首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study the magnetic structure of five well-known active regions that produced great flares (X5 or larger). The six flares under investigation are the X12 flare on 1991 June 9 in AR 6659, the X5.7 flare on 2000 July 14 in AR 9077, the X5.6 flare on 2001 April 6 in AR 9415, the X5.3 flare on 2001 August 25 in AR 9591, the X17 flare on 2003 October 28 and the X10 flare on 2003 October 29, both in AR 10486. The last five events had corresponding LASCO observations and were all associated with Halo CMEs. We analyzed vector magne-tograms from Big Bear Solar Observatory, Huairou Solar Observing Station, Marshall Space Right Center and Mees Solar Observatory. In particular, we studied the magnetic gradient derived from line-of-sight magnetograms and magnetic shear derived from vector magne-tograms, and found an apparent correlation between these two parameters at a level of about 90%. We found that the magnetic gradient could be a better proxy than the shear for predicting where a major flare might occur: all six flares occurred in neutral lines with maximum gradient. The mean gradient of the flaring neutral lines ranges from 0.14 to 0.50 G km-1, 2.3 to 8 times the average value for all the neutral lines in the active regions. If we use magnetic shear as the proxy, the flaring neutral line in at least one, possibly two, of the six events would be mis-identified.  相似文献   

2.
In this paper we analyse the non-potential magnetic field and the relationship with current (helicity) in the active region NOAA 9077 in 2000 July, using photospheric vector magnetograms obtained at different solar observatories and also coronal extreme-ultraviolet 171-Å images from the TRACE satellite.
We note that the shear and squeeze of magnetic field are two important indices for some flare-producing regions and can be confirmed by a sequence of photospheric vector magnetograms and EUV 171-Å features in the solar active region NOAA 9077. Evidence on the release of magnetic field near the photospheric magnetic neutral line is provided by the change of magnetic shear, electric current and current helicity in the lower solar atmosphere. It is found that the 'Bastille Day' 3B/5.7X flare on 2000 July 14 was triggered by the interaction of the different magnetic loop systems, which is relevant to the ejection of helical magnetic field from the lower solar atmosphere. The eruption of the large-scale coronal magnetic field occurs later than the decay of the highly sheared photospheric magnetic field and also current in the active region.  相似文献   

3.
Horizontal proper motions were measured with local correlation tracking (LCT) techniques in active region NOAA 11158 on 2011 February 15 at a time when a major (X2.2) solar flare occurred. The measurements are based on continuum images and magnetograms of the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. The observed shear flows along the polarity inversion line were rather weak (a few 100 m s–1). The counter‐streaming region shifted toward the north after the flare. A small circular area with flow speeds of up to 1.2 km s–1 appeared after the flare near a region of rapid penumbral decay. The LCT signal in this region was provided by small‐scale photospheric brigthenings, which were associated with fast traveling moving magnetic features. Umbral strengthening and rapid penumbral decay was observed after the flare. Both phenomena were closely tied to kernels of white‐light flare emission. The white‐light flare only lasted for about 15 min and peaked 4 min earlier than the X‐ray flux. In comparison to other major flares, the X2.2 flare in active region NOAA 11158 only produced diminutive photospheric signatures (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Flare-induced signals in polarization measurements which were manifested as apparent polarity reversal in magnetograms have been reported since 1981. We are motivated to further quantify the phenomenon by asking two questions: can we distinguish the flare-induced signals from real magnetic changes during flares, and what we can learn about flare energy release from the flare-induced signals? We select the X2.6 flare that occurred on 2005 January 15, for further study. The flare took place in NOAA active re-gion (AR) 10720 at approximately the central meridian, which makes the interpretation of the vector magnetograms less ambiguous. We have identified that flare-induced signals during this flare appeared in six zones. The zones are located within an average distance of 5 Mm from their weight center to the main magnetic neutral line, have an average size of (0.6±0.4)×1017 cm2, duration of 13±4 min, and flux density change of 181±125 G in the area of reversed polarity. The following new facts have been revealed by this study: (1) the flare-induced signal is also seen in the transverse magnetograms but with smaller magnitude, e.g., about 50 G; (2) the flare-induced signal mainly manifests itself as apparent polarity reversal, but the signal starts and ends as a weakening of flux density; (3) The flare-induced signals appear in phase with the peaks of hard X-ray emission as observed by the Ramaty High Energy Solar Spectroscopic lmager (RHESSI), and mostly trace the position of RHESSI hard X-ray footpoint sources. (4) in four zones, it takes place cotemporally with real magnetic changes which persist after the flare. Only for the other two zones does the flux density recover to the pre-flare level immediately after the flare.The physical implications of the flare-induced signal are discussed in view of its relevance to the non-thermal electron precipitation and primary energy release in the flare.  相似文献   

