首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Z. Švestka 《Solar physics》1970,13(2):471-489
Evidence is given that the particle acceleration in flares is confined to the initial phase of the flare development preceding the H flare maximum and lasting for less than 10 min. The impulsive acceleration process is confined to a relatively small limited volume of about 5 × 1027 cm3 in the region of highest magnetic gradient in the flare, and its size represents about 0.05 or less of the total extent of the hot condensation which produces the soft X-ray and gradual microwave bursts. About one in fifty particles in this volume is accelerated to energy exceeding 100 keV, the total particle density being 1010 cm–3. The accelerated electrons produce the impulsive hard X-ray burst, but synchrotron losses greatly reduce the number of relativistic electrons participating in the bremsstrahlung process. Protons above 20 MeV penetrate to the lowest chromosphere and upper photosphere and temporarily increase the temperature in the bombarded region. As the result a flash of continuous emission appears, which should be most expressive below 1527 Å. The associated white-light emission shows the bottom of the region where the impulsive acceleration process occurs.  相似文献   

2.
Hot regions in solar flares produce X-radiation and microwaves by thermal processes. Recent X-ray data make it possible to specify the temperature and emission measure of the soft X-ray source, by using, for instance, a combination of the 1–8 Å (peak response at about 2 keV) and the 0.5–3 Å (peak response at about 5 keV) broad-band photometers. The temperatures and emission measures thus derived satisfactorily explain the radio fluxes, within systematic errors of about a factor of 3. Comparison of 15 events with differing parameters shows that a hot solar flare region has an approximately isothermal temperature distribution. The time evolution of the correlation in a single event shows that the hot material originates in the chromosphere, rather than the corona. The density must lie between 1010 and 2 × 1011 cm–3. For an Importance 1 flare, this implies a stored energy of roughly 2 x 1030-1029 ergs. A refinement of the data will enable us to choose between conductive and radiative cooling models.  相似文献   

3.
The hypothesis that solar flares may be caused by a choking off of the normal energy flux to the corona by the strong closed magnetic fields of a plage is examined. If the energy flux into a plage from the photosphere is of the order of 108 ergs/cm2 sec, and if a substantial fraction of this energy is carried in the form of Alfvén waves, then the rate of dissipation of the waves is slower than the rate at which energy is injected. Since the waves must propagate along the magnetic field and cannot reenter the photosphere, they must remain within the plage; hence, the magnetic and kinetic energy in a small-scale motion (either waves, turbulence, or high-energy particles) must increase with time, eventually causing disruption of the volume when the small-scale energy density exceeds the energy in the mean field. It is believed that the unusually broad wings in the emission lines represent evidence of this phenomenon. The accumulation of waves is manifested as a resonance which occurs initially only at discrete locations in the magnetic field, but later is expected to involve the whole flare volume. The response of a typical volume of flare dimensions due to a trapping of the normal wave supply to the corona is studied through use of the virial equation. For magnetic fields typical of a plage, the region expands in a time scale of 102–103 sec, with a velocity in the neighborhood of 10–20 km/sec. Small-scale velocities within the region, however, have reached 100–300 km/sec, indicating that almost all the energy in the flare resides in small-scale forms. The energy density of the flare region exhibits a behavior much more explosive than the expansion rate. There is a rapid rise to maximum in 102 sec or less, and a slow subsequent decline taking about 103–104 sec due to the dilution of energy caused by expansion of the region. The predicted temporal behavior of the energy density coincides qualitatively with the light curves observed during flares, and it is suggested that the rise and decline of the energy density is to be associated with the optical flare. The total flare is defined as the time required for the energy density of the chromosphere and corona to return to the pre-flare state. During this time (about one hour) a large flare can derive the necessary 1032 ergs from normal photospheric energy output.  相似文献   

4.
We study the time evolution of a layer of the middle or lower chromosphere being heated by a stream of energetic particles during a solar flare. The region, which is not in LTE, is allowed to cool by the transfer of Lyman continuum radiation, with collisional as well as radiative processes being considered. The resulting time dependence of the electron density and the effective thickness of the layer are in good agreement with values derived from observations. We assume the supply of energetic particles to be cut off when the central electron density of our model layer reaches the peak value of n e = 4.4 × 1013 cm–3 derived from observations of an importance 3 flare. Depending on the total hydrogen density assumed, the central electron temperature reaches a value ranging from 8000 to 10000 K. These quantities decrease by 20% during the following minute and at a slower rate thereafter.  相似文献   

