首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we present geochemical, zircon U–Pb and Hf isotopic data on the late Paleozoic volcanic rocks of the Dashizhai Formation, which are exposed along the northwestern margin of the Songnen terrane in eastern Inner Mongolia. Our aim is to constrain the petrogenesis and tectonic setting of the volcanic rocks and to unravel the late Paleozoic tectonic evolution of the northwestern part of the Songnen terrane, along the eastern segment of the Central Asian Orogenic Belt. Lithologically, the Dashizhai Formation is composed mainly of rhyolitic tuff, rhyolite, dacite, andesite, basaltic andesite and basalt, with minor basaltic trachyandesite. The zircons separated from these rocks are euhedral–subhedral, have high Th/U ratios (0.2–1.6), and display broad oscillatory growth zoning, indicating a magmatic origin. The results of zircon U–Pb dating indicate the volcanic rocks formed during the early Permian (295–283 Ma). Geochemically, these volcanic rocks belong to the mid-K to high-K calc-alkaline series and are characterized by an enrichment in large ion lithophile elements (LILEs) and a depletion in high field strength elements (HFSEs, such as Nb, Ta, and Ti), similar to igneous rocks that form in active continental margin settings. Most magmatic zircons of the rhyolites show positive εHf(t) values (+ 3.65 to + 13.0) and two-stage model ages (TDM2) of 1396–551 Ma. These geochemical characteristics indicate that the acidic volcanic rocks of the Dashizhai Formation were most likely derived from the partial melting of dominantly juvenile crustal components with a possible addition of “old” materials. In contrast, the basic to intermediate volcanic rocks were derived from the partial melting of a depleted lithospheric mantle that had been metasomatized by fluids derived from a subducted slab. These data, together with regional geological investigations, suggest that the generation of the early Permian volcanic rocks of the Dashizhai Formation was related to the southward subduction of the Paleo–Asian oceanic plate beneath the Songnen terrane. This also implies that the terminal collision between the Songnen and Xing'an terranes did not occur before the early Permian.  相似文献   

2.
Zircon U–Pb ages, geochemical and Sr–Nd isotopic data are presented for the late Carboniferous Baoligaomiao Formation (BG Fm.) and Delewula Formation (DW Fm.) volcanic rocks, widely distributed in northern Inner Mongolia, in the northern part of the Xing'an–Mongolia Orogenic Belt (XMOB). The BG Fm. rocks mainly consist of basaltic andesites and andesites while the DW Fm. rocks include dacites, trachytes, rhyolites, pyroclastic rocks and minor andesites. New LA-ICPMS zircon U–Pb analyses constrain their eruption to late Carboniferous (317–322 Ma and 300–310 Ma, respectively). The BG Fm. volcanic rocks are characterized by enriched large ion lithophile elements (LILE) and depleted high field strength elements (HFSE), with initial 87Sr/86Sr ratios of 0.70854–0.70869 and negative εNd(t) (− 2.1 to − 2.4) values. They have low La/Ba (0.03–0.05), high La/Nb (2.05–3.70) ratios and variable Ba/Th (59.5–211) ratios. Such features suggest that they are derived from melting of heterogeneous sources including a metasomatized mantle wedge and Precambrian crustal material. The DW Fm. volcanic rocks are more depleted in HFSE with significant Nb, Ta, P, Ti anomalies. They have high initial 87Sr/86Sr ratios (0.72037–0.72234) and strong negative εNd(t) (− 11 to − 11.6) values which indicate those igneous rocks were mainly derived from reworking of the Paleoproterozoic crust. The late Carboniferous volcanic rocks have geochemical characteristics similar to those of the continental arc rocks which indicate the northward subduction of the Paleo Asian Ocean may have continued to the late Carboniferous. The volcanic association of this study together with the early Permian post-collisional magmatic rocks suggests that a tectonic transition from subduction-related continental margin arc volcanism to post-collisional magmatism occurred in the northern XMOB between the late Carboniferous and the early Permian.  相似文献   

