首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ground water model calibration using pilot points and regularization   总被引:9,自引:0,他引:9  
Doherty J 《Ground water》2003,41(2):170-177
Use of nonlinear parameter estimation techniques is now commonplace in ground water model calibration. However, there is still ample room for further development of these techniques in order to enable them to extract more information from calibration datasets, to more thoroughly explore the uncertainty associated with model predictions, and to make them easier to implement in various modeling contexts. This paper describes the use of "pilot points" as a methodology for spatial hydraulic property characterization. When used in conjunction with nonlinear parameter estimation software that incorporates advanced regularization functionality (such as PEST), use of pilot points can add a great deal of flexibility to the calibration process at the same time as it makes this process easier to implement. Pilot points can be used either as a substitute for zones of piecewise parameter uniformity, or in conjunction with such zones. In either case, they allow the disposition of areas of high and low hydraulic property value to be inferred through the calibration process, without the need for the modeler to guess the geometry of such areas prior to estimating the parameters that pertain to them. Pilot points and regularization can also be used as an adjunct to geostatistically based stochastic parameterization methods. Using the techniques described herein, a series of hydraulic property fields can be generated, all of which recognize the stochastic characterization of an area at the same time that they satisfy the constraints imposed on hydraulic property values by the need to ensure that model outputs match field measurements. Model predictions can then be made using all of these fields as a mechanism for exploring predictive uncertainty.  相似文献   

2.
电阻率成像的混合正则化反演算法   总被引:2,自引:0,他引:2       下载免费PDF全文
利用混合正则化方法对二维分片常值电阻率进行反演研究,该方法结合了全变差正则化方法(total variation regularization)和经典吉洪诺夫正则化方法(classical Tikhonov regularization)的优点. 全变差正则化能够有效地重构分片常值电阻率和识别边界,而经典吉洪诺夫正则化方法则能有效地重构光滑的电阻率,从数值算例中可以看出,将这两种方法有效地结合到一起能够改进重构效果.  相似文献   

3.
First‐arrival traveltime tomography is a robust tool for near‐surface velocity estimation. A common approach to stabilizing the ill‐posed inverse problem is to apply Tikhonov regularization to the inversion. However, the Tikhonov regularization method recovers smooth local structures while blurring the sharp features in the model solution. We present a first‐arrival traveltime tomography method with modified total‐variation regularization to preserve sharp velocity contrasts and improve the accuracy of velocity inversion. To solve the minimization problem of the new traveltime tomography method, we decouple the original optimization problem into the two following subproblems: a standard traveltime tomography problem with the traditional Tikhonov regularization and a L2 total‐variation problem. We apply the conjugate gradient method and split‐Bregman iterative method to solve these two subproblems, respectively. Our synthetic examples show that the new method produces higher resolution models than the conventional traveltime tomography with Tikhonov regularization, and creates less artefacts than the total variation regularization method for the models with sharp interfaces. For the field data, pre‐stack time migration sections show that the modified total‐variation traveltime tomography produces a near‐surface velocity model, which makes statics corrections more accurate.  相似文献   

4.
Most groundwater models simulate stream‐aquifer interactions with a head‐dependent flux boundary condition based on a river conductance (CRIV). CRIV is usually calibrated with other parameters by history matching. However, the inverse problem of groundwater models is often ill‐posed and individual model parameters are likely to be poorly constrained. Ill‐posedness can be addressed by Tikhonov regularization with prior knowledge on parameter values. The difficulty with a lumped parameter like CRIV, which cannot be measured in the field, is to find suitable initial and regularization values. Several formulations have been proposed for the estimation of CRIV from physical parameters. However, these methods are either too simple to provide a reliable estimate of CRIV, or too complex to be easily implemented by groundwater modelers. This paper addresses the issue with a flexible and operational tool based on a 2D numerical model in a local vertical cross section, where the river conductance is computed from selected geometric and hydrodynamic parameters. Contrary to other approaches, the grid size of the regional model and the anisotropy of the aquifer hydraulic conductivity are also taken into account. A global sensitivity analysis indicates the strong sensitivity of CRIV to these parameters. This enhancement for the prior estimation of CRIV is a step forward for the calibration and uncertainty analysis of surface‐subsurface models. It is especially useful for modeling objectives that require CRIV to be well known such as conjunctive surface water‐groundwater use.  相似文献   