5.
T. Hirayama 《Solar physics》1974,34(2):323-338
A theoretical model of flare which explains observed quantities in H, EUV, soft X-ray and flare-associated solar wind is presented. It is assumed that large mass observed in the soft X-ray flare and the solar wind comes from the chromosphere by the process like evaporation while flare is in progress. From mass and pressure balance in the chromosphere and the corona, the high temperature in the soft X-ray flare is shown to be attained by the larger mass loss to the solar wind compared with the mass remained in the corona, in accord with observations. The total energy of 1032 erg, the electron density of 1013.5 cm–3 in H flare, the temperature of the X-ray flare of 107.3K and the time to attain maximum H brightness (600 s) are derived consistent with observations. It is shown that the top height of the H flare is located about 1000 km lower than that of the active chromosphere because of evaporation. So-called limb flares are assigned to either post-flare loops, surges or rising prominences.The observed small thickness of the H flare is interpreted by free streaming and/or heat conduction. Applications are suggested to explain the maximum temperature of a coronal condensation and the formation of quiescent prominences.  相似文献   

6.
Observations of impulsive solar flare X-rays 10 keV by the OGO-5 satellite and the measurements of energetic solar electrons made with the Explorer-35 and Explorer-41 (IMP-5) satellites during the period March 1968–September 1969 have been analyzed in order to determine the ion density in the X-ray source region as well as the location of the electron acceleration region in the solar atmosphere. If we assume that the efficiency of escape of the accelerated electrons into interplanetary space is 10–3, the observations are found to be consistent with the following interpretation: (i) the ion density in the X-ray source region varies from event to event and lies between 109 and 1011 ions cm–3 for those events in which the impulsive X-ray emission could be detected; (ii) for those events in which no impulsive emission was detected above threshold, the ion density in the X-ray source was < 109 ions cm–3; (iii) at least in some small solar flares the region where the electrons are accelerated during the flash phase is located in the lower corona.  相似文献   

7.
We studied the EUV line spectra of three flare observed with the NRL slit spectrograph on Skylab. The electron densities in the flare transition-zone plasmas are determined from density-sensitive lines of Si iii and O iv. The electron densities in all three flares studied were greatest during the flare maximum with values of the order of 1012 cm–3. The density decreases by a factor of 2 to 3 in the decay phase of the flares. The intensities of EUV lines from the flare chromospheric and transition-zone plasmas all are greatly enhanced. In contrast to lines for Oi, Ci, Feii and other chromospheric ions, the lines of Oiv and Nv and other transition-zone lines are not only enhanced but also very much broadened.Fitting of the N v 1242 Å line with a two-gaussian model shows that for two of the flares studied, there is a red-shifted component in addition to an unshifted component. The shifted component in the N v line profiles is interpreted as due to a dynamic and moving plasma with a bulk motion velocity of 12 km s–1 for one flare and more than 70 km s–1 for the other. The broadened line profiles indicate that there are large turbulent mass motions with random velocities ranging from 30 to 80 km s–1.Ball Corporation. Now with NASA/Marshall Space Flight Center.  相似文献   

8.
Tsap  Y.T. 《Solar physics》2000,194(1):131-136
A model of the cascading acceleration of quasi-thermal electrons by MHD turbulence in solar flares is considered. Analysis shows that fast magnetoacoustic wave modes with large wavenumbers (>3×10–8 cm–1) strongly damp due to ion viscosity for both preflare and flare conditions. The viscous damping of fast magnetoacoustic wave modes is 10–100 times more efficient than Fermi or transit-time electron acceleration.  相似文献   

9.
We present spectral data for three white-light flares (WLFs) showing Balmer continuum at wavelengths 3700 Å. These flares also have a weaker continuum extending toward longer wavelengths, from which, in one flare where this continuum is sufficiently bright, we are able to identify a Paschen jump near 8500 Å. The presence of the latter suggests that the Paschen continuum may be a substantial contributor to the WLF continuum at visible wavelengths. We note the possibility, therefore, that the entire continuum of this particular flare may be dominated by H fb emission.In all three flares the head of the Balmer continuum, as well as the head of the Paschen continuum in the flare where it was identified, is advanced toward longer wavelengths as a result of the blending of the hydrogen emission lines of the respective series. The principal quantum number of the last resolvable line of the Balmer or Paschen series is approximately 16. The electron density, as measured from the halfwidths of the high Balmer lines in two of the flares, is approximately 5 × 1013 cm–3. Due to possible misplacements of the spectrograph slit, however, the electron density in the brightest kernels of the WLFs may not have been obtained.Operated by the Association of Universities for Research in Astronomy, Inc. under contract AST 78-17292 with the National Science Foundation.  相似文献   

