首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The three-dimensional stationary in solar-terrestrial system numerical model of the global ionosphere at F-region altitudes is developed. The input parameters are: the structural parameters of empirical thermospheric models (temperature, composition), electric fields, solar UV-radiation spectrum, corpuscular flows at high latitudes. The model includes the calculations of thermospheric circulation, electron density, electron and ion temperatures. The model reproduces the main morphological peculiarities of the distribution of thermospheric circulation and ionospheric plasma parameters. A comparison analysis of the results of the model calculation corresponding to different thermospheric models (DTM, MSIS, Jacchia-77, MSIS-83) is carried out. It is shown, that thermospheric circulation systems are the effective indicator of faithfulness of thermospheric models.  相似文献   

2.
基于CHAMP卫星加速度计数据,对2002年4月和2004年11月两个连续磁暴事件期间400 km高度热层大气密度时空变化特征进行了分析,结果表明,地磁扰动相近的连续磁暴发生时,热层密度对第一个磁暴的响应幅度明显大于后续磁暴;磁暴间歇期有时会出现密度低值;磁暴恢复相,热层密度先于ap指数快速恢复至暴前水平,甚至更低;热层大气经验模式NRLMSISE00的预测结果中没有包含这些现象.利用TIMED卫星SABER辐射计数据进一步分析同时段100~155 km高度NO冷却率的变化特点,NO冷却率在暴时的增大滞后热层密度2~6 h;磁暴恢复相,NO冷却率保持在较高水平,弛豫时间远大于热层密度.暴时增强的NO冷却率及其缓慢的恢复是导致热层密度响应幅度变小的原因,间歇期是否出现热层密度异常低值也与NO冷却率的增幅有关.  相似文献   

3.
This paper investigates the effects of uncertainty in rock-physics models on reservoir parameter estimation using seismic amplitude variation with angle and controlled-source electromagnetics data. The reservoir parameters are related to electrical resistivity by the Poupon model and to elastic moduli and density by the Xu-White model. To handle uncertainty in the rock-physics models, we consider their outputs to be random functions with modes or means given by the predictions of those rock-physics models and we consider the parameters of the rock-physics models to be random variables defined by specified probability distributions. Using a Bayesian framework and Markov Chain Monte Carlo sampling methods, we are able to obtain estimates of reservoir parameters and information on the uncertainty in the estimation. The developed method is applied to a synthetic case study based on a layered reservoir model and the results show that uncertainty in both rock-physics models and in their parameters may have significant effects on reservoir parameter estimation. When the biases in rock-physics models and in their associated parameters are unknown, conventional joint inversion approaches, which consider rock-physics models as deterministic functions and the model parameters as fixed values, may produce misleading results. The developed stochastic method in this study provides an integrated approach for quantifying how uncertainty and biases in rock-physics models and in their associated parameters affect the estimates of reservoir parameters and therefore is a more robust method for reservoir parameter estimation.  相似文献   

4.
Abstract

A primitive equation, solar driven, thermospheric model is derived which has applications to the neutral gas components on Mars and Venus. The full effects of molecular viscosity and thermal conductivity are included, necessitating the development of a combined analytic and numerical solution technique. The model is applied to Venus in order to understand how thermospheric rotation, if present, would affect the dynamics. Results indicate that rotation periods of eight days or less should be observable. Application of the model to Mars indicates that the perturbation solar heating and the atmospheric response have primarily a diurnal component for which typical temperature and zonal wind maximum amplitudes are 20 K and 30 m/sec respectively. Because of uncertainty in the solar heating efficiency, calculations were made varying this parameter by an order of magnitude. The results imply that the response due to solar forcing alone is probably too small to account for observed concentrations of the minor constituents CO and O. An upper limit estimate is made of the upward propagation of wave energy from the lower atmosphere and the resulting response of the thermosphere.  相似文献   