3.
Late Mesozoic volcanism is widespread throughout NE China. On the basis of lithological associations and spatial relationships, the volcanic rocks in the Lesser Hinggan Range can be divided into two formations, i.e., felsic-dominant Fuminghe Formation and overlying mafic-dominant Ganhe Formation. The Dong'an gold deposit, a typical adularia–sericite epithermal system, is spatially closely associated with rhyolitic porphyry, which is a subvolcanic intrusion of the Fuminghe Formation. Total measured, indicated, and inferred resources for the Dong'an deposit are 70 tonnes (2.25 Moz) of gold with the grade of 5.04 g/t Au, making it one of the largest epithermal gold deposits in China.SHRIMP U–Pb zircon and 40Ar/39Ar geochronology applied to one rhyolitic porphyry sample and sericite separated from auriferous quartz veins of the main mineralization stage were carried out to constrain magmatic and hydrothermal events. The results suggest that the mineralization age of 107.2 ± 0.6 Ma overlaps with the age of the rhyolitic porphyry 108.1 ± 2.4 Ma. Our new age data indicate that there was a previously unrecognized mineralization event in NE China at 107–108 Ma.Systematic geochemical investigations on the volcanic rocks in the Lesser Hinggan Range show that both Fuminghe and Ganhe Formations are characterized by significant large ion lithophile elements (LILE) and light rare earth elements (LREE) enrichment coupled with high field strength elements (HFSE) depletion, but they have distinct Sr and Nd isotopic compositions. The Fuminghe Formation has relative high 87Sr/86Sr ratios of 0.707253 to 0.707373, and negative εNd(t) values of ?2.78 to ?3.05 (t = 108 Ma), whereas the Ganhe Formation displays slightly lower 87Sr/86Sr range of 0.705434–0.705763 and positive εNd(t) values of + 0.76 to +1.83. These geochemical data suggest that the rhyolitic magmas of the Fuminghe Formation probably represent the final differentiates of parental andesitic magmas, resulted from the partial melting of mafic lower crust, whereas the volcanic rocks of the Ganhe Formation were produced by fractionation of basaltic magmas generated from partial melting of a mixture of an incompatible element depleted anhydrous lherzolite asthenospheric mantle source and a hydrous enriched lithospheric mantle source in an extensional tectonic setting, in response to upwelling of asthenospheric mantle. The rhyolite porphyries of the Fuminghe Formation are inferred to have supplied heat that drove the convective hydrothermal system at Dong'an deposit, but also provided some of the fluid sources responsible for the development of the Dong'an epithermal system.  相似文献   

4.
The Kanggur gold deposit is located in the southern margin of the Central Asia Orogenic Belt and in the western segment of the Kanggur–Huangshan ductile shear belt in Eastern Tianshan, northwestern China. The orebodies of this deposit are hosted in the Lower Carboniferous volcanic rocks of the Aqishan Formation and mainly consist of andesite, dacite and pyroclastic rocks. The SHRIMP zircon U–Pb age data of the andesite indicate that the volcanism in the Kanggur area might have occurred at ca. 339 Ma in the Early Carboniferous, and that the mineralization age of the Kanggur gold deposit was later than the age of volcanic rocks in the area. Geochemically, the andesite rocks of the Aqishan Formation belong to low-tholeiite and calc-alkaline series and display relative depletions in high field strength elements (HFSEs; i.e. Nb, Ta and Ti). The δ18Ow and δDw values vary from − 9.1‰ to + 3.8‰ and − 66.0‰ to − 33.9‰, respectively, indicating that the ore-forming fluids were mixtures of metamorphic and meteoric waters. The δ30Si values of 13 quartz samples range from − 0.3‰ to + 0.1‰ with an average of − 0.15‰, and the δ34S values of 18 sulphide samples range from − 0.9‰ to + 2.2‰ with an average of + 0.54‰. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb values of 10 sulphide samples range from 18.166 to 18.880, 15.553 to 15.635 and 38.050 to 38.813, respectively, showing similarities to orogenic Pb; these values are consistent with those of the andesite from the Kanggur area, suggesting a common lead source. All of the silicon, sulphur and lead isotopic systems indicate that the ore-forming fluids and materials were mainly derived from the Aqishan Formation, and that the host volcanic rocks of the Aqishan Formation probably played a significant role in the Kanggur gold mineralization. Integrating the data obtained from studies on geology, geochronology, petro-geochemistry and H–O–Si–S–Pb isotope systematics, we suggest that the Kanggur gold deposit is an orogenic-type deposit formed in Eastern Tianshan orogenic belt during the Permian post-collisional tectonism.  相似文献   

5.
The present study reports new zircon LA–ICP–MS U–Pb ages, trace element and Hf isotope data, and whole-rock major and trace element data from Cambrian metarhyolites from Zhaqian and Zhakang in the central Lhasa subterrane of southern Tibet. One sample from Zhakang provides a weighted mean 206Pb/238U age of 510.4 ± 4.0 Ma and two samples from Zhaqian yield weighted mean 206Pb/238U ages of 510.6 ± 2.6 Ma and 524.8 ± 2.9 Ma, indicating that the Zhaqian and Zhakang metarhyolites were contemporaneous. Both are characterized by high SiO2 and K2O and low Na2O. They are also primarily high-K calc-alkaline, are enriched in Th, U, and light rare earth elements (LREEs), and are depleted in Nb, Ta, Ti, and P. Thus, they are geochemically similar to typical arc volcanic rocks. Moreover, the Zhaqian metarhyolites exhibit varying zircon εHf(t) values (−3.8 to +0.3) that are comparable to those of the Zhakang metarhyolites (−4.9 to −1.0). Both metarhyolites are interpreted as resulting from partial melting of Proterozoic metasedimentary rocks with mantle-derived magma contributions. Contemporaneous magmatism in the early Paleozoic has also been recognized in other microcontinents along the Gondwana proto-Tethyan margin. The emplacement of these magmatic rocks and the development of a Cambro–Ordovician angular unconformity in the central Lhasa subterrane can be attributed to subduction of proto-Tethys Ocean lithosphere in a Andean-type magmatic arc setting following the assembly of various continental components within the Gondwana supercontinent.  相似文献   