5.
基于Tikhonov正则化的双频电磁波电导率成像反演   总被引:4,自引:1,他引:3       下载免费PDF全文
本文将Tikhonov正则化方法与active-set算法相结合,利用双频电磁波电导率成像原理,求解其反演成像方程.不仅对现有算法进行了改进,也促进了算法的实际应用.本文研究了在双频电磁波电导率成像方程建立后,如何根据其严重病态性质,选择合适的算法求解矩阵成像方程.针对电导率非负的特性,引入正则化参数,将问题转化为一个非负最小二乘问题,并用active-set算法求解.采用改进后的迭代算法对理论模型进行了数值模拟计算,验证了该方法的有效性.应用到实际电导率成像反演,与常规的LSQR、SP-LSQR、Tikhonov正则化等算法进行比较,取得了满意的结果.  相似文献   

6.
煤矿井下微震震源高精度定位研究   总被引:3,自引:0,他引:3       下载免费PDF全文
煤矿井下微震震源准确定位,对于动力灾害监测预警具有重要意义.由于微震震源需要通过井下传感器接收信息反演确定,传感器的安装位置限制于煤矿井下巷道周围,传感器沿巷道近平面的不合理布置将大大降低震源定位精度.针对由传感器信息反演震源位置引起的病态问题,本文提出了基于微震监测测点优化布置的震源高精度定位算法.首先通过计算系数矩阵条件数,判定病态问题;然后利用中心化法和行平衡法联合进行病态矩阵预处理.对预处理后的矩阵A、b利用L曲线法计算正则参数,结合Tikhonov正则化算法计算得到震源坐标正则解.研究结果表明,中心化法有效降低了矩阵数量级,行平衡预处理降低了病态条件数,预处理后Tikhonov正则解的震源坐标误差最小可以达到3.09m,与预处理前的高斯消去解相比误差大大降低.通过上述优化处理,实现了井下受限空间微震监测震源高精度定位.  相似文献   

7.
We introduce a nonlinear orthogonal matching pursuit (NOMP) for sparse calibration of subsurface flow models. Sparse calibration is a challenging problem as the unknowns are both the non-zero components of the solution and their associated weights. NOMP is a greedy algorithm that discovers at each iteration the most correlated basis function with the residual from a large pool of basis functions. The discovered basis (aka support) is augmented across the nonlinear iterations. Once a set of basis functions are selected, the solution is obtained by applying Tikhonov regularization. The proposed algorithm relies on stochastically approximated gradient using an iterative stochastic ensemble method (ISEM). In the current study, the search space is parameterized using an overcomplete dictionary of basis functions built using the K-SVD algorithm. The proposed algorithm is the first ensemble based algorithm that tackels the sparse nonlinear parameter estimation problem.  相似文献   

8.
王月  张捷 《地震学报》2018,40(5):595-608
利用弹性波的初至波和面波,应用交叉梯度算子,联合反演了近地表的二维纵横波速度和衰减参数,并提出了采用一维弹性波正演模拟,应用二维Tikhonov正则化,同时反演出二维速度模型和衰减模型的方法。理论模型测试和实际数据应用结果均表明本文算法极大地提高了计算效率,同时能够反演出可靠的速度模型和衰减模型。   相似文献   

9.
位场各阶垂向导数换算的新正则化方法   总被引:3,自引:1,他引:2       下载免费PDF全文
位场垂向导数大量应用于位场数据处理与解释中.当前广泛采用的位场各阶垂向导数换算方法为基于Laplace方程并结合波数域和空间域方法的具有递推特性的ISVD(integrated second vertical derivative)算法.本文在位场垂向导数换算的正则化方法和径向平均功率谱的基础上,提出一种位场各阶垂向导数换算的新正则化方法.新正则化方法仅需通过分析位场径向平均功率谱来确定一个截止波数,即可稳定换算位场各阶垂向导数.理论模型和实测数据实验结果表明:(1)新正则化方法物理意义明确、计算简单,且各阶垂向导数换算的稳定性和精度明显优于ISVD算法;(2)在用新正则化方法求得各阶垂向导数的基础上,利用泰勒级数法可以获得大深度、高精度的位场向下延拓结果.  相似文献   

