首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Aeronomy of Ice in the Mesosphere (AIM) mission was launched from Vandenberg Air Force Base in California at 4:26:03 EDT on April 25, 2007, becoming the first satellite mission dedicated to the study of noctilucent clouds (NLCs), also known as polar mesospheric clouds (PMC) when viewed from space. We present the first results from one of the three instruments on board the satellite, the Cloud Imaging and Particle Size (CIPS) instrument. CIPS has produced detailed morphology of the Northern 2007 PMC and Southern 2007/2008 seasons with 5 km horizontal spatial resolution. CIPS, with its very large angular field of view, images cloud structures at multiple scattering angles within a narrow spectral bandpass centered at 265 nm. Spatial coverage is 100% above about 70° latitude, where camera views overlap from orbit to orbit, and terminates at about 82°. Spatial coverage decreases to about 50% at the lowest latitudes where data are collected (35°). Cloud structures have for the first time been mapped out over nearly the entire summertime polar region. These structures include ‘ice rings’, spatially small but bright clouds, and large regions (‘ice-free regions’) in the heart of the cloud season essentially devoid of ice particles. The ice rings bear a close resemblance to tropospheric convective outflow events, suggesting a point source of mesospheric convection. These rings (often circular arcs) are most likely Type IV NLC (‘whirls’ in the standard World Meteorological Organization (WMO) nomenclature).  相似文献   

2.
The Cloud Imaging and Particle Size Experiment (CIPS) is one of three instruments aboard the Aeronomy of Ice in the Mesosphere spacecraft. CIPS provides panoramic ultraviolet images of the atmosphere over a wide range of scattering angles in order to determine the presence of polar mesospheric clouds, measure their spatial morphology, and constrain the parameters of cloud particle size distribution. The AIM science objectives motivate the CIPS measurement approach and drive the instrument requirements and design, leading to a configuration of four wide-angle cameras arrayed in a ‘+’ arrangement that covers a 120° (along orbit track)×80° (across orbit track) field of view. CIPS began routine operations on May 24, 4 weeks after AIM was launched. It measures scattered radiances from PMCs near 83 km altitude to derive cloud morphology and particle size information by recording multiple exposures of individual clouds to derive PMC scattering phase functions and detect nadir horizontal spatial scales to approximately 3 km. This paper describes the instrument design, its prelaunch characterization and calibration, and flight operations. Flight observations and calibration activities confirm performance inferred during ground test, verifying that CIPS exceeds its measurement requirements and goals. These results are illustrated with example flight images that demonstrate the instrument measurement performance.  相似文献   

3.
We present the first results of gravity wave signatures on polar mesospheric clouds (PMCs) during the summer of 2007, in the northern hemisphere polar region. The Cloud Imaging and Particle Size (CIPS) experiment has one of the three instruments on board the NASA Aeronomy of Ice in the Mesosphere (AIM) spacecraft, which was launched into a sun-synchronous orbit on April 25, 2007. CIPS is a four-camera, wide-field (120°×80°) imager designed to measure PMC morphology and particle properties. One of the objectives of AIM is to investigate gravity wave effects on PMC formation and evolution. CIPS images show distinct wave patterns and structures in PMCs that are similar to ground-based photographs of noctilucent clouds (NLCs). The observed horizontal wavelengths of the waves were found to vary between 15 and 320 km, with smaller-wavelength structures of less than 50 km being the most common. In this paper we present examples of individual quasi-monochromatic wave events observed by CIPS and statistics on the wave patterns observed in the northern hemisphere during the summer months of 2007, together with a map showing the geographic locations of gravity wave events observed from CIPS.  相似文献   

4.
The Solar Occultation For Ice Experiment (SOFIE) was launched onboard the Aeronomy of Ice in the Mesosphere (AIM) satellite on 25 April 2007, and began science observations on 14 May 2007. SOFIE conducts solar occultation measurements in 16 spectral bands that are used to retrieve vertical profiles of temperature, O3, H2O, CO2, CH4, NO, and polar mesospheric cloud (PMC) extinction at wavelengths from 0.330 to 5.006 μm. SOFIE performs 15 sunset measurements at latitudes from 65° to 85°S and 15 sunrise measurements from 65° to 85°N each day. This work describes the SOFIE instrument, measurement approach, and retrieval results for the northern summer of 2007.  相似文献   

5.
The Solar Occultation For Ice Experiment (SOFIE) was launched onboard the Aeronomy of Ice in the Mesosphere (AIM) spacecraft to measure polar mesospheric clouds (PMCs) and their environment. This work describes methods for identifying PMCs in SOFIE observations and determining mass density, particle shape, particle effective radius, and the parameters of a Gaussian size distribution. Results using SOFIE measurements from the northern summer of 2007 are compared with concurrent observations by the ALOMAR lidar in northern Norway. Ice particle properties determined from SOFIE are in good agreement with the lidar results, considering the differences in instrument characteristics.  相似文献   