6.
Extensive Late Mesozoic igneous rocks in SE China have been widely considered to be generated under the paleo-Pacific tectonic regime. Previous studies suggested a fundamental oceanward younging trend for the igneous rocks, further implying a NW-ward paleo-Pacific subduction model with gradual slab rollback. New LA–ICP–MS zircon U–Pb dating results show that early stage of the Late Mesozoic volcanic sequences (also known as the lower volcanic series) in Fujian Province was formed in three episodes: 160–148 Ma for the Changlin Formation, 145–130 Ma for the Nanyuan Formation, and 130–127 Ma for the Xiaoxi Formation, among which the second episode made the volcanism climax. Thus the entire lower volcanic series in Fujian were formed earlier than those in Zhejiang (140–118 Ma), displaying a NE-ward younging trend parallel to the potential subduction belt. Besides, in situ Hf isotope analyses on dated zircons yield an εHf(t) range of − 19.2 to + 1.7 for the lower volcanic series in Fujian. The majority of the studied volcanic rocks have more radiogenic Hf than that of the metamorphic basement, requiring the involvement of juvenile components in their origin. Moreover, the zircon εHf(t) value increases with time in each single area, as well as the igneous rocks elsewhere in SE China, except for the Changlin Formation which shows very opposite isotopic varying trend. Increasing zircon εHf(t) values imply an increasing material contribution of contemporaneous underplated mantle-derived magmas, which was plausibly induced by gradual crustal decompression. As well as the NE-ward younging trend of the lower volcanic series, it is also identified that the juvenile material contribution in the igneous petrogenesis gradually took place in the same direction along the coastal area. Thus here we propose an asynchronizing paleo-Pacific slab rollback model during 150–120 Ma to account for the episodic magmatism and crustal extension in SE China. On the contrary, decreasing zircon εHf(t) values of the Changlin Formation volcanics indicate that they were formed under enhanced crustal compression probably induced by slab advance. On the other hand, the upper volcanic series in Fujian were formed during 110–88 Ma coevally to those in Zhejiang, with more depleted zircon Hf isotopic compositions than the lower volcanic series as well, indicating that the entire coastal SE China was under the back-arc tectonic setting during that time.  相似文献   

7.
The Baoligaomiao Formation, within the Hegenshan ophiolite-arc-accretion complex is an important segment to understand the tectonic evolution of the Central Asian Orogenic Belt (CAOB), world's largest Phanerozoic orogenic belt. In this study, we present an integrated study of zircon U-Pb isotopic ages, whole rock major-trace elements, and Sr-Nd-Pb isotopic data from the volcanic succession in the Baoligaomiao Formation. The volcanic succession can be divided into the lower sequence with zircon U-Pb ages in the range of 326.3 Ma–307.4 Ma and the upper sequence of 305.3 Ma. The succession belongs to two suites: calc-alkaline volcanics and high-Si rhyolites. The calc-alkaline volcanic rocks include basaltic andesite through andesite and dacite to rhyolite and their pyroclastic equivalents. These rocks exhibit a well-defined compositional trend from basaltic to rhyolitic magma, reflecting continuous fractional crystallization. These rocks show obvious enrichment in LILEs and LREEs and relative depletion of HFSEs, typical of subduction-related magma. The calc-alkaline rocks have low initial 87Sr/86Sr (0.7023–0.7052), positive ɛNd(t) values (2.75–4.80), and their initial Pb isotopic compositions are 17.875–18.485 of 206Pb/204Pb, 15.481–15.520 of 207Pb/204Pb and 37.467–37.764 of 208Pb/204Pb, respectively. Geochemical and isotopic results suggest that the volcanic succession represents Carboniferous subduction-related, mature, continental arc volcanism. The outcrops of high-Si rhyolites are restricted to the northern edge of the continental arc, marking a transition zone between volcanic arc and back-arc basin, where they are interbedded with the calc-alkaline rocks in the lower sequence, and the upper sequence is composed only of high-Si rhyolites. The high-Si rhyolites have high SiO2 (71.12–81.76 wt%) and varied total alkali contents (K2O + Na2O = 5.46–10.58 wt%), low TiO2 (0.06–0.27 wt%), MgO (0.09–0.89 wt%) and CaO (0.08–0.72 wt%). Based on the presence of mafic alkali phenocrysts, such as arfvedsonite and siderophyllite, high Zr/Nb ratios (> 10) and peralkalinity index (PI) near unity, the high-Si rhyolites can be classified as peralkaline comendites. The high-Si rhyolites are characterized by unusually low Sr and Ba, and high abundance of Zr, Th, Nb, HREEs and Y. They show geochemical characteristics similar to those of typical A2-type granites including their high K2O + Na2O, Nb, Zr and Y, and high ratios of FeOT/MgO, Ga/Al and Y/Nb. Our study suggests that the high-Si rhyolites were derived from discrete trachytic parent magma with fractional crystallization within shallow magma reservoirs. Their Nd-Pb isotopic characteristics are similar to those of the calc-alkaline arc rocks and are compatible with partial melting of pre-existing juvenile continental arc crust. We observe that the widespread eruptions of A2-rhyolitic magmas (305.3 Ma–303.4 Ma) following a short period of magmatic quiescence was temporally and spatially associated with voluminous intrusion of the bimodal magmas (304.3 Ma–299.3 Ma) in the pre-existing arc volcanic-plutonic belt (329 Ma–307 Ma). We envisage northward subduction and slab breakoff process resulting in an obvious change of the regional stress field to extensional setting within the Carboniferous continental arc running E-W for thousands of kilometers. Therefore, we propose the existence of an east-west-trending Carboniferous continental arc in the Hegenshan ophiolite-arc-accretion complex, with the slab breakoff event suggesting that the age of the upper sequence (305.3 ± 5.5 Ma) likely indicates the maximum age for the cessation of the northward subduction of the Hegenshan oceanic lithosphere.  相似文献   