10.
无线电波透视法是常用的工作面地质构造探测方法之一,目前普遍使用的SIRT方法层析分辨率不高。本文采用约束正则化方法,推导Tikhonov正则化和全变差正则化的最小化问题表达式,讨论影响层析结果的主要因素,对典型理论模型进行了层析成像实验。结果表明:正则化方法具有比SIRT方法更好的分辨率;射线条数越多、噪声水平越低,层析分辨率越高;Tikhonov正则化在正则参数增大时层析结果更光滑,减小时则更贴近异常,全变差正则化与其相反。最后对实际坑透数据进行层析,识别出的异常构造基本吻合已知疑似构造位置,从而说明正则化方法在无线电波透视应用中的可行性。   相似文献   

11.
地面核磁共振(SNMR)技术是目前世界上直接用来寻找地下水的技术。本文在讨论反演基本问题的基础上,用共轭梯度法实现了核磁共振的一维正则化反演。通过反演理论数据、噪声数据和实测数据,说明该方法的可靠性。  相似文献   

12.
Nonparametric inverse methods provide a general framework for solving potential‐field problems. The use of weighted norms leads to a general regularization problem of Tikhonov form. We present an alternative procedure to estimate the source susceptibility distribution from potential field measurements exploiting inversion methods by means of a flexible depth‐weighting function in the Tikhonov formulation. Our approach improves the formulation proposed by Li and Oldenburg (1996, 1998) , differing significantly in the definition of the depth‐weighting function. In our formalism the depth weighting function is associated not to the field decay of a single block (which can be representative of just a part of the source) but to the field decay of the whole source, thus implying that the data inversion is independent on the cell shape. So, in our procedure, the depth‐weighting function is not given with a fixed exponent but with the structural index N of the source as the exponent. Differently than previous methods, our choice gives a substantial objectivity to the form of the depth‐weighting function and to the consequent solutions. The allowed values for the exponent of the depth‐weighting function depend on the range of N for sources: 0 ≤N≤ 3 (magnetic case). The analysis regarding the cases of simple sources such as dipoles, dipole lines, dykes or contacts, validate our hypothesis. The study of a complex synthetic case also proves that the depth‐weighting decay cannot be necessarily assumed as equal to 3. Moreover it should not be kept constant for multi‐source models but should instead depend on the structural indices of the different sources. In this way we are able to successfully invert the magnetic data of the Vulture area, Southern Italy. An original aspect of the proposed inversion scheme is that it brings an explicit link between two widely used types of interpretation methods, namely those assuming homogeneous fields, such as Euler deconvolution or depth from extreme points transformation and the inversion under the Tikhonov‐form including a depth‐weighting function. The availability of further constraints, from drillings or known geology, will definitely improve the quality of the solution.  相似文献   

13.
Abstract

The use of a physically-based hydrological model for streamflow forecasting is limited by the complexity in the model structure and the data requirements for model calibration. The calibration of such models is a difficult task, and running a complex model for a single simulation can take up to several days, depending on the simulation period and model complexity. The information contained in a time series is not uniformly distributed. Therefore, if we can find the critical events that are important for identification of model parameters, we can facilitate the calibration process. The aim of this study is to test the applicability of the Identification of Critical Events (ICE) algorithm for physically-based models and to test whether ICE algorithm-based calibration depends on any optimization algorithm. The ICE algorithm, which uses the data depth function, was used herein to identify the critical events from a time series. Low depth in multivariate data is an unusual combination and this concept was used to identify the critical events on which the model was then calibrated. The concept is demonstrated by applying the physically-based hydrological model WaSiM-ETH on the Rems catchment, Germany. The model was calibrated on the whole available data, and on critical events selected by the ICE algorithm. In both calibration cases, three different optimization algorithms, shuffled complex evolution (SCE-UA), parameter estimation (PEST) and robust parameter estimation (ROPE), were used. It was found that, for all the optimization algorithms, calibration using only critical events gave very similar performance to that using the whole time series. Hence, the ICE algorithm-based calibration is suitable for physically-based models; it does not depend much on the kind of optimization algorithm. These findings may be useful for calibrating physically-based models on much fewer data.