5.
通过求解中性大气Navier Stokes动量方程建立了一个时变的三维风场理论模式,利用目前新版的中性大气模式NRLMSISE 00及国际电离层参考模式IRI2000作为输入参数给出热层风场. 基于该模式,计算得到中等太阳活动年磁静日风场的变化形态及其受电场和离子曳力的影响. 同时,将Navier Stokes动量方程作不同形式的简化,并利用简化模式与本文的模式计算结果的对比,分析中性大气Navier Stokes动量方程中黏性项以及非线性项(U·Δ)U的作用. 结果表明,本文所建立伪三维风场模式给出的结果更为合理,而简化模式在某些地区尤其在低纬和赤道区不适用,黏性项及非线性项的作用不可忽略. 本文所建立的风场模式将对研究电离层动力学过程、电离层与热层的耦合过程以及空间天气学研究都有着重要意义.  相似文献   

6.
本文统计分析了2001—2005年的39次大磁暴事件(Dst-100nT)期间TIEGCM模式和CHAMP卫星大气密度数据.研究结果表明,模式结果与实测数据具有较好的一致性,但仍存在一定的偏差.大气密度及增量与SYM-H指数相关性较好,并且随纬度、光照条件和地磁活动水平变化.模式低估了磁暴期间大气密度的增幅,特别是在地磁活动水平较强时模式与实测的偏差较大.模式的偏差在高纬地区高于低纬地区,日侧高于夜侧.Dst指数越低,偏差越大,而当Dst指数低于-150nT以后,绝对偏差和相对偏差变化不明显.  相似文献   

7.
In this paper, globally-averaged, thermospheric total mass density, derived from the orbits of ~5000 objects at 250, 400, and 550 km that were tracked from 1967 to 2006, has been used to quantitatively study the annual asymmetry of thermospheric mass density and its mechanism(s). The results show that thermospheric mass density had a significant annual asymmetry, which changed from year to year. The annual asymmetry at the three altitudes varied synchronously and its absolute value increased with altitudes. The results suggest that there is an annual asymmetry in solar EUV radiation that is caused by the difference in the Sun-Earth distance between the two solstices and the random variation of solar activity within a year. This change in radiation results in an annual change in the thermospheric temperature and thus the scale height of the neutral gas, and is the main cause of the annual asymmetry of thermospheric mass density. The annual asymmetry of mass density increases with altitude because of the accumulating effect of the changes in neutral temperature and scale height in the vertical direction.  相似文献   

8.
A new empirical atmospheric density model is developed using the CIRA72 (Jacchia 71) model as the basis for the diffusion equations. New solar indices based on orbit-based sensor data are used for the solar irradiances in the extreme and far ultraviolet wavelengths. New exospheric temperature and semiannual density equations are employed to represent the major thermospheric density variations. Temperature correction equations are also developed for diurnal and latitudinal effects, and finally density correction factors are used for model corrections required at high altitude (1500–4000 km). The new model, Jacchia–Bowman 2006, is validated through comparisons of accurate daily density drag data previously computed for numerous satellites. For 400 km altitude the standard deviation of 16% for the standard Jacchia model is reduced to 10% for the new JB2006 model for periods of low geomagnetic storm activity.  相似文献   

9.
Based on the thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM), a thermospheric-ionospheric data assimilation and forecast system is developed. Using this system, we estimated the oxygen ions, neutral temperature, wind, and composition by assimilating the simulated data from Formosa Satellite 3/Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) occultation electron density profiles to evaluate their effects on the ionospheric forecast. An ensemble Kalman filter data assimilation scheme and combined state and parameter estimation methods are used to estimate the unobserved parameters in the model. The statistical results show that the neutral and ion compositions are more effective than the neutral temperature and wind for improving the forecast of the ionospheric electron density, whose root mean square errors in the assimilation period decreased by approximately 40%, 30%, and 10% due to the estimations of the neutral composition, oxygen ions, and neutral temperature, respectively. Due to the different physical and chemical processes that these parameters primarily affect, their e-folding times differ greatly from longer than 12 h for neutral composition to approximately 6 h for oxygen ions and 3 h for neutral temperature. The effect of estimating the neutral composition on improving the ionospheric forecast is greater than that of estimating the oxygen ions, which can be also be seen in an actual data assimilation experiment. This indicates that the neutral composition is the most important thermospheric parameter in ionospheric data assimilations and forecasts.  相似文献   

10.
利用加速度计数据反演热层大气密度算法一般需由经验模式给定热层大气温度,进而计算大气阻尼系数C_D.本文基于CHAMP卫星加速度计数据反演得到大气密度,以2008年为例,利用反演得到的热层大气密度循环迭代修正大气阻尼系数C_D,通过对比修正前后密度偏差,评估经验模式给定热层温度对热层大气密度反演造成的影响.结果表明,经验模式热层温度计算偏差对大气密度反演造成的影响小于5%,而且考虑大气成分的改变则进一步降低了这种影响.  相似文献   