8.
Post-collisional, potassic magmatic rocks widely distributed in the eastern Lhasa terrane provide significant information for comprehensive understanding of geodynamic processes of northward subduction of the Indian lithosphere and uplift of the Tibetan Plateau. A combined dataset of whole-rock major and trace elements, Sr–Nd–Pb isotopes, and in situ zircon U–Pb dating and Hf–O isotopic analyses are presented for the Yangying potassic volcanic rocks (YPVR) in the eastern part of the Lhasa terrane, South Tibet. These volcanic rocks consist of trachytes, which are characterized by high K2O (5.46–9.30 wt.%), SiO2 (61.34–68.62 wt.%) and Al2O3 (15.06–17.36 wt.%), and relatively low MgO (0.47–2.80 wt.%) and FeOt (1.70–4.90 wt.%). Chondrite-normalized rare earth elements (REE) patterns display clearly negative Eu anomalies. Primitive mantle-normalized incompatible trace elements diagrams exhibit strong enrichment in large ion lithophile elements (LILE) relative to high field strength elements (HFSE) and display significantly negative Nb–Ta–Ti anomalies. Initial isotopic compositions indicate relatively radiogenic Sr [(87Sr/86Sr)i = 0.711978–0.712090)] and unradiogenic Nd [(143Nd/144Nd)i = 0.512121–0.512148]. Combined with their Pb isotopic compositions [(206Pb/204Pb)i = 18.615–18.774, (207Pb/204Pb)i = 15.708–15.793, (208Pb/204Pb)i = 39.274–39.355)], these data are consistent with the involvement of component from subducted continental crustal sediment in their source region. The whole-rock Sr–Nd–Pb isotopic compositions exhibit linear trends between enriched mantle-derived mafic ultrapotassic magmas and relatively depleted crustal contaminants from the Lhasa terrane. The enrichment of the upper mantle below South Tibet is considered to result from the addition of components derived from subducted Indian continental crust to depleted MORB-source mantle during northward underthrusting of the Indian continental lithosphere beneath the Lhasa terrane since India–Asia collision at ~ 55 Ma. Secondary Ion Mass Spectrometry (SIMS) U–Pb zircon analyses yield the eruptive ages of 10.61 ± 0.10 Ma and 10.70 ± 0.18 Ma (weighted mean ages). Zircon Hf isotope compositions [ƐHf(t) = −4.79 to −0.17], combined with zircon O isotope ratios (5.51–7.22‰), imply an addition of crustal material in their petrogenesis. Clinopyroxene-liquid thermobarometer reveals pressure (2.5–4.1 kbar) and temperature (1029.4–1082.9 °C) of clinopyroxene crystallization, suggesting that depth of the magma chamber was 11.6–16.4 km. Energy-constrained assimilation and fractional crystallization (EC–AFC) model calculation indicates depth of assimilation and fractional crystallization in the region of 14.40–18.75 km underneath the Lhasa terrane, which is in consistent with depth of the magma chamber as suggested by clinopyroxene-liquid thermobarometer. Based on the whole-rock major and trace elements and Sr–Nd–Pb isotope compositions, combined with EC–AFC modeling simulations and zircon Hf–O isotope data, we propose that the YPVR resulted from assimilation and fractional crystallization (AFC) process of the K-rich mafic primitive magmas, which were caused by partial melting of the Indian continental subduction-induced mélange rocks.  相似文献   

9.
The Renjiayingzi intermediate-acid pluton is located along a pre-existing ENE–WSW-trending dextral shear zone that forms part of the Xar Moron suture zone that marks the final closure of the Paleo-Asian Ocean. The pluton is composed of three small intrusions, which from northwest to southeast, are named the Shuangjianshan (SI), the Qianweiliansu (QI) and the Xingshuwabeishan (XI) intrusions. LA-ICPMS zircon U–Pb dating of a pyroxene diorite from the SI yields an age of 138 ± 1 Ma; the SHRIMP zircon U–Pb age of a tonalite from the QI records an age of 134 ± 2 Ma, whereas LA-ICPMS zircon U–Pb dating of a monzogranite from the XI has an age of 126 ± 1 Ma, suggesting the entire pluton was built up by three separate emplacement events that young to the ESE: this is further supported by the contact relations. Incremental growth of plutons by amalgamation of repeated small magma pulses is the most viable emplacement model. The pluton was probably emplaced by updoming of the roof along previous tensile fractures and by upward stacking of the three intrusions. The SI and QI have similar U–Pb ages and geochemical characteristics, and most likely had the same magma source and underwent similar petrogenetic processes. They have high MgO concentrations at low silica contents, are enriched in large ion lithophile elements, depleted in high field strength elements, have negative εNd(t) values of −1.8 to −3.7, with Nd model ages of 1.07–1.19 Ga. Pyroxene diorites of the SI also have variable zircon εHf(t) values (from −0.8 to +6.1), indicating that they were mainly derived from juvenile crust with minor crustal contamination and clinopyroxene-dominated fractional crystallization. The late monzogranites from the XI show weak negative εNd(t) values of −2.3 to −2.5, young Nd model ages of 0.99–1.00 Ga, positive zircon εHf(t) values (+1.3 to +4.6) and higher SiO2 and K2O contents, with strong depletion in Eu, P and Ti, indicating derivation from a distinct petrogenetic process from the two earlier intrusions. The monzogranites were the result of partial melting of juvenile crust in response to mantle-derived magma underplating, together with plagioclase-dominated fractional crystallization.  相似文献   