5.
Three Super Active Regions in the Descending Phase of Solar Cycle 23   总被引:2,自引:0,他引:2  
We analyze the magnetic configurations of three super active regions, NOAA 10484, 10486 and 10488, observed by the Huairou Multi-Channel Solar Telescope (MCST) from 2003 October 18 to November 4. Many energetic phenomena, such as flares (including a X-28 flare) and coronal mass ejections (CMEs), occurred during this period. We think that strong shear and fast emergence of magnetic flux are the main causes of these events. The question is also of great interest why these dramatic eruptions occurred so close together in the descending phase of the solar cycle.  相似文献   

6.
对3个超级活动区(大的δ型黑子群)NOAA 5395、6659、6891中的电流分布作了系统计算;利用已发表的计算方法,首次用于实际活动区的水平电流分布;给出了电流与耀斑核的关系。将这种关系分为两类:密切相关和准相关,并同时给出了统计结果。结果显示:1)对于垂直电流和水平电流来说,密切相关率分别是29%和10%,准相关率分别是50%和30%;2)有些耀斑核与两种电流都相关,而大多数只与其中一种相关;3)与两种电流都不相关的耀斑核只占6%左右;4)两种电流起互补作用,因而对于预报耀斑具有一定的作用。通过分析还发现,磁场剪切强的地方相应于强的垂直电流,而磁中性线附近纵向磁场梯度大的地方相应于强的水平电流。  相似文献   

7.
We analyze an M9.1 two-ribbon solar flare which occurred on 2004 July 22 us- ing the TRACE white-light and 1700A~。images,the RHESSI,and the SOHO/MDI data.We find many small-scale fast-varying brightenings that appeared in the white-light and 1700A~。images along the flare ribbons.Some of them underwent rapid motions in weak magnetic field regions.We identify these short-lived brightenings as UV continuum enhancement.Our preliminary result shows that the brightenings are closely related to the HXR emission.They have a lifetime of 30-60 s and a typical size of about 1″-2″.The intensity enhancement is about 150-200 times the mean value of the quiet-Sun.According to previous works,we infer that the 1700A~。enhancement may be dominated by the increased emission of 1680 A con- tinuum coming from the temperature minimum region.The impulsive feature in the 1700 A~。light curves of the small-scale brightenings may be due to the irradiation of the impulsive CIV line intensity caused by the bombardment of non-thermal electron beams.  相似文献   

8.
1 INTRODUCTIONCoronal majss ejections (CMEs) are often seen as spectacular eruptions of matter fromthe Sun which propagate outward through the heliosphere and often interact with the Earth'smagnetosphere (Hundhausen, 1997; Gosling, 1997; and references herein). It is well known thatthese interactions can have substalltial consequences on the geomagnetic environment of theEarth, sometimes resulting in damage to satellites (e.g., McAllister et al., 1996; Berdichevskyet al., 1998). CMEs…  相似文献   

9.
We analyze the process of formation of delta configuration in some well-known super active regions based on photospheric vector magnetogram observations. It is found that the magnetic field in the initial developing stage of some delta active regions shows a potential-like configuration in the solar atmosphere, the magnetic shear develops mainly near the magnetic neutral line with magnetic islands of opposite polarities, and the large-scale photospheric twisted field forming gradually later. Some results are obtained: (1) The analysis of magnetic writhe of whole active regions cannot be limited in the strong field of sunspots, because the contribution of the fraction of decayed magnetic field is non-negligible. (2) The magnetic model of kink magnetic ropes, supposed to be generated in the subatmosphere, is not consistent with the evolution of large-scale twisted photospheric transverse magnetic field and not entirely consistent with the relationship with magnetic shear in some delta active regions. (3) T  相似文献   