Editor D. Koutsoyiannis; Associate editor A. Montanari

Citation Singh, S.K., Liang, J.Y., and Bárdossy, A., 2012. Improving calibration strategy of physically-based model WaSiM-ETH using critical events. Hydrological Sciences Journal, 57 (8), 1487–1505.  相似文献   

14.
ABSTRACT

This study presents a systematic illustration quantifying how misleading the calibration results of a groundwater simulation model can be when recharge rates are considered as the model parameters to be estimated by inverse modelling. Three approaches to recharge estimation are compared: autocalibration (Model 1), the empirical return coefficient method (Model 2), and distributed hydrological modelling using the Soil and Water Assessment Tool, SWAT (Model 3). The methodology was applied in the Dehloran Plain, western Iran, using the MODFLOW modular flow simulator and the PEST method for autocalibration. The results indicate that, although Model 1 performed the best in simulating water levels at observation wells in the calibration stage, it did not perform satisfactorily in real future scenarios. Model 3, with SWAT-based recharge rates, performed better than the other models in the validation stage. By not evaluating the model performance solely on calibration results, we demonstrate the relative significance of using more accurate recharge estimates when calibrating groundwater simulation models.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR M. Besbes  相似文献   

15.
重力卫星可以在相同误差尺度下对全球质量变化进行连续重复观测,并在近十余年来取得了巨大成功,探索重力卫星数据精化处理方法和相关应用研究具有重要意义.本文基于三维加速度点质量模型法的基本原理,进一步发展建立了时变重力场模型球谐位系数的变化和地面点质量变化的关系,可有效考虑地表质量变化导致的负荷形变的影响;引入等权形式、线性形式、指数形式和高斯形式的空间约束方法处理南北条带噪声和向下延拓导致的病态问题,并与零阶Tikhonov正则化方法进行对比分析.采用模拟数据和一个月的实测GRACE时变重力场模型计算全球质量变化,对三维加速度点质量模型法和几种空间约束方法进行对比分析验证.计算结果表明,对于3°等面积的全球格网质量点,高斯和指数形式空间约束方法的最优相关距离约为500km,等权和线性形式空间约束方法的最优相关距离约为600km,各方法均可有效处理条带噪声的影响,四种空间约束方法的计算效果优于零阶Tikhonov正则化方法,本文的相关方法为进一步利用三维加速度点质量模型法监测全球质量变化提供了借鉴.  相似文献   

16.
In 1988, an important publication moved model calibration and forecasting beyond case studies and theoretical analysis. It reported on a somewhat idyllic graduate student modeling exercise where many of the system properties were known; the primary forecasts of interest were heads in pumping wells after a river was modified. The model was calibrated using manual trial-and-error approaches where a model's forecast quality was not related to how well it was calibrated. Here, we investigate whether tools widely available today obviate the shortcomings identified 30 years ago. A reconstructed version of the 1988 true model was tested using increasing parameter estimation sophistication. The parameter estimation demonstrated the inverse problem was non-unique because only head data were available for calibration. When a flux observation was included, current parameter estimation approaches were able to overcome all calibration and forecast issues noted in 1988. The best forecasts were obtained from a highly parameterized model that used pilot points for hydraulic conductivity and was constrained with soft knowledge. Like the 1988 results, however, the best calibrated model did not produce the best forecasts due to parameter overfitting. Finally, a computationally frugal linear uncertainty analysis demonstrated that the single-zone model was oversimplified, with only half of the forecasts falling within the calculated uncertainty bounds. Uncertainties from the highly parameterized models had all six forecasts within the calculated uncertainty. The current results outperformed those of the 1988 effort, demonstrating the value of quantitative parameter estimation and uncertainty analysis methods.  相似文献   