10.
The genesis of polymetallic deposits in southern Altay, NW China has been disputed between a syngenetic seafloor hydrothermal process and an epigenetic orogenic-type mineralization. The Dadonggou Pb–Zn deposit occurs as NW-trending veins in the Devonian Kangbutiebao Formation volcanic-sedimentary sequence in the Kelan basin, southern Altay. A set of integrated zircon U–Pb and biotite 40Ar/39Ar geochronological data were applied to constrain the forming ages of the ores and their country rocks. Three samples of host volcanic rocks yielded weighted mean 206Pb/238U ages of 397.1 ± 4.5 Ma, 391.7 ± 3.6 Ma and 391.1 ± 4.2 Ma, respectively, indicating that the Kangbutiebao Formation was deposited in a Devonian back-arc basin. Two biotite samples separated from the Pb–Zn-containing quartz veins yielded 40Ar/39Ar plateau ages of 205.9 ± 2.1 Ma and 204.3 ± 2.2 Ma, respectively, which represent the age of the Pb–Zn mineralization that is attributed to the closure of the Kelan back-arc basin and the Late Triassic orogeny. Combining the available geological and geochronological data, this contribution outlines the successive evolution from the development of a Devonian back-arc basin to the Late Triassic post-subduction orogeny, and proposes that the Dadonggou Pb–Zn deposit is an epigenetic orogenic-type deposit placed in the Late Triassic orogeny.  相似文献   

11.
Uranium–Pb (zircon) ages are linked with geochemical data for porphyry intrusions associated with giant porphyry Cu–Au systems at Oyu Tolgoi to place those rocks within the petrochemical framework of Devonian and Carboniferous rocks of southern Mongolia. In this part of the Gurvansayhan terrane within the Central Asian Orogenic Belt, the transition from Devonian tholeiitic marine rocks to unconformably overlying Carboniferous calc-alkaline subaerial to shallow marine volcanic rocks reflects volcanic arc thickening and maturation. Radiogenic Nd and Pb isotopic compositions (εNd(t) range from + 3.1 to + 7.5 and 206Pb/204Pb values for feldspars range from 17.97 to 18.72), as well as low high-field strength element (HFSE) contents of most rocks (mafic rocks typically have < 1.5% TiO2) are consistent with magma derivation from depleted mantle in an intra-oceanic volcanic arc. The Late Devonian and Carboniferous felsic rocks are dominantly medium- to high-K calc-alkaline and characterized by a decrease in Sr/Y ratios through time, with the Carboniferous rocks being more felsic than those of Devonian age. Porphyry Cu–Au related intrusions were emplaced in the Late Devonian during the transition from tholeiitic to calc-alkaline arc magmatism. Uranium–Pb (zircon) geochronology indicates that the Late Devonian pre- to syn-mineral quartz monzodiorite intrusions associated with the porphyry Cu–Au deposits are ~ 372 Ma, whereas granodiorite intrusions that post-date major shortening and are associated with less well-developed porphyry Cu–Au mineralization are ~ 366 Ma. Trace element geochemistry of zircons in the Late Devonian intrusions associated with the porphyry Cu–Au systems contain distinct Th/U and Yb/Gd ratios, as well as Hf and Y concentrations that reflect mixing of magma of distinct compositions. These characteristics are missing in the unmineralized Carboniferous intrusions. High Sr/Y and evidence for magma mixing in syn- to late-mineral intrusions distinguish the Late Devonian rocks associated with giant Cu–Au deposits from younger magmatic suites in the district.  相似文献   

