptions; and (b) dacitic, and rarely andesitic or rhyolitic, plinian/ignimbrite eruptions of both high- and low-aspect ratio types. The 1400 yr B.P. Rabaul Ignimbrite is a type example of a low-aspect ratio, high-energy, and potentially very damaging eruption. Fine vitric ash deposits, common in the Rabaul pyroclastic sequence, demonstrate the frequent modification of eruptions by external water probably related to early caldera lakes or bays. Interbedding of these fine ashes with plinian pumice lapilli beds suggests that many early eruptions occurred from multiple vents, located in both wet and dry areas.  相似文献   

6.
The Latera caldera is a well-exposed volcano where more than 8 km3 of mafic silica-undersaturated potassic lavas, scoria and felsic ignimbrites were emplaced between 380 and 150 ka. Isotopic ages obtained by 40Ar/39Ar analysis of single sanidine crystals indicate at least four periods of explosive eruptions from the caldera. The initial period of caldera eruptions began at 232 ka with emplacement of trachytic pumice fallout and ignimbrite. They were closely followed by eruption of evolved phonolitic magma. After roughly 25 ky, several phonolitic ignimbrites were deposited, and they were followed by phreatomagmatic eruptions that produced trachytic ignimbrites and several smaller ash-flow units at 191 ka. Compositionally zoned magma then erupted from the northern caldera rim to produce widespread phonolitic tuffs, tephriphonolitic spatter, and scoria-bearing ignimbrites. After 40 ky of mafic surge deposit and scoria cone development around the caldera rim, a compositionally zoned pumice sequence was emplaced around a vent immediately northwest of the Latera caldera. This activity marks the end of large-scale explosive eruptions from the Latera volcano at 156 ka.  相似文献   

7.
The 227 ka Yellow Trachytic Tuff (YTT) of the Roccamonfina volcano is a multiunit ash-, pumice-, scoria- and lithic-ignimbrite with a proximal sandwave surge deposit. The YTT has an estimated volume of 0.42 km3. It erupted in the northern, subsided sector of the volcano from Gli Stagli caldera, and was channelled down ravines northward between the limestone range of M.Cesima and M. Camino that bounds the depression. Up to 5 YTT units occur close to the outer part of the northern rim of Gli Stagli. The basal four units are separated by lithic-rich marker layers which are inferred to result from gravity segregation followed by shearing. The first three units are consolidated by chabazite cementation, the fourth one is not consolidated. The uppermost unit is altered. One or two units characterize the YTT deposits in medial to distal zones. Here, the unconsolidated unit underlies the consolidated one. Absence of markers precludes correlation with proximal stratigraphy. The YTT is poorly sorted and, except the surge deposit and the altered faciés which are very fine-grained, has moderate median diameter typical of pyroclastic flows. Matrix, pumice, and scoria clasts are poorly vesicular. Matrix shards are equant, blocky-shaped, hydrated, and range from non-vesicular to vesicular. These features suggest that magma-water interaction played a role in the YTT eruption process, with some magmatic fragmentation.The complex near-Gli Stagli-rim YTT sequence could record the arrival of successive flows from the source vent, or also form by interaction of one or two flows with the caldera rim. In both cases, the absence of basal Plinian deposits in YTT units suggests that the eruptions were low pyroclastic fountains. The YTT distribution was controlled by interaction with the northern rim of Gli Stagli caldera and with the limestone range that bounds the northern depression. The near-rim stratigraphy shows the complete record of the eruption, whereas the medial to distal sequences provide only the initial pyroclastic flow possibly with the final flow spilling over the caldera rim. The proximal surge episode probably resulted from higher velocity of a later pyroclastic flow due to steeper slope of the volcano in that locality.  相似文献   