10.
T. Moran  P. Foukal 《Solar physics》1991,135(1):179-191
We describe an electrograph instrument designed for measurement of macroscopic electric fields in solar plasmas, using the polarization dependence of line width in Stark-broadened hydrogen Paschen emission lines. Observations of quiescent prominences and limb chromosphere with our electrograph at the NSO/Sac Peak Evans Coronal Facility provide upper limits of 5–10 V cm–1 for transverse macroscopic electric fields in these structures, averaged over an area of about 5 × 7 arc sec. Random thermal motions of hydrogen ions across magnetic field lines generate a quasi-static electric field, which should be distinguishable from pressure broadening in the intensely magnetized chromosphere over a sunspot, given an electrograph sensitivity a factor 2–3 better than that achieved here. Future electrograph measurements of limb flares, post-flare loops and eruptive prominences, even at 5 V cm–1 sensitivity, could provide a useful new test of reconnection and discharge effects in such dynamic structures.  相似文献   

11.
Recent atomic data have been used to analyze a solar flare spectrum obtained with the Goddard Space Flight Center's grating spectrometer on the OSO-5 satellite. There exist in the wavelength region 90–200 Å strong lines from each of the ions Fe xviii-Fe xxiv. The Fe xxi lines can be used as an electron density diagnostic for the 107 K plasma. From our analysis of a particular flare, we find a steep positive slope in the emission measure between 106.5 and 107.2 K and an electron density of 4 × 1011 cm–3 at 107 K. We emphasise the need for high spectral and spatial resolution observations of solar flares in this wavelength region, which has to date been largely neglected.  相似文献   

12.
The mean density of the UV Cet-type flare stars in the solar neighbourhood is estimated. If differences of activity levels on different flare stars are taken into account, their summary flare activity is equivalent to 0.03 YZ CMi's flare activity per cubic parsec or to 4×1026 erg s–1 pc–3 in U-passband. From the X-ray flare observation on YZ CMi of 19.10.74 we estimate the luminosity of stellar flares in soft and intermediate X-ray. The ratio of X-ray to optical radiation for stellar flares is close to the respective ratio for strong solar chromospheric flares. It is shown the set of red-dwarf flare stars has all essential features of an ensemble of discrete X-ray sources to represent the galactic diffuse X-ray background.  相似文献   

13.
Vector magnetogram, H, and hard X-ray observations of flares are reviewed which show that nonthermal electron signatures in H are never cospatial with regions of maximum current density for the small number of flares analyzed, but lie to the sides of these regions. By considering electron acceleration and transport requirements, four conditions are found that must be fulfilled to observe nonthermal electron signatures in H: (1) The plasma beta 0.3 in the acceleration region. (2) The energy flux of electrons above 20 keV is greater than 1010 erg cm–2 s–1. (3) The column densityN 1020 cm–2 between the electron source and the chromosphere. (4) The coronal pressure in the flux tube connecting to the H layerp 100 dyne cm–2. Condition 2 can be most easily met in the initial stages of flares. In contrast, the only condition for a high-pressure H signature isp 1000 dyne cm–2, which is most easily met in a region of maximum current density or heating and far enough into the flare for significant heating to have occurred. Thus, high-pressure signatures should be expected to occur more frequently than nonthermal electron signatures and to occur generally later in time.Also Guest Worker at NOAA Space Environment Laboratory Boulder Colorado U.S.A.  相似文献   

14.
New theoretical emission line ratios for the Be-sequence ions Mgix and Sixi are presented. A comparison with observational data for two solar flares and an active region loop obtained with the Harvard EUV spectrometer and NRL XUV spectroheliograph aboard Skylab reveals that these plasmas are in ionization equilibrium at coronal temperatures. Unfortunately most of the density diagnostics are not particularly useful under solar plasma conditions, as they vary only slightly over the electron density range 108–1013cm–3. However the Sixi ratioI(3 P e 2 -3 P o 2)/I(3 P o 11 S e 0) is density sensitive in the range 108 to 1010cm–3, which is representative of electron densities found in solar active regions or small flares.  相似文献   

15.
Scanning spectrometer measurements in the range 1310–270 Å, observed from the satellite OSO 3, are reported for the solar flare of 2114 UT March 27, 1967. This flare was a long lasting sequence of bursts with EUV spectra consisting of enhanced lines and recombination continua normally emitted from the chromosphere and chromosphere-corona transition region, with unusually small increases in lines normally emited from the corona. An EUV flare spectrum is presented and suggested as one example for interpreting broadband observations of EUV bursts. Any broadband continuum other than known recombination continua contributed less than 6 % of the meassured line and hydrogen recombination continua in the range 270–1310 Å. The ratio of photon flux of Ciii 1176 Å to that of Ciii 977 Å was 0.86, which suggests an ambient density in the region of emission greater than 1012 cm-3 at temperatures near 60000 K.  相似文献   