10.
A. zgü  T. Ata 《New Astronomy》2003,8(8):745-750
We study the hysteresis effect between the solar flare index and cosmic ray intensity for the past 37 years from January 1, 1965 to December 31, 2001 on a daily basis. We show that smoothed time series of flare index and the daily Calgary Galactic Cosmic Ray intensity values exhibit significant solar cycle dependent differences in their relative variations during the studied period. The shapes of these differences vary from cycle to cycle. So we investigate the momentary time lags between the two time series for the odd and even cycles.  相似文献   

11.
The line profiles of Hα in a limb flare on 1998 November 11 appear to be unusually broadened. It is considered that macro-turbulence (or macroscopic mass motions) may be one of the main causes. We use an inversion technique to extract the probability distribution of the line-of-sight velocity in the flare. There exist some differences between the velocity distributions deduced from Hα and from CaⅡ λ8542, which may be because the two lines depend differently on the temperature and velocity. Since the loop density is high, we obtain a rather short cooling time (several tens of seconds) from the hot X-ray loops to the cool loops visible in Hα. Possible origins of the large scale motions are discussed.  相似文献   

12.
We developed a simple model for a flare loop, which was used to fit the emission in the microwave (17 GHz) and millimetre-wave (80 GHz) ranges for the giant flare of 1991 June 4. The simplicity of the model enabled the exploration of a wide range of parameters in a reasonable time. It was possible, using the simple model, to derive from the 17- and 80-GHz data the magnetic field and the number density for every measurement point in the time range we chose to fit.  相似文献   

13.
Radio observations of some active regions (ARs) obtained with the Nobeyama radioheliograph at λ=1.76cm are used for estimating the magnetic field strength in the upper chromosphere, based on thermal bremsstrahlung. The results are compared with the magnetic field strength in the photosphere from observations with the Solar Magnetic Field Telescope (SMFT) at Huairou Solar Observing Station of Beijing Astronomical Observatory. The difference in the magnetic field strength between the two layers seems reasonable. The solar radio maps of active regions obtained with the Nobeyama radioheliograph, both in total intensity (I-map) and in circular polarizations (V-map), are compared with the optical magnetograms obtained with the SMFT. The comparison between the radio map in circular polarization and the longitudinal photospheric magnetogram of a plage region suggest that the radio map in circular polarization is a kind of magnetogram of the upper chromosphere. The comparison of the radio map in total intensity with the photospheric vector magnetogram of an AR shows that the radio map in total intensity gives indications of magnetic loops in the corona, thus we have a method of defining the coronal magnetic structure from the radio I-maps at λ=1.76 cm. Analysing the I-maps, we identified three components: (a) a compact bright source; (b) a narrow elongated structure connecting two main magnetic islands of opposite polarities (observed in both the optical and radio magnetograms); (c) a wide, diffuse, weak component that corresponds to a wide structure in the solar active region which shows in most cases an S or a reversed S contour, which is probably due to the differential rotation of the Sun. The last two components suggest coronal loops on different spatial scales above the neutral line of the longitudinal photospheric magnetic field.  相似文献   

14.
We observed 4B/X17.2 flare in Hα from super-active region NOAA 10486 at ARIES, Nainital. This is one of the largest flares of current solar cycle 23, which occurred near the Sun’s center and produced extremely energetic emission almost at all wavelengths from γ-ray to radio-waves. The flare is associated with a bright/fast full-halo earth directed CME, strong type II, type III and type IV radio bursts, an intense proton event and GLE. This flare is well observed by SOHO, RHESSI and TRACE. Our Hα observations show the stretching/de-twisting and eruption of helically twisted S shaped (sigmoid) filament in the south-west direction of the active region with bright shock front followed by rapid increase in intensity and area of the gigantic flare. The flare shows almost similar evolution in Hα, EUV and UV. We measure the speed of Hα ribbon separation and the mean value is ∼ 70 km s-1. This is used together with photospheric magnetic field to infer a magnetic reconnection rate at three HXR sources at the flare maximum. In this paper, we also discuss the energetics of active region filament, flare and associated CME.  相似文献   