12.
《Precambrian Research》2007,152(3-4):119-148
The Neoarchaean Nurmes paragneiss belt, situated between the Ilomantsi and Kuhmo granite–greenstone terrains in eastern Finland comprises mainly turbidite wacke-derived, migmatised paragneisses with minor amphibolite intercalations and younger granitoid intrusions. The average chemical composition of typical biotite–plagioclase gneiss mesosomes of the paragneisses is nearly identical with the global average for Neoarchaean greywackes. The paragneiss mesosomes typically contain graphite, which exhibits δ13C values from −36.0‰ to −14.2‰, around a mean of –22.6 ± 5.6‰. These low δ13C values and the stratiform occurrence of graphite within discrete layers containing iron sulphides, are indicative of that it had a biogenic origin. The intercalated amphibolites correspond to oceanic tholeiites with flat to mildly LREE enriched chondrite-normalised distributions, and have ɛNd (2.7 Ga) values around +1.6 pointing to derivation from depleted mantle.After allowing for analytical uncertainties (2σ), U–Pb age data (SHRIMP, TIMS) on zircon grains from the paragneiss mesosomes and crosscutting granitoid plutons constrain deposition of the protolith wackes to between 2.71 Ga and 2.69 Ga. This estimate for the timing of sedimentation is also supported by a six-sample Sm–Nd isochron of 2756 ± 89 Ma obtained for the associated amphibolites. A relatively short average crustal prehistory for the sediment source terrains is implied by the clustering of ɛNd (2.7 Ga) values of the mesosomes around zero. Trace element and U–Pb data suggest that the source terrains comprised mainly 2.75–2.70 Ga TTG and/or sanukitoid-type plutonic and mafic volcanic rocks, for which the adjacent Ilomantsi terrain is the most likely source candidate.The data presented here indicate that the Nurmes paragneisses closely resemble wackes in the linear metasedimentary belts of the Superior Province of Canada, in terms of depositional age and detrital zircon provenance ages, as well as chemical composition.The postdepositional metamorphic–plutonic histories of the Nurmes and Canadian belts also seem to have been strikingly similar. These similarities lend further support to proposals advocating that the Karelia and Superior provinces were juxtaposed during the Neoarchaean. However, in contrast to the wackes in the Canadian belts, which are usually interpreted as deposits in accretionary prisms, the presence of MORB-type volcanic intercalations in Nurmes wackes suggests they were deposited in a back arc or intra-arc setting.  相似文献   

13.
We performed zircon U–Pb dating and analyses of major and trace elements, and Sr–Nd–Pb isotopes for granitoids in the Bengbu area, central China, with the aim of constraining the magma sources and tectonic evolution of the eastern North China Craton (NCC). The analyzed zircons show typical fine-scale oscillatory zoning, indicating a magmatic origin. Zircon U–Pb dating reveals granitoids of two ages: Late Jurassic and Early Cretaceous (206Pb/238U ages of 160 Ma and 130–110 Ma, respectively). The Late Jurassic rocks (Jingshan intrusion) consist of biotite-syenogranite, whereas the Early Cretaceous rocks (Huaiguang, Xilushan, Nushan, and Caoshan intrusions) are granodiorite, syenogranite, and monzogranite. The Late Jurassic biotite-syenogranites and Early Cretaceous granitoids have the following common geochemical characteristics: SiO2 = 70.35–74.56 wt.%, K2O/Na2O = 0.66–1.27 (mainly < 1.0), and A/CNK = 0.96–1.06, similar to I-type granite. The examined rocks are characterized by enrichment in light rare earth elements, large ion lithophile elements, and U; depletion in heavy rare earth elements, Nb, and Ta; and high initial 87Sr/86Sr ratios (0.7081–0.7110) and low εNd (t) values (? 14.40 to ? 22.77), indicating a crustal origin.The occurrence of Neoproterozoic magmatic zircons (850 Ma) and inherited early Mesozoic (208–228 Ma) metamorphic zircons within the Late Jurassic biotite-syenogranites, together with the occurrence of Neoproterozoic magmatic zircons (657 and 759 Ma) and inherited early Mesozoic (206–231 Ma) metamorphic zircons within the Early Cretaceous Nushan and Xilushan granitoids, suggests that the primary magmas were derived from partial melting of the Yangtze Craton (YC) basement. In contrast, the occurrence of Paleoproterozoic and Paleoarchean inherited zircons within the Huaiguang granitoids indicates that their primary magmas mainly originated from partial melting of the NCC basement. The occurrence of YC basement within the lower continental crust of the eastern NCC indicates that the YC was subducted to the northwest beneath the NCC, along the Tan-Lu fault zone, during the early Mesozoic.  相似文献   

14.
We report in the paper integrated analyses of in situ zircon U–Pb ages, Hf–O isotopes, whole-rock geochemistry and Sr–Nd isotopes for the Longlou granite in northern Hainan Island, southeast China. SIMS zircon U–Pb dating results yield a crystallization age of ∼73 Ma for the Longlou granite, which is the youngest granite recognized in southeast China. The granite rocks are characterized by high SiO2 and K2O, weakly peraluminous (A/CNK = 1.04–1.10), depletion in Sr, Ba and high field strength elements (HFSE) and enrichment in LREE and large ion lithophile elements (LILE). Chemical variations of the granite are dominated by fractional crystallization of feldspar, biotite, Ti–Fe oxides and apatite. Their whole-rock initial 87Sr/86Sr ratios (0.7073–0.7107) and εNd(t) (−4.6 to −6.6) and zircon εHf(t) (−5.0 to 0.8) values are broadly consistent with those of the Late Mesozoic granites in southeast China coast. Zircon δ18O values of 6.9–8.3‰ suggest insignificant involvement of supracrustal materials in the granites. These granites are likely generated by partial melting of medium- to high-K basaltic rocks in an active continental margin related to subduction of the Pacific plate. The ca. 73 Ma Longlou granite is broadly coeval with the Campanian (ca. 80–70 Ma) granitoid rocks in southwest Japan and South Korea, indicating that they might be formed along a common Andean-type active continental margin of east–southeast Asia. Tectonic transition from the Andean-type to the West Pacific-type continental margin of southeast China likely took place at ca.70 Ma, rather than ca. 90–85 Ma as previously thought.  相似文献   