16.
The problem of hydrodynamic response of the solar chromosphere on impulsive heating by energetic electrons is discussed. All basic physical processes are considered in a one-dimensional approximation, due to presence of a strong magnetic field. The calculations are performed for the heating of the chromosphere by electrons having a power-law energetic spectrum. In the upper chromosphere the electron temperature rises rapidly to values of order 107 K. The ion temperature is more than the order of magnitude less than the temperature of electrons. The heated high-temperature chromospheric plasma expands into corona with a velocity up to 1500 km s–1. In more dense layers, the fast re-emission of supplied energy takes place. This process gives rise to short-lived EUV flash. Just below the flare transition layer the thermal instability produces cold plasma condensation which moves downward at a velocity exceeding the sonic one in the quiet chromosphere.  相似文献   

17.
Meaurements of solar flare spectra have allowed the electric field strengths in two flares to be determined, using the Inglis-Teller formula. Further, an independently estimated value for the electron density has allowed the two components of this field, that is, the interionic component and the external component that arises, for example, through plasma instabilities, to be separately extracted. External electric field strengths 0.5 kV cm–1 for a limb flare and 1.3 kV cm–1 for a white-light flare are found. Estimates of electric fields strengths generated by the resistive magnetic tearing instability indicate that this process could account for a significant part of the electric field if pre-existing magnetic field strengths in the flaring regions are characterized by a few kilogauss. Other plasma processes probably contribute measurably as well.Operated by the Association of Universities for Research in Astronomy, Inc., under contract NSF AST84-18716 with the National Science Foundation.  相似文献   

18.
A single loop associated with a flare of 21 January 1974 was studied with NRL spectroheliograms in order to understand the phenomenon of evaporation. The loop seen in the emission lines of Fe xv reached its maximum brightness 15 min after the onset. The loop is different from a flare loop because of the time sequence in which it appeared and is different from a post-flare loop prominence system because of its morphology. The electron density in the loop increases gradually to 4 × 1010 cm–3. The material of the loop is thought to be supplied from the lower atmosphere of the chromosphere or the photosphere. The loop is an associated phenomenon of the main flare event distinguished by a longer rise time (15 min) and a lower peak temperature (2 × 106 K).  相似文献   

19.
The chromospherically-active binary, V711 Tau, had been observed by using the American Very Large Array (VLA) at five bands from 1.4 to 15 GHz. During the observation, the source was undergoing an intense flare, its radio luminosity up to 1.8 × 1018 erg s–1 Hz–1. The degree of circular polarization in the phase of the most intense flare was very small. With the decaying of the flare the flux density decreased, spectral index became smaller, spectra steeper and reversal frequency lower; the degree of circular polarization increased and its direction was dependent on frequency. These observational facts support the conclusion that the emission during intense flare is synchrotron (or synchro-cyclotron) mechanism. The magnetic intensity is about 10 G near = 1, the average electron energy, 4 MeV, the electron density with larger than 10 keV, 3 × 104–9 × 104 cm–3 and the electronic energy spectrum index in power-law distribution 1.3.  相似文献   

20.
Here we complete an energy balance analysis of a double impulsive hard X-ray flare. From spatial observations, we deduce both flares probably occur in the same loop within the resolution of the data. For the first flare, the energy in the fast electrons (assuming a thick-target model) is comparable to the convective up-flow energy, suggesting that these are related successive modes of energy storage and transfer. The total energy lost through radiation and conduction, 2.0 × 1028 erg, is comparable to the energy in fast electrons 2.5 × 1028 erg. For the second flare, the energy in the fast electrons is more than one order of magnitude greater than the energy of the convective up-flow. Total energy losses are within a factor of two lower than the calculated fast electron energy. We interpret the observations as showing that the first flare occurred in a small loop with fast electrons heating the chromosphere and resulting in chromospheric evaporation increasing the density in the loop. For the second flare most of the heating occurred at the electron acceleration site. The two symmetrical components of the Ca xix resonance line and a high velocity down-flow of 115 km s –1 observed at the end of the second hard X-ray burst are consistent with the flare eruption (reconnection) region being high in the flare loop. The estimated altitude of the acceleration site is 5500 km above the photosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号