8.
The central Campanian Plain is dominated by the structural depression of Acerra whose origin is tectonic, but may have been enlarged and further depressed after the eruption of the Campanian Ignimbrite (42-25 ka). The deposits of the Campanian Ignimbrite are possibly the results of multiple eruptions with huge pyroclastic deposits that covered all the Campanian Plain.The more recent activity of Vesuvius, Campi Flegrei and Procida occurred on the borders of Acerra depression and resulted from a reactivation of regional faults after the Campanian Ignimbrite cycle. The activity of Vesuvius produced the building of a stratovolcano mostly by effusive and plinian explosive eruptions. The Campi Flegrei area, on the contrary, was dominated by the eruption of the Neapolitan Yellow Tuff at 12 ka that produced a caldera collapse of the Gulf of Pozzuoli. The caldera formation controlled the emplacement of the recent activity of Campi Flegrei and the new volcanoes were formed only within the caldera or along its rim.  相似文献   

9.
Plio-Quaternary volcanism played an important role in the present physical state of Eastern Anatolia. Mount Nemrut, situated to the west of Lake Van is one of the main volcanic centers in the region, with a spectacular summit caldera 8.5 × 7 km in diameter. The most recent eruptions of the volcano were in 1441, 1597 and 1692. Nemrut Lake covers the western half of the caldera; it is a deep, half-bowl-shaped lake with a maximum depth of 176 m. Numerous eruption centers are exposed within the caldera as a consequence of magma–water interaction. Current activity of Nemrut caldera is revealed as hot springs, fumaroles and a small, hot lake.Self-potential and bathymetric surveys carried out in the caldera were used to characterize the structure of the caldera and the associated hydrothermal fluid circulation. In addition, analyses based on digital elevation models and satellite imagery were used to improve our knowledge about the structure of the caldera. According to SP results, the flanks of the volcano represent “the hydrogeologic zone”, whereas the intra-caldera region is an “active hydrothermal area” where the fluid circulation is controlled by structural discontinuities. There is also a northern fissure zone which exhibits hydrothermal signatures. Nemrut caldera collapsed piecemeal, with three main blocks. Stress controlling the collapse mechanism seems to be highly affected by the regional neotectonic regime. In addition to the historical activity, current hydrothermal and hydrogeologic conditions in the caldera, in which there is a large lake and shallow water table, increase the risk of the quiescent volcano.  相似文献   

10.
In 1874 and 1875 the fissure swarm of Askja central volcano was activated during a major rifting episode. This rifting resulted in a fissure eruption of 0.3 km3 basaltic magma in Sveinagja graben, 50 to 70 km north of Askja and subsequent caldera collapse forming the Oskjuvatn caldera within the main Askja caldera. Five weeks after initial collapse, an explosive mixed magma eruption took place in Askja. On the basis of matching chemistry, synchronous activity and parallels with other rifted central volcanoes, the events in Askja and its lissure swarm are attributed to rise of basaltic magma into a high-level reservoir in the central volcano, subsequent rifting of the reservoir and lateral flow magma within the fissure swarm to emerge in the Sveinagja eruption. This lateral draining of the Askja reservoir is the most plausible cause for caldera collpse. The Sveinagja basalt belong to the group of evolved tholejites characteristie of several Icelandic central volcanoes and associated fissure swarms. Such tholeiites, with Mgvalues in the 40 to 50 tange, represent magmas which have suffered extensive fractional crystallization within the crust. The 12% porphyritic Sveinagja basalt contains phenocrysts of olivine (Fo62–67), plagioclase (An57–62), clinopyroxene (Wo38En46Wo16) and titanomagnetite. Extrusion temperature of the lava, calculated on the basis of olivine and plagioclase geothermometry, is found to be close to 1150°C.  相似文献   