6.
The payload of Equator-S was complemented by the potential control device (PCD) to stabilise the electric potential of the spacecraft with respect to the ambient plasma. Low potentials are essential for accurate measurements of the thermal plasma. The design of PCD is inherited from instruments for Geotail and Cluster and utilises liquid metal ion sources generating a beam of indium ions at several keV. The set-up of the instrument and its interaction with the plasma instruments on board is presented. When the instrument was switched on during commissioning, unexpectedly high ignition and operating voltages of some ion emitters were observed. An extensive investigation was initiated and the results, which lead to an improved design for Cluster-II, are summarised. The cause of the abnormal behaviour could be linked to surface contamination of some emitters, which will be monitored and cured by on-board procedures in future. The mission operations on Equator-S were not at all affected, because of the high redundancy built into the instrument so that a sufficient number of perfectly operating emitters were available and were turned on routinely throughout the mission. Observations of the effect of spacecraft potential control on the plasma remained limited to just one event on January 8, 1998, which is analysed in detail. It is concluded that the ion beam lead to the predicted improvement of the particle measurements even outside the low density regions of the magnetosphere where the effect of spacecraft potential control would have been much more pronounced, and that the similar instruments for the four Cluster-II spacecraft to be launched in 2000 will be very important to ensure accurate plasma data from this mission.  相似文献   

7.
We compare measurements from the Aeronomy of Ice in the Mesosphere (AIM) Cloud Imaging and Particle Size (CIPS) experiment to the NOAA-17 solar backscatter ultraviolet (SBUV/2) instrument during the 2007 Northern Hemisphere polar mesospheric cloud (PMC) season. Daily average Rayleigh scattering albedos determined from identical footprints from the CIPS nadir camera and SBUV/2 agree to better than ~5% throughout the season. Average PMC brightness values derived from the two instruments agree to within ±10%. PMC occurrence frequencies are on average ~5% to nearly a factor of two higher in CIPS, depending on latitude. Agreement is best at high latitudes where clouds are brighter and more frequent. The comparisons indicate that AIM CIPS data are valid for scientific analyses. They also show that CIPS measurements can be linked to the long time series of SBUV/2 data to investigate long-term variability in PMCs.  相似文献   

8.
The Toulouse electron spectrometer flown on the Russian project INTERBALL-Tail performs electron measurements from 10 to 26 000 eV over a 4 solid angle in a satellite rotation period. The INTERBALL-Tail probe was launched on 3 August 1995 together with a subsatellite into a 65° inclination orbit with an apogee of about 30 RE. The INTERBALL mission also includes a polar spacecraft launched in August 1996 for correlated studies of the outer magnetosphere and of the auroral regions. We present new observations concerning the low-latitude boundary layers (LLBL) of the magnetosphere obtained near the dawn magnetic meridian. LLBL are encountered at the interface between two plasma regimes, the magnetosheath and the dayside extension of the plasma sheet. Unexpectedly, the radial extent of the region where LLBL electrons can be sporadically detected as plasma clouds can reach up to 5 RE inside the magnetopause. The LLBL core electrons have an average energy of the order of 100 eV and are systematically field-aligned and counterstreaming. As a trend, the temperature of the LLBL electrons increases with decreasing distance to Earth. Along the satellite orbit, the apparent time of occurrence of LLBL electrons can vary from about 5 to 20 min from one pass to another. An initial first comparison between electron-and magnetic-field measurements indicates that the LLBL clouds coincide with a strong increase in the magnetic field (by up to a factor of 2). The resulting strong magnetic field gradient can explain why the plasma-sheet electron flux in the keV range is strongly depressed in LLBL occurrence regions (up to a factor of 10). We also show that LLBL electron encounters are related to field-aligned current structures and that wide LLBL correspond to northward interplanetary magnetic field. Evidence for LLBL/plasma-sheet electron leakage into the magnetosheath during southward IMF is also presented.  相似文献   

9.
随着空基、地基云状观测自动化进程的推进,国际通用的人工观测云分类标准不再适用于自动观测.本文提出了适用于自动观测的卫星观测、地基观测和数值预报模式统一的云分类原则和分类标准,依据大气代表性原则、仪器观测可行性原则、历史继承性原则和可扩展性原则,不考虑云的高度,沿用形态学和发生学理论,将云分为卷云、层状云、波状云和积状云4属,更细分为薄卷云、密卷云、波云、雨波云、层云、雨层云、浅积云和深积云8类,列出了各类云特征的定性描述,为自动观测、预报保障和模式评估提供参考.  相似文献   