15.
1 INTRODUCTIONRecently Bao, Zhang, Ai, and Zhang (1999), using Huairou vector magnetograph data,have shown that the average current helicity (h.) or the curreflt helicity imbalance ph of activeregions change rapidly after so1ar flares. Up'an the onset of flares it tends to decrease for a fewhours and then to increase again, whereas ifQ some cases the flare promotes an increase in thecurrent helicity The observations led to tbe fol1owing conclusions: (1) raPid and substantialchanges of c…  相似文献   

16.
1 INTRODUCTION Magnetic field plays an important role in solar activity. The stressing and subsequent partialrelaxation of magnetic fields in the active regions are generally accepted to be the energy sourceof solar flares. To quantitatively study the extent of stressed magnetic field as distinct from itspotential field, Hagyard et al. (1984) defined a magnetic shear angle膖he azimuth differencebetween the observed transverse magnetic field vector and the computed potential field vectorth…  相似文献   

17.
In this paper, the monthly counts of flare index in the northern and southern hemispheres are used to investigate the hemispheric variation of the flare index in each of solar cycles 20–23. It is found that, (1) the flare index is asymmetrically distributed in each solar cycle and its asymmetry is a real phenomenon; (2) the flare index in the northern hemisphere begins earlier than that in the southern hemisphere in each of solar cycles 20–23, and the phase shifts between the two hemispheres show an odd‐even pattern; (3) although the flare index dominating in a hemisphere does not mean that it leads in phase in this hemisphere in individual solar cycle, these two features have an intrinsic relationship. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
In this paper we present a quantitative evaluation of the shear in the magnetic field along the neutral line in an active region during an epoch of flare activity. We define shear as the angular difference in the photosphere between the potential magnetic field, which fits the boundary conditions imposed by the observed line-of-sight field, and the observed magnetic field. For the active region studied, this angular difference (shear) is non-uniform along the neutral line with maxima occurring at the locations of repeated flare onsets. We suggest that continued magnetic evolution causes the field's maximum shear to exceed a critical value of shear, resulting in a flare around the site of maximum shear. Evidently, the field at the site of the flare must relax to a state of shear somewhat below the critical value (but still far from potential), with subsequent evolution returning the field to the critical threshold. We draw this inference because several flares occurred at sites of maximum photospheric shear which were persistent in location.NOAA, Boulder, Colorado.  相似文献   

19.
Using high cadence, high resolution near infrared (NIR) observations of the X10 white‐light flare (WLF) on 2003 October 29, we investigated the evolution of the core‐halo structure of white‐light emission during the two‐second period flare peak. We found that size and intensity of the halo remained almost constant in the range of 10 Mm2. However, the core area was very compact and expanded rapidly from about 1 Mm2 to 4 Mm2. At the same time, the total emission of the core increased nearly twenty times. This distinct behavior indicates that different heating mechanisms might be responsible for core and halo emissions. In addition to the temporal analysis, we compared the intensity enhancements of the flare core and halo. The result shows that the halo contrast increased by about 8% compared to the flare‐quiet region, which could be explained by a combination of direct‐heating and backwarming models (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Haimin Wang 《Solar physics》1992,140(1):85-98
This paper studies the evolution of vector magnetic fields in the active region Boulder No. 6233 during an 11-hour observing period and its relationship to an X-3 flare on August 27, 1990.We observed the evolution of magnetic fields, which includes magnetic shear build-up, directly in high-resolution vector magnetograph movies. The magnetic shear is observed to be built up in two ways: (1) shear motion between two poles of opposite magnetic polarities and (2) direct collision of two poles of opposite polarities. When two magnetic elements of opposite polarities are canceling, the field lines are observed to turn from direct connection (potential) to a sheared configuration during the process.An X-3 flare occurred at 2100 UT. The vector magnetic structure showed an unexpected pattern of changes during and after the flare. The shear (defined as the angle between the measured transverse field and the calculated potential field) in the area covering two major footpoints increased rapidly coinciding with the burst of GOES X-ray flux. While the flare faded away in about one hour, the high shear status dropped slowly for the remainder of the observing period. Immediately after the flare, new flux emerged more rapidly and the flow speed of several magnetic elements increased near the flare footpoints.In this active region and a few other flare-productive regions we have studied recently, we always find rapid and complicated flow motions near the sites where flares occur. Photospheric flows appear to be another important factor for the production of flares.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号