11.
Mount Nemrut, an active stratovolcano in eastern Turkey, is a great danger for its vicinity. The volcano possesses a summit caldera which cuts the volcano into two stages, i.e. pre- and post-caldera. Wisps of smoke and hot springs are to be found within the caldera. Although the last recorded volcanic activity is known to have been in 1441, we consider here that the last eruption of Nemrut occurred more recently, probably just before 1597. The present active tectonic regime, historical eruptions, occurrence of mantle-derived magmatic gases and the fumarole and hot spring activities on the caldera floor make Nemrut Volcano a real danger for its vicinity. According to the volcanological past of Nemrut, the styles of expected eruptions are well-focused on two types: (1) occurrence of water within the caldera leads to phreatomagmatic (highly energetic) eruptions, subsequently followed by lava extrusions, and (2) effusions–extrusions (non-explosive or weakly energetic eruptions) on the flanks from fissures. To predict the impact area of future eruptions, a series of morphological analyses based on field observations, Digital Elevation Model and satellite images were realized. Twenty-two valleys (main transport pathways) were classified according to their importance, and the physical parameters related to the valleys were determined. The slope values in each point of the flanks and the Heim parameters H/L were calculated. In the light of morphological analysis the possible impact areas around the volcano and danger zones were proposed. The possible transport pathways of the products of expected volcanic events are unified in three main directions: Bitlis, Guroymak, Tatvan and Ahlat cities, the about 135 000 inhabitants of which could be threatened by future eruptions of this poorly known and unsurveyed volcano.  相似文献   

12.
The 161 ka explosive eruption of the Kos Plateau Tuff (KPT) ejected a minimum of 60 km3 of rhyolitic magma, a minor amount of andesitic magma and incorporated more than 3 km3 of vent- and conduit-derived lithic debris. The source formed a caldera south of Kos, in the Aegean Sea, Greece. Textural and lithofacies characteristics of the KPT units are used to infer eruption dynamics and magma chamber processes, including the timing for the onset of catastrophic caldera collapse.The KPT consists of six units: (A) phreatoplinian fallout at the base; (B, C) stratified pyroclastic-density-current deposits; (D, E) volumetrically dominant, massive, non-welded ignimbrites; and (F) stratified pyroclastic-density-current deposits and ash fallout at the top. The ignimbrite units show increases in mass, grain size, abundance of vent- and conduit-derived lithic clasts, and runout of the pyroclastic density currents from source. Ignimbrite formation also corresponds to a change from phreatomagmatic to dry explosive activity. Textural and lithofacies characteristics of the KPT imply that the mass flux (i.e. eruption intensity) increased to the climax when major caldera collapse was initiated and the most voluminous, widespread, lithic-rich and coarsest ignimbrite was produced, followed by a waning period. During the eruption climax, deep basement lithic clasts were ejected, along with andesitic pumice and variably melted and vesiculated co-magmatic granitoid clasts from the magma chamber. Stratigraphic variations in pumice vesicularity and crystal content, provide evidence for variations in the distribution of crystal components and a subsidiary andesitic magma within the KPT magma chamber. The eruption climax culminated in tapping more coarsely crystal-rich magma. Increases in mass flux during the waxing phase is consistent with theoretical models for moderate-volume explosive eruptions that lead to caldera collapse.  相似文献   