10.
地球空间双星探测计划   总被引:10,自引:2,他引:10       下载免费PDF全文
地球空间双星探测计划包括两颗小卫星,将分别运行于目前国际上地球空间探测卫星尚未覆盖的近地赤道区和近地极区.双星计划的主要科学目标是用高分辨率的仪器在近地空间的主要活动区探测场和粒子的时空变化;研究磁层亚暴、磁暴和磁层粒子暴的触发机制及磁层空间暴对太阳活动和行星际扰动的响应过程;建立地球空间环境的动态模式.为了实现科学目标,赤道卫星和极区卫星上各载有9台探测仪器.赤道卫星的轨道是:近地点550km,远地点60000km,倾角约2.5°;极区卫星轨道是:近地点350km,远地点25000km,倾角约90°左右.为了使双星计划与欧空局ClusterⅡ相配合,赤道卫星计划于2002年12月发射,极区卫星计划于2003年6月发射.双星计划与ClusterⅡ相配合,可形成地球空间6点探测计划,这将成为21世纪初国际上重要的地球空间探测计划.  相似文献   

11.
GOCE, Satellite Gravimetry and Antarctic Mass Transports   总被引:1,自引:0,他引:1  
In 2009 the European Space Agency satellite mission GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) was launched. Its objectives are the precise and detailed determination of the Earth’s gravity field and geoid. Its core instrument, a three axis gravitational gradiometer, measures the gravity gradient components V xx , V yy , V zz and V xz (second-order derivatives of the gravity potential V) with high precision and V xy , V yz with low precision, all in the instrument reference frame. The long wavelength gravity field is recovered from the orbit, measured by GPS (Global Positioning System). Characteristic elements of the mission are precise star tracking, a Sun-synchronous and very low (260 km) orbit, angular control by magnetic torquing and an extremely stiff and thermally stable instrument environment. GOCE is complementary to GRACE (Gravity Recovery and Climate Experiment), another satellite gravity mission, launched in 2002. While GRACE is designed to measure temporal gravity variations, albeit with limited spatial resolution, GOCE is aiming at maximum spatial resolution, at the expense of accuracy at large spatial scales. Thus, GOCE will not provide temporal variations but is tailored to the recovery of the fine scales of the stationary field. GRACE is very successful in delivering time series of large-scale mass changes of the Antarctic ice sheet, among other things. Currently, emphasis of respective GRACE analyses is on regional refinement and on changes of temporal trends. One of the challenges is the separation of ice mass changes from glacial isostatic adjustment. Already from a few months of GOCE data, detailed gravity gradients can be recovered. They are presented here for the area of Antarctica. As one application, GOCE gravity gradients are an important addition to the sparse gravity data of Antarctica. They will help studies of the crustal and lithospheric field. A second area of application is ocean circulation. The geoid surface from the gravity field model GOCO01S allows us now to generate rather detailed maps of the mean dynamic ocean topography and of geostrophic flow velocities in the region of the Antarctic Circumpolar Current.  相似文献   

12.
本文利用卫星重力反演与模拟软件ANGELS系统(ANalyst of Gravity Estimation with Low-orbit Satellites)对低低跟踪模式的重力卫星的关键载荷精度指标进行了深入分析.模拟结果表明:(1)对短弧长积分法而言,在低低跟踪模式的关键载荷精度指标中,重力场反演精度对星间距离变率精度最为敏感;(2)通过对目前在轨运行GRACE的载荷指标进行分析,发现轨道数据的误差主要影响重力场的低阶部分(约小于25阶),较高阶次部分(约大于26阶)主要受星间距离变率的误差限制;(3)如果下一代低低跟踪模式的重力卫星的目标之一是把重力异常反演精度较GRACE提高约10倍,则在保持轨道高度和GRACE相同的前提下,轨道、星间距离变率和星载加速度计等关键载荷指标需要达到的最低精度分别约为2cm、10nm·s-1和3.0×10-10 m·s-2;(4)轨道精度和混频误差将是影响下一代低低跟踪模式重力卫星重力场恢复能力进一步提高的主要制约因素,距离变率精度和加速度计精度存在盈余.  相似文献   

13.
China Seismo-Electromagnetic Satellite(CSES)will be launched at the end of 2016 and the orbit is sunsynchronous and the altitude is about 500 km.The design of CSES satellite and ground segment are introduced in this paper first.And then the preliminary proposals of scientific data verification and cross-verification in CSES mission are given,which can be used to classify the payloads' operation state,and validate the reliability of data.  相似文献   