17.
In this study, we apply Tikhonov’s regularization algorithm for a 3-D density inversion from the gravity-gradiometry data. To reduce the non-uniqueness of the inverse solution (carried out without additional information from geological evidence), we implement the depth-weighting empirical function. However, the application of an empirical function in the inversion equation brings the bias problem of the regularization factor when a traditional Tikhonov’s algorithm is applied. To solve the bias problem of regularization factor selection, we present a standardized solution that comprises two parts for solving a 3-D constrained inversion equation, specifically the linear matrix transformation and Tikhonov’s regularization algorithm. Since traditional regularization techniques become numerically inefficient when dealing with large number of data, we further apply methods which include the Simultaneous Iterative Reconstruction Technique (SIRT) and the wavelet compression combined with Least Squares QR-decomposition (LSQR). In our simulation study, we demonstrate that SIRT as well as the wavelet compression plus LSQR algorithm improve the computation efficiency, while provide results which closely agree with that obtained from applying Tikhonov’s regularization. In particular, the algorithm of wavelet compression plus LSQR shows the best computing efficiency, because it combines the advantages of coefficients compression of big matrix and fast solution of sparse matrix. Similar findings are confirmed from the vertical gravity gradient data inversion for detecting potential deposits at the Kauring (near Perth, Western Australia) testing site.  相似文献   

18.
Determination of spherical harmonic coefficients of the Earth’s gravity field is often an ill-posed problem and leads to solving an ill-conditioned system of equations. Inversion of such a system is critical, as small errors of data will yield large variations in the result. Regularization is a method to solve such an unstable system of equations. In this study, direct methods of Tikhonov, truncated and damped singular value decomposition and iterative methods of ν, algebraic reconstruction technique, range restricted generalized minimum residual and conjugate gradient are used to solve the normal equations constructed based on range rate data of the gravity field and climate experiment (GRACE) for specific periods. Numerical studies show that the Tikhonov regularization and damped singular value decomposition methods for which the regularization parameter is estimated using quasioptimal criterion deliver the smoothest solutions. Each regularized solution is compared to the global land data assimilation system (GLDAS) hydrological model. The Tikhonov regularization with L-curve delivers a solution with high correlation with this model and a relatively small standard deviation over oceans. Among iterative methods, conjugate gradient is the most suited one for the same reasons and it has the shortest computation time.  相似文献   

19.
唐巍  王彦飞 《地球物理学报》2017,60(5):1851-1860
利用同步辐射X射线同轴显微层析(CT)方法对页岩进行扫描成像是一种无损的,对研究页岩孔裂隙大小、形态、三维结构及连通性等微观结构特征有重要意义的方法.同步辐射的引入将在物理上为提高页岩成像的分辨率提供了可能,在相位-吸收二重性假设下利用光强传递TIE(transport-of-intensity)方程可以较好地抑制由于相位信息带来的"边缘增强"效应,但该问题本质上是不适定的反演问题.本文根据实际问题构造模型,提出了一种与传统基于频域方法不同的,基于空间域的相位恢复迭代算法,并采用迭代Tikhonov正则化在数值上解决了噪声干扰下的不稳定性·问题.研究结果表明,新方法的残差仅为频域方法的1%左右,该方法可用于未来实际数据的处理.  相似文献   

20.
基于混合差分进化算法的地球物理线性反演   总被引:4,自引:0,他引:4       下载免费PDF全文
地球物理反问题线性化处理之后, 各种反演算法归结为对病态线性方程组的求解. 为了快速准确地计算出地球物理参数, 本文提出了一种全新的基于LSQR算法的混合差分进化算法(Hybrid Differential Evolution Algorithm, HDE). 该算法利用LSQR算法给出DE算法的初始种群, 提高DE算法的计算速度和稳定性. 在不同噪声水平下, 对四种正则化方法Tikhonov、TSVD、LSQR和HDE的反演结果进行详细比较. 理论模型和实际数据反演的结果都表明: 改进的HDE算法应用于地球物理反问题的求解是成功的: 反演结果与原设定模型具有较高的相关性, 在稳定性和准确性上较常规的反演算法都具有一定的优势; 而且不需要给定正则化参数, 具有更强的实用性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号