13.
The 274 ka “Basalt-Trachytic Tuff of Tuoripunzoli” (TBTT) from Roccamonfina volcano (Roman Region, Italy) consists of a basaltic scoria lapilli fall (Unit A) overlain by a trachytic sequence formed by a surge (Unit B), repetitive pumice lapilli and ash-rich layers both of fallout origin (Unit C) and a pyroclastic flow deposit (Unit D). The TBTT is widespread (40 km2) in the northern sector of the volcano, but limited to a small area on the southern slopes of the main cone. Interpolation between the northern deposits and the latter one yields a minimum depositional area of 123 km2, and an approximate bulk volume of 0.2-0.3 km3. Isopach and isopleth maps are consistent with a source vent within the main caldera of Roccamonfina.Unit A shows a fairly good sorting and a moderate grain size; glass fragments are cuspate and vesicular. Unit B is fine grained and poorly sorted; shards are blocky and nonvesicular. Pumice lapilli of Unit C are moderately sorted and moderately coarse grained. Glass shards are equant and vesicular. Lithic clasts are strongly comminuted to submillimetric sizes. By contrast, the ash-rich internal divisions are very fine grained and poorly sorted. They consist of a mixture of equant shards which are prevailingly blocky and poorly vesicular. Unit D is a massive, poorly sorted, moderately coarse-grained deposit. Glass fragments are nearly equant and slightly or nonvesicular.The TBTT is interpreted as due to eruption of a basaltic magma followed in rapid succession by one trachyte magma. Unit A formed by Subplinian fallout of a moderate, purely magmatic column. Interaction between a trachyte magma and water resulted in eruption of surge Unit B. A high-standing eruption column erupted alternating fallout pumice lapilli and fallout ashes. Pumice lapilli originated prevailingly from the inner part of the eruption column, whereas magma-water interaction on the external parts of the column resulted in ash fallout. The uppermost pyroclastic flow Unit D is interpreted as due to final collapse of the eruption column.  相似文献   

14.
Socorro Island is the summit of a large volcanic mountain located on the Clarion Fracture Zone in the east Pacific. Two major periods of volcanic activity can be recognized on the island. The first (pre-caldera) period was characterized by eruptions of olivine-poor alkali basalt, followed by quiet effusion of soda rhyolite including varieties transitional to pantellerite. This period of activity terminated with the formation of a caldera by collapse. A relatively prolonged period of quiescence ended with rifting and down-faulting of the western side of the island along a north-south fracture system, accompanied by violently explosive eruptions of soda rhyolite which built a large tephra cone over the position of the old caldera. The locus of eruptive activity moved outward and downward along tension fractures and old tectonic rifts as the central vents became blocked by domes of dense obsidian. Low level eruptions of viscous soda rhyolite including pantellerite commenced without preliminary explosive eruptions and built numerous endogenous and exogenous domes. Basaltic eruptions were rare and confined to low-level vents. During the growth of the volcano the direction of active rifting appears to have changed from east-west to northwest-southeast to north-south. Little is known of the submarine portion of the volcano, but the topography seems to reflect the three directions of rifting. The oldest submarine lavas are assumed to be basaltic and are probably of late Tertiary age. The eruptive history of Socorro suggests that the underlying magma column became stratified toward the end of the active period.  相似文献   

15.
Apoyo caldera, near Granada, Nicaragua, was formed by two phases of collapse following explosive eruptions of dacite pumice about 23,000 yr B.P. The caldera sits atop an older volcanic center consisting of lava flows, domes, and ignimbrite (ash-flow tuff). The earliest lavas erupted were compositionally homogeneous basalt flows, which were later intruded by small andesite and dacite flows along a well defined set of N—S-trending regional faults. Collapse of the roof of the magma chamber occurred along near-vertical ring faults during two widely separated eruptions. Field evidence suggests that the climactic eruption sequence opened with a powerful plinian blast, followed by eruption column collapse, which generated a complex sequence of pyroclastic surge and ignimbrite deposits and initiated caldera collapse. A period of quiescence was marked by the eruption of scoria-bearing tuff from the nearby Masaya caldera and the development of a soil horizon. Violent plinian eruptions then resumed from a vent located within the caldera. A second phase of caldera collapse followed, accompanied by the effusion of late-stage andesitic lavas, indicating the presence of an underlying zoned magma chamber. Detailed isopach and isopleth maps of the plinian deposits indicate moderate to great column heights and muzzle velocities compared to other eruptions of similar volume. Mapping of the Apoyo airfall and ignimbrite deposits gives a volume of 17.2 km3 within the 1-mm isopach. Crystal concentration studies show that the true erupted volume was 30.5 km3 (10.7 km3 Dense Rock Equivalent), approximately the volume necessary to fill the caldera. A vent area located in the northeast quadrant of the present caldera lake is deduced for all the silicic pyroclastic eruptions. This vent area is controlled by N—S-trending precaldera faults related to left-lateral motion along the adjacent volcanic segment break. Fractional crystallization of calc-alkaline basaltic magma was the primary differentiation process which led to the intermediate to silicic products erupted at Apoyo. Prior to caldera collapse, highly atypical tholeiitic magmas resembling low-K, high-Ca oceanic ridge basalts were erupted along tension faults peripheral to the magma chamber. The injection of tholeiitic magmas may have contributed to the paroxysmal caldera-forming eruptions.  相似文献   