15.
The footwall volcanic rocks of the Ordovician Tanjianshan Group in the world-class Xitieshan Pb–Zn deposit have experienced prolonged arc volcanism followed by strong metamorphism and deformation. This has resulted in a complex thermal history and led to ambiguity in interpretation of zircon geochronological results. An integrated study involving textural characterization, CL imaging, trace element analysis, Ti-in-zircon thermometry and LA-ICPMS U–Pb dating has provided tight constraints on the age and genesis of the zircon groups in the volcanic rocks. The temperature of metamorphism and deformation indicated by metacryst minerals and micro-structures in the volcanic rocks ranges from 550 to 650 °C, which partially overlaps with the lower temperature range of zircon crystallization (600–750 °C) calculated using the Ti-in-zircon thermometer. Cathodoluminescence images and trace element compositions confirm a magmatic origin for the zircons, which have also been variably altered by metamorphic fluids. Two ranges of U–Pb ages, 475–470 Ma and 460–450 Ma, have been obtained on typical magmatic zircons and are interpreted to represent pre-mineralization arc volcanism in the Xitieshan deposit. A younger age group of 440–430 Ma for the fluid-modified zircons is considered to record post-ore metamorphism during the North Qadaim Orogeny. Thus, we propose that the original exhalative ores at the Xitieshan Pb–Zn deposit formed at 450–440 Ma.  相似文献   

16.
《Gondwana Research》2014,25(3-4):1067-1079
The Mt Painter Province of northern South Australia is a site of exceptional suite of Mesoproterozoic high heat producing (HHP) granites and felsic volcanics. These rocks have very high heat production values of > 5 μW m 3. The HHP granites, including the Mt Neill, Box Bore, Terrapinna, Wattleowie and Yerila granites, form part of a broadly coeval association of mafic and felsic volcanic rocks that also include the Pepegoona Volcanics, lamprophyres and mafic–intermediate dykes. U–Pb LA-ICPMS zircon dating and Hf-in-zircon isotopic data are used to constrain both the timing and source of these magmatic rocks. U–Pb zircon LA-ICPMS crystallization ages range from ~ 1596 to 1521 Ma and imply a protracted sequence of magmatic events. Initial Hf isotopic compositions of these zircons from both dykes and felsic rocks have overlapping compositional ranges, with εHf values mainly from + 4 to − 2. These Hf values are significantly higher than contemporary crustal values which are likely to have been in the range − 4 to − 20. These data imply that the magmatic suite has both mantle and crustal sources.  相似文献   

17.
Porphyry Cu deposits occurred in the southern West Junggar of Xinjiang, NW China and are represented by the Baogutu and newly-discovered Jiamantieliek porphyry Cu deposits. Petrographical and geochemical studies show that both Jiamantieliek and Baogutu ore-bearing intrusions comprise main-stage diorite stock and minor late-stage diorite porphyry dikes and are the calc-alkaline intermediate intrusions. Based on U–Pb zircon SHRIMP analyses, the Jiamantieliek intrusion formed in 313 ± 4 Ma and 310 ± 5 Ma, while, based on U–Pb zircon SIMS analyses, the Baogutu intrusion formed in 313 ± 2 Ma and 312 ± 2 Ma. Rocks in the Jiamantieliek intrusion are enriched in light rare earth elements (LREE) and large ion lithophile elements (LILE) with negative Nb anomaly. Their isotopic compositions (εNd(t) = +1.6 to +3.4, (87Sr/86Sr)i = 0.70369–0.70401, (207Pb/204Pb)i = 15.31–5.41) suggest a mixing origin from depleted to enriched mantle sources. In the Baogutu intrusion, the rocks are similar to those of the Jiamantieliek intrusion. Their Sr-Nd-Pb isotopic composition (εNd(t) = +4.4 to +6.0, (87Sr/86Sr)i = 0.70368–0.70385, (207Pb/204Pb)i = 15.34–5.42) shows a more depleted mantle source. These features suggest generation in an island arc. The Jiamantieliek and Baogutu intrusions have similar characteristics, indicating that a relatively uniform and integrated source region has existed in the southern West Junggar since the Palaeozoic. A larger contribution of calc-alkaline magma would be required to generate the Jiamantieliek intrusion, which may reflect the development of magma arc maturation towards the western section of the southern West Junggar.  相似文献   