11.
For analyzing measurements of any kind, it is important to estimate the probability distribution of the measurement errors. When modelling the observations using least-squares fitting, the distribution of the errors plays a vital role in choosing the merit function to be minimized, as unnormally distributed errors (e.g. outliers, or displaying asymmetry around the mean) may substantially skew a least-squares fit of estimated model parameters. Using the CACTUS accelerometer data covering heights of 230–750 km, we will show that the statistical relationship between the commonly used semi-empirical models of neutral thermospheric density (MSIS, DTM) and the observed densities is consistent with lognormal distribution, i.e. the logarithm of the ratio of the measurements to the predictions is approximately normally distributed. This experimental fact may be applied in modelling the neutral thermospheric density. bezdek@asu.cas.cz  相似文献   

12.
In this article, the energy balance method is used to retrieve thermospheric mass density from CHAMP satellite precise orbit determination(POD) data during 2007–2009. The retrieved thermospheric mass densities are compared with those from accelerometer data and an empirical model. The main conclusions are as follows:(1) Thermospheric mass density can be retrieved from POD data by the energy balance and semi-major axis decay methods, whose results are consistent.(2) The accuracy of the retrieved densities depends on the integration time period, and the optimal period for CHAMP density retrieval from POD data is about 20 minutes.(3) The energy balance method can be used to calibrate accelerometer data.(4) The accuracy of retrieving thermospheric density from POD data varies with satellite altitude and local time.  相似文献   

13.
The seasonal effects in the thermosphere and ionosphere responses to the precipitating electron flux and field-aligned current variations, of the order of an hour in duration, in the summer and winter cusp regions have been investigated using the global numerical model of the Earths upper atmosphere. Two variants of the calculations have been performed both for the IMF By < 0. In the first variant, the model input data for the summer and winter precipitating fluxes and field-aligned currents have been taken as geomagnetically symmetric and equal to those used earlier in the calculations for the equinoctial conditions. It has been found that both ionospheric and thermospheric disturbances are more intensive in the winter cusp region due to the lower conductivity of the winter polar cap ionosphere and correspondingly larger electric field variations leading to the larger Joule heating effects in the ion and neutral gas temperature, ion drag effects in the thermospheric winds and ion drift effects in the F2-region electron concentration. In the second variant, the calculations have been performed for the events of 28–29 January, 1992 when precipitations were weaker but the magnetospheric convection was stronger than in the first variant. Geomagnetically asymmetric input data for the summer and winter precipitating fluxes and field-aligned currents have been taken from the patterns derived by combining data obtained from the satellite, radar and ground magnetometer observations for these events. Calculated patterns of the ionospheric convection and thermospheric circulation have been compared with observations and it has been established that calculated patterns of the ionospheric convection for both winter and summer hemispheres are in a good agreement with the observations. Calculated patterns of the thermospheric circulation are in a good agreement with the average circulation for the Southern (summer) Hemisphere obtained from DE-2 data for IMF By < 0 but for the Northern (winter) Hemisphere there is a disagreement at high latitudes in the afternoon sector of the cusp region. At the same time, the model results for this sector agree with other DE-2 data and with the ground-based FPI data. All ionospheric and thermospheric disturbances in the second variant of the calculations are more intensive in the winter cusp region in comparison with the summer one and this seasonal difference is larger than in the first variant of the calculations, especially in the electron density and all temperature variations. The means that the seasonal effects in the cusp region are stronger in the thermospheric and ionospheric responses to the FAC variations than to the precipitation disturbances.  相似文献   