16.
Caldera morphology on the six historically active shield volcanoes that comprise Isabela and Fernandina islands, the two westernmost islands in the Galapagos archipelago, is linked to the dynamics of magma supply to, and withdrawal from, the magma chamber beneath each volcano. Caldera size (e.g., volumes 2–9 times that of the caldera of Kilauea, Hawai'i), the absence of well-developed rift zones and the inability to sustain prolonged low-volumetric-flow-rate flank eruptions suggest that magma storage occurs predominantly within centrally located chambers (at the expense of storage within the flanks). The calderas play an important role in the formation of distinctive arcuate fissures in the central part of the volcano: repeated inward collapse of the caldera walls along with floor subsidence provide mechanisms for sustaining radially oriented least-compressive stresses that favor the formation of arcuate fissures within 1–2 km outboard of the caldera rim. Variations in caldera shape, depth-to-diameter ratio, intra-caldera bench location and the extent of talus slope development provide insight into the most recent events of caldera modification, which may be modulated by the episodic supply of magma to each volcano. A lack of correlation between the volume of the single historical collapse event and its associated volume of erupted lava precludes a model of caldera formation linked directly to magma withdrawal. Rather, caldera collapse is probably the result of accumulated loss from the central storage system without sufficient recharge and (as has been suggested for Kilauea) may be aided by the downward drag of dense cumulates and intrusives.  相似文献   

17.
 The Quaternary White Trachytic Tuffs Formation from Roccamonfina Volcano (southern Italy) comprises four non-welded, trachytic, pyroclastic sequences bounded by paleosols, each of which corresponds to small- to intermediate-volume explosive eruptions from central vents. From oldest to youngest they are: White Trachytic Tuff (WTT) Cupa, WTT Aulpi, WTT S. Clemente, and WTT Galluccio. The WTT Galluccio eruption was the largest and emplaced ∼ 4 km3 of magma. The internal stratigraphy of all four WTT eruptive units is a complex association of fallout, surge, and pyroclastic flow deposits. Each eruptive unit is organized into two facies associations, Facies Association A below Facies Association B. The emplacement of the two facies associations may have been separated by short time breaks allowing for limited reworking and erosion. Facies Association A consists of interbedded fallout deposits, surge deposits, and subordinate ignimbrites. This facies association involved the eruption of the most evolved trachytic magma, and pumice clasts are white and well vesiculated. The grain size coarsens upward in Facies Association A, with upward increases of dune bedform wavelengths and a decrease in the proportion of fine ash. These trends could reflect an increase in eruption column height from the onset of the eruption and possibly also in mass eruption rate. Facies Association B comprises massive ignimbrites that are progressively richer in lithic clast content. This association involved the eruption of more mafic magma, and pumice clasts are gray and poorly vesiculated. Facies Association B is interpreted to record the climax of the eruption. Phreatomagmatic deposits occur at different stratigraphic levels in the four WTT and have different facies characteristics. The deposits reflect the style and degree of magma–water interaction and the local hydrogeology. Very fine-grained, lithic-poor phreatomagmatic surge deposits found at the base of WTT Cupa and WTT Galluccio could record the interaction of the erupting magma with a lake that occupied the Roccamonfina summit depression. Renewed magma–water interaction later in the WTT Galluccio eruption is indicated by fine grained, lithic-bearing phreatomagmatic fall and surge deposits occurring at the top of Facies Association A. They could be interpreted to reflect shifts of the magma fragmentation level to highly transmissive, regional aquifers located beneath the Roccamonfina edifice, possibly heralding a caldera collapse event. Received: 26 August 1996 / Accepted: 27 February 1998  相似文献   