18.
The lower Bomi Group of the eastern Himalayan syntaxis comprises a lithological package of sedimentary and igneous rocks that have been metamorphosed to upper amphibolite-facies conditions. The lower Bomi Group is bounded to the south by the Indus–Yarlung Suture and to the north by unmetamorphosed Paleozoic sediments of the Lhasa terrane. We report U–Pb zircon dating, geochemistry and petrography of gneiss, migmatite, mica schist and marble from the lower Bomi Group and explore their geological implications for the tectonic evolution of the eastern Himalaya. Zircons from the lower Bomi Group are composite. The inherited magmatic zircon cores display 206Pb/238U ages from ~ 74 Ma to ~ 41.5 Ma, indicating a probable source from the Gangdese magmatic arc. The metamorphic overgrowth zircons yielded 206Pb/238U ages ranging from ~ 38 Ma to ~ 23 Ma, that overlap the anatexis time (~ 37 Ma) recorded in the leucosome of the migmatites. Our data indicate that the lower Bomi Group do not represent Precambrian basement of the Lhasa terrane. Instead, the lower Bomi Group may represent sedimentary and igneous rocks of the residual forearc basin, similar to the Tsojiangding Group in the Xigaze area, derived from denudation of the hanging wall rocks during the India–Asia continental collision. We propose that following the Indian–Asian collision, the forearc basin was subducted, together with Himalayan lithologies from the Indian continental slab. The minimum age of detrital magmatic zircons from the supracrustal rocks is ~ 41.5 Ma and their metamorphism had happened at ~ 37 Ma. The short time interval (< 5 Ma) suggests that the tectonic processes associated with the eastern Himalayan syntaxis, encompassing uplift and erosion of the Gangdese terrane, followed by deposition, imbrication and subduction of the forearc basin, were extremely rapid during the Late Eocene.  相似文献   

19.
We have investigated the petrography, geochemistry, and detrital zircon U–Pb LA-ICPMS dating of sandstone from the Gorkhi Formation of the Khangai–Khentei belt in the Ulaanbaatar area, central Mongolia. These data are used to constrain the provenance and source rock composition of the accretionary complex, which is linked to subduction of the Paleo-Asian Ocean within the Central Asian Orogenic Belt during the Middle Devonian to Early Carboniferous. Field and microscopic observations of the modal composition of sandstone and constituent mineral chemistry indicate that the sandstone of the Gorkhi Formation is feldspathic arenite, enriched in saussuritized plagioclase. Geochemical data show that most of the sandstone and shale were derived from a continental margin to continental island arc setting, with plutonic rocks being the source rocks. Detrital zircon 206Pb/238U ages of two sandstones yields age peaks of 322 ± 3 and 346 ± 3 Ma. The zircon 206Pb/238U age of a quartz–pumpellyite vein that cuts sandstone has a weighted mean age of 339 ± 3 Ma. Based on these zircon ages, we infer that the depositional age of sandstone within the Gorkhi Formation ranges from 320 to 340 Ma (i.e., Early Carboniferous). The provenance and depositional age of the Gorkhi Formation suggest that the evolution of the accretionary complex was influenced by the intrusion and erosion of plutonic rocks during the Early Carboniferous. We also suggest that spatial and temporal changes in the provenance of the accretionary complex in the Khangai–Khentei belt, which developed aound the southern continental margin of the Siberian Craton in relation to island arc activity, were influenced by northward subduction of the Paleo-Asian Ocean plate.  相似文献   

20.
《Precambrian Research》2001,105(2-4):115-128
The Aasivik terrane is a ∼1500 km2 complex of gneisses dominated by ∼3600 Ma components, which has been discovered in the Archaean craton of West Greenland, ∼20–50 km south of the Paleoproterozoic Nagssugtoqidian orogen. The Aasivik terrain comprises granulite facies tonalitic to granitic gneisses with bands of mafic granulite, which include disrupted mafic dykes. Four gneiss samples of the Aasivik terrain have given imprecise SHRIMP U–Pb zircon ages of 3550–3780 Ma with strong loss of radiogenic lead and new growth of zircon probably associated with a granulite facies metamorphic event(s) at ∼2800–2700 Ma. To the Southeast, the Aasivik terrane is in tectonic contact with a late Archaean complex of granitic and metapelitic gneisses with apparently randomly distributed mafic and ultramafic units, here named the Ukaleq gneiss complex. Two granitic samples from the Ukaleq gneiss complex have U–Pb zircon ages of 2817 ± 10 and 2820 ± 12 Ma and tzircon εNd values of 2.3–5.4. Given their composition and positive εNd values, they probably represent melts of only slightly older juvenile crust. A reconnaissance SHRIMP U–Pb study of a sample of metasedimentary rock from the Ukaleq gneiss complex found ∼2750–2900 Ma zircons of probable detrital origin and that two or more generations of 2700–2500 Ma metamorphic zircons are present. This gneiss complex is provisionally interpreted as a late Archaean accretionary wedge. A sample of banded granulite facies gneiss from a complex of banded gneisses south of the Aasivik terrain here named the Tasersiaq gneiss complex has yielded two zircon populations of 3212 ± 11 and 3127 ± 12 Ma. Contacts between the three gneiss complexes are mylonites which are locally cut by late-post-kinematic granite veins with SHRIMP U–Pb zircon ages of ∼2700 Ma. The isotopic character and the relationships between the lithologies from the different gneiss complexes suggest the assembly of unrelated rocks along shear zones between 2800 and 2700 Ma. The collage of Archaean gneiss complexes were intruded by A-type granites, here named the Umiatsiaasat granites, at ∼2700 Ma, later than the tectonic intercalation of the gneiss complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号