14.
利用SNOE卫星1998年3月11日至2000年9月30日共计935天观测的NO密度和太阳软X射线数据,分析了低热层NO的时空分布特征及其对太阳和地磁活动的响应,得出了以下结论:NO密度从96.67 km开始增加,大约在105~110 km高度达到最大,随后开始减小;同一高度处一般夏季期间最大,冬季次之,春秋分季最小;密度峰值大小变化范围约为(0.5~1.5)×108 mol/cm3,峰值高度基本分布在107 km和113 km高度处,且不随太阳活动变化,平均值约为107 km;NO密度与太阳软X射线及地磁Ap指数的相关系数在不同高度存在0、1和2天的最佳延迟时间,而同太阳软X射线的统计关系在不同高度和季节存在"线性"、"放大"和"饱和"现象;从统计和事件分析结果来看,太阳活动对磁赤道地区低热层NO密度的气候尺度变化的影响远大于地磁活动,但地磁活动对NO短期变化贡献非常明显.  相似文献   

15.
本文利用新的太阳EUV辐射资料、中性大气结构模式及大气成分的吸收及电离特性,计算了100-200km大气的光电离率随高度、太阳天顶角及太阳活动的变化,求得了E-F1谷的变化特征;利用完整的光化模式求得了电子密度随太阳天顶角的变化及对太阳活动的响应,并与IRI模式作了比较.结果表明,1.太阳活动指数与光电离率间的相关关系一般为正,但在一定的高度范围内,或在天顶角大于临界值Xcr=60°时,两者之间可出现负相关;2.太阳活动明显地影响E-F1谷高与谷厚,当天顶角不变时,谷高与谷厚均与太阳活动成正相关;3.本模式与IRI间的偏差因子明显随高度及太阳天顶角而变化.  相似文献   

16.
本文选取2002-2006年期间的36个强磁暴为研究对象,对CHAMP卫星加速度仪反演的实测大气密度进行经验正交分解,研究暴时热层大气密度的纬度分布特征,以及大气密度与ap指数、Dst指数的关系.结果表明,大气密度的纬度分布与季节相关,夏季半球的密度大于冬季半球,春秋季节南北半球的大气密度几乎对称分布;春秋季节白天大气密度在低纬地区呈现出赤道密度异常结构,在中高纬地区密度随纬度增加而减小,夜间则呈现抛物线的形状,赤道附近密度值最小.大气密度的纬度分布特征在若干天内具有良好的稳定性,发生时间相近的磁暴事件,纬度分布曲线非常相似,并且暴前与暴时的纬度分布变化不大.相关性分析表明,大气密度滞后ap指数2~6 h,相对Dst指数平均提前0~1 h,对磁暴的响应速度在日照区比在阴影区快,大气密度与ap指数、Dst指数具有较好的相关性.  相似文献   

17.
磁暴期间热层大气密度变化   总被引:2,自引:0,他引:2       下载免费PDF全文
基于CHAMP卫星资料,分析了2002—2008年267个磁暴期间400km高度大气密度变化对季节、地方时与区域的依赖以及时延的统计学特征,得到暴时大气密度变化的一些新特点,主要结论如下:1)两半球大气密度绝对变化(δρa)结果在不同强度磁暴、不同地方时不同.受较强的焦耳加热和背景中性风共同作用,在北半球夏季,中等磁暴过程中夜侧和大磁暴中,夏半球的δρa强于冬半球;由于夏季半球盛行风环流造成的扰动传播速度快,北半球夏季日侧30°附近大气,北(夏)半球到达峰值的时间早于南(冬)半球.而可能受半球不对称背景磁场强度所导致的热层能量输送率影响,北半球夏季强磁暴和中磁暴个例的日侧,南半球δρa强于北半球;春秋季个例中日侧30°附近大气,北半球先于南半球1~2h达到峰值.2)受叠加在背景环流上的暴时经向环流影响,春秋季暴时赤道大气密度达到峰值的时间最短,日/夜侧大气分别在Dstmin后1h和2h达到峰值.至点附近夜侧赤道大气达到峰值时间一致,为Dstmin后3h;不同季节日侧结果不同,在北半球冬季时赤道地区经过更长的时间达到峰值.3)日侧赤道峰值时间距离高纬度峰值时间不受季节影响,为3h左右.在春秋季和北半球冬季夜侧,赤道大气密度先于高纬度达到峰值,且不同纬度大气密度的峰值几乎无差别,表明此时低纬度存在其他加热源起着重要作用.  相似文献   