18.
Field, geochronologic, and geochemical evidence from proximal fine-grained tephras, and from limited exposures of Holocene lava flows and a small pyroclastic flow document ten–12 eruptions of Mount Rainier over the last 2,600 years, contrasting with previously published evidence for only 11–12 eruptions of the volcano for all of the Holocene. Except for the pumiceous subplinian C event of 2,200 cal year BP, the late-Holocene eruptions were weakly explosive, involving lava effusions and at least two block-and-ash pyroclastic flows. Eruptions were clustered from ∼2,600 to ∼2,200 cal year BP, an interval referred to as the Summerland eruptive period that includes the youngest lava effusion from the volcano. Thin, fine-grained tephras are the only known primary volcanic products from eruptions near 1,500 and 1,000 cal year BP, but these and earlier eruptions were penecontemporaneous with far-traveled lahars, probably created from newly erupted materials melting snow and glacial ice. The most recent magmatic eruption of Mount Rainier, documented geochemically, was the 1,000 cal year BP event. Products from a proposed eruption of Mount Rainier between AD 1820 and 1854 (X tephra of Mullineaux (US Geol Surv Bull 1326:1–83, 1974)) are redeposited C tephra, probably transported onto young moraines by snow avalanches, and do not record a nineteenth century eruption. We found no conclusive evidence for an eruption associated with the clay-rich Electron Mudflow of ∼500 cal year BP, and though rare, non-eruptive collapse of unstable edifice flanks remains as a potential hazard from Mount Rainier. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. T. W. Sisson and J. W. Vallance contributed equally to this study.  相似文献   