18.
This paper presents results from the TIME-GCM-CCM3 thermosphere–ionosphere–lower atmosphere flux-coupled model, and investigates how well the model simulates known F2-layer day/night and seasonal behaviour and patterns of day-to-day variability at seven ionosonde stations. Of the many possible contributors to F2-layer variability, the present work includes only the influence of ‘meteorological’ disturbances transmitted from lower levels in the atmosphere, solar and geomagnetic conditions being held at constant levels throughout a model year.In comparison to ionosonde data, TIME-GCM-CCM3 models the peak electron density (NmF2) quite well, except for overemphasizing the daytime summer/winter anomaly in both hemispheres and seriously underestimating night NmF2 in summer. The peak height hmF2 is satisfactorily modelled by day, except that the model does not reproduce its observed semiannual variation. Nighttime values of hmF2 are much too low, thus causing low model values of night NmF2. Comparison of the variations of NmF2 and the neutral [O/N2] ratio supports the idea that both annual and semiannual variations of F2-layer electron density are largely caused by changes of neutral composition, which in turn are driven by the global thermospheric circulation.Finally, the paper describes and discusses the characteristics of the F2-layer response to the imposed ‘meteorological’ disturbances. The ionospheric response is evaluated as the standard deviations of five ionospheric parameters for each station within 11-day blocks of data. At any one station, the patterns of variability show some coherence between different parameters, such as peak electron density and the neutral atomic/molecular ratio. Coherence between stations is found only between the closest pairs, some 2500 km apart, which is presumably related to the scale size of the ‘meteorological’ disturbances. The F2-layer day-to-day variability appears to be related more to variations in winds than to variations of thermospheric composition.  相似文献   

19.
This paper aims to investigate the uncertainty in simulated extreme low and high flows originating from hydrological model structure and parameters. To this end, three different rainfall-runoff models, namely GR4J, HBV and Xinanjiang, are applied to two subbasins of Qiantang River basin, eastern China. The Generalised Likelihood Uncertainty Estimation approach is used for estimating the uncertainty of the three models due to parameter values, henceforth referred as parameter uncertainty. Uncertainty in simulated extreme flows is evaluated by means of the annual maximum discharge and mean annual 7-day minimum discharge. The results show that although the models have good performance for the daily flows, the uncertainty in the extreme flows could not be neglected. The uncertainty originating from parameters is larger than uncertainty due to model structure. The parameter uncertainty of the extreme flows increases with the observed discharge. The parameter uncertainty in both the extreme high flows and the extreme low flows is the largest for the HBV model and the smallest for the Xinanjiang model. It is noted that the extreme low flows are mostly underestimated by all models with optimum parameter sets for both subbasins. The largest underestimation is from Xinanjiang model. Therefore it is not reliable enough to use only one set of the parameters to make the prediction and carrying out the uncertainty study in the extreme discharge simulation could give an overall picture for the planners.  相似文献   

20.
Probabilistic-fuzzy health risk modeling   总被引:3,自引:2,他引:1  
Health risk analysis of multi-pathway exposure to contaminated water involves the use of mechanistic models that include many uncertain and highly variable parameters. Currently, the uncertainties in these models are treated using statistical approaches. However, not all uncertainties in data or model parameters are due to randomness. Other sources of imprecision that may lead to uncertainty include scarce or incomplete data, measurement error, data obtained from expert judgment, or subjective interpretation of available information. These kinds of uncertainties and also the non-random uncertainty cannot be treated solely by statistical methods. In this paper we propose the use of fuzzy set theory together with probability theory to incorporate uncertainties into the health risk analysis. We identify this approach as probabilistic-fuzzy risk assessment (PFRA). Based on the form of available information, fuzzy set theory, probability theory, or a combination of both can be used to incorporate parameter uncertainty and variability into mechanistic risk assessment models. In this study, tap water concentration is used as the source of contamination in the human exposure model. Ingestion, inhalation and dermal contact are considered as multiple exposure pathways. The tap water concentration of the contaminant and cancer potency factors for ingestion, inhalation and dermal contact are treated as fuzzy variables while the remaining model parameters are treated using probability density functions. Combined utilization of fuzzy and random variables produces membership functions of risk to individuals at different fractiles of risk as well as probability distributions of risk for various alpha-cut levels of the membership function. The proposed method provides a robust approach in evaluating human health risk to exposure when there is both uncertainty and variability in model parameters. PFRA allows utilization of certain types of information which have not been used directly in existing risk assessment methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号