19.
New investigations of the geology of Crater Lake National Park necessitate a reinterpretation of the eruptive history of Mount Mazama and of the formation of Crater Lake caldera. Mount Mazama consisted of a glaciated complex of overlapping shields and stratovolcanoes, each of which was probably active for a comparatively short interval. All the Mazama magmas apparently evolved within thermally and compositionally zoned crustal magma reservoirs, which reached their maximum volume and degree of differentiation in the climactic magma chamber 7000 yr B.P.The history displayed in the caldera walls begins with construction of the andesitic Phantom Cone 400,000 yr B.P. Subsequently, at least 6 major centers erupted combinations of mafic andesite, andesite, or dacite before initiation of the Wisconsin Glaciation 75,000 yr B.P. Eruption of andesitic and dacitic lavas from 5 or more discrete centers, as well as an episode of dacitic pyroclastic activity, occurred until 50,000 yr B.P.; by that time, intermediate lava had been erupted at several short-lived vents. Concurrently, and probably during much of the Pleistocene, basaltic to mafic andesitic monogenetic vents built cinder cones and erupted local lava flows low on the flanks of Mount Mazama. Basaltic magma from one of these vents, Forgotten Crater, intercepted the margin of the zoned intermediate to silicic magmatic system and caused eruption of commingled andesitic and dacitic lava along a radial trend sometime between 22,000 and 30,000 yr B.P. Dacitic deposits between 22,000 and 50,000 yr old appear to record emplacement of domes high on the south slope. A line of silicic domes that may be between 22,000 and 30,000 yr old, northeast of and radial to the caldera, and a single dome on the north wall were probably fed by the same developing magma chamber as the dacitic lavas of the Forgotten Crater complex. The dacitic Palisade flow on the northeast wall is 25,000 yr old. These relatively silicic lavas commonly contain traces of hornblende and record early stages in the development of the climatic magma chamber.Some 15,000 to 40,000 yr were apparently needed for development of the climactic magma chamber, which had begun to leak rhyodacitic magma by 7015 ± 45 yr B.P. Four rhyodacitic lava flows and associated tephras were emplaced from an arcuate array of vents north of the summit of Mount Mazama, during a period of 200 yr before the climactic eruption. The climactic eruption began 6845 ± 50 yr B.P. with voluminous airfall deposition from a high column, perhaps because ejection of 4−12 km3 of magma to form the lava flows and tephras depressurized the top of the system to the point where vesiculation at depth could sustain a Plinian column. Ejecta of this phase issued from a single vent north of the main Mazama edifice but within the area in which the caldera later formed. The Wineglass Welded Tuff of Williams (1942) is the proximal featheredge of thicker ash-flow deposits downslope to the north, northeast, and east of Mount Mazama and was deposited during the single-vent phase, after collapse of the high column, by ash flows that followed topographic depressions. Approximately 30 km3 of rhyodacitic magma were expelled before collapse of the roof of the magma chamber and inception of caldera formation ended the single-vent phase. Ash flows of the ensuing ring-vent phase erupted from multiple vents as the caldera collapsed. These ash flows surmounted virtually all topographic barriers, caused significant erosion, and produced voluminous deposits zoned from rhyodacite to mafic andesite. The entire climactic eruption and caldera formation were over before the youngest rhyodacitic lava flow had cooled completely, because all the climactic deposits are cut by fumaroles that originated within the underlying lava, and part of the flow oozed down the caldera wall.A total of 51−59 km3 of magma was ejected in the precursory and climactic eruptions, and 40−52 km3 of Mount Mazama was lost by caldera formation. The spectacular compositional zonation shown by the climactic ejecta — rhyodacite followed by subordinate andesite and mafic andesite — reflects partial emptying of a zoned system, halted when the crystal-rich magma became too viscous for explosive fragmentation. This zonation was probably brought about by convective separation of low-density, evolved magma from underlying mafic magma. Confinement of postclimactic eruptive activity to the caldera attests to continuing existence of the Mazama magmatic system.  相似文献   

20.
Volcán Las Navajas, a Pliocene-Pleistocene volcano located in the northwestern portion of the Mexican volcanic belt, erupted lavas ranging in composition from alkali basalt through peralkaline rhyolite, and is the only volcano in mainland Mexico known to have erupted pantellerites. Las Navajas is located near the northwestern end of the Tepic-Zacoalco rift and covers a 200-m-thick pile of alkaline basaltic lavas, one of which has been dated at 4.3 Ma. The eruptive history of the volcano can be divided into three stages separated by episodes of caldera formation. During the first stage a broad shield volcano made up of alkali basalts, mugearites, benmoreites, trachytes, and peralkaline rhyolites was constructed. Eruption of a chemically zoned ash flow then caused collapse of the structure to form the first caldera. The second stage consisted of eruptions of glassy pantellerite lavas that partially filled the caldera and overflowed its walls. This stage ended about 200 000 years ago with the eruption of pumice falls and ash flows, which led to the collapse of the southern portion of the volcano to form the second caldera. During the third stage, two benmoreite cinder cones and a benmoreite lava flow were emplaced on the northwestern flank of the volcano. Finally, the calc-alkaline volcano Sanganguey was built on the southern flank of Las Lavajas. Alkaline volcanism continued in the area with eruptions of alkali basalt from cinder cones located along NW-trending fractures through the area. Although other mildly peralkaline rhyolites are found in the rift zones of western Mexico, only Las Navajas produced pantellerites. Greater volumes of basic alkaline magma have erupted in the Las Navajas region than in the other areas of peralkaline volcanism in Mexico, a factor which may be necessary to provide the initial volume of material and heat to drive the differentiation process to such extreme peralkaline compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号