14.
法国DEMETER(Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions)卫星是世界上第一颗专门针对地震电离层扰动监测的电磁卫星, 于2004年发射, 2010年底结束运行, 共在轨飞行6.5年, 获得3万多条整轨数据, 为地震监测及电离层物理研究提供了坚实的数据基础。 全球科学家利用这颗卫星的数据开展了大量的地震应用研究, 发表文章上百篇, 将电磁卫星的地震应用研究推向了新的阶段。 中国第一颗电磁监测试验卫星CSES(China Seismo-Electromagnetic Satellite)于2018年2月2日成功发射, 目前已完成在轨测试并交付使用, 科学数据也已正式对外发布。 如何充分发挥CSES卫星的应用效能, 将空间电磁监测向业务化运行转化, 总结和思考DEMETER卫星的技术进步、 研究成果及曾经出现过的问题, 十分重要。 因此, 本文着重介绍DEMETER卫星在地震监测应用领域的代表性研究进展, 并结合CSES卫星的设计和运转实践, 对未来空间地震电磁探测及科学研究的发展方向进行一些初步讨论。  相似文献   

15.
The Cloud Imaging and Particle Size (CIPS) instrument on the Aeronomy of the Ice in the Mesosphere (AIM) spacecraft is a 4-camera nadir pointed imager with a bandpass centered at 265 nm and a field of view of 120°×80°. CIPS observes polar mesospheric clouds (PMCs) against the sunlit Rayleigh-scattered background. At individual polar locations approximately 5 km×5 km in area, CIPS observes the same volume of air seven times over a range of scattering angles from about 35° to 150°. These multi-angle observations allow the identification and extraction of the PMC scattered radiance from the Rayleigh-scattered background. We utilize the fact that the former has a highly asymmetric phase function about 90° scattering angle, while the latter has a phase function that is symmetric. The retrieved PMC phase function can then be interpreted to obtain PMC particle size distributions. We describe a technique for identification of PMCs in the CIPS observations through the separation of the Rayleigh and PMC radiances. PMC phase function results are shown for the first season of CIPS observations. Assuming the particles are oblate spheroids with an axial ratio of 2, and a Gaussian distribution of width 14 nm, we find the phase functions are consistent with mean radii between 50 and 60 nm. These results are similar to those discussed by Hervig et al. [2009. Interpretation of SOFIE PMC measurements: cloud identification and derivation of mass density, particle shape, and particle size. J. Atmos. Sol. Terr. Phys., in review.] in this issue from the Solar Occultation for Ice Experiment (SOFIE) which also flies on the AIM satellite.  相似文献   

16.
The primary objective of the gravity recovery and climate experiment follow-on (GRACE-FO) satellite mission, due for launch in August 2017, is to continue the GRACE time series of global monthly gravity field models. For this, evolved versions of the GRACE microwave instrument, GPS receiver, and accelerometer will be used. A secondary objective is to demonstrate the effectiveness of a laser ranging interferometer (LRI) in improving the satellite-to-satellite tracking measurement performance. In order to investigate the expected enhancement for Earth science applications, we have performed a full-scale simulation over the nominal mission lifetime of 5 years using a realistic orbit scenario and error assumptions both for instrument and background model errors. Unfiltered differences between the synthetic input and the finally recovered time-variable monthly gravity models show notable improvements with the LRI, on a global scale, of the order of 23 %. The gain is realized for wavelengths smaller than 240 km in case of Gaussian filtering but decreases to just a few percent when anisotropic filtering is applied. This is also confirmed for some typical regional Earth science applications which show randomly distributed patterns of small improvements but also degradations when using DDK4-filtered LRI-based models. Analysis of applied error models indicates that accelerometer noise followed by ocean tide and non-tidal mass variation errors are the main contributors to the overall GRACE-FO gravity model error. Improvements in these fields are therefore necessary, besides optimized constellations, to make use of the increased LRI accuracy and to significantly improve gravity field models from next-generation gravity missions.  相似文献   

17.
风云二号03批卫星空间环境监测器   总被引:4,自引:2,他引:2       下载免费PDF全文
风云二号卫星以自旋稳定方式工作于地球静止轨道,自1997年以来,01批与02批卫星空间环境监测器成功的业务运行获得了大量重要探测成果;在继承01批与02批产品研制技术的基础上,提高了03批空间环境监测器的探测性能指标和技术设计,更好地满足空间天气预警业务发展的新需求.本文对风云二号03批卫星空间环境监测器的新设计、关键技术研制和发射前的定标试验结果进行分析和讨论.  相似文献   

18.
Tang  Geshi  Li  Xie  Cao  Jianfeng  Liu  Shushi  Chen  Guangming  Man  Haijun  Zhang  Xiaomin  Shi  Sihan  Sun  Ji  Li  Yongping  Calabia  Andres 《中国科学:地球科学(英文版)》2020,63(2):257-266
On September 20 th, 2015, twenty satellites were successfully deployed into a near-polar circular orbit at 520 km altitude by the Chinese CZ-6 test rocket, which was launched from the Tai Yuan Satellite Launch Center. Among these satellites, a set of 4 Cube Sats conform the atmospheric density detection and precise orbit determination(APOD) mission, which is projected for atmospheric density estimation from in-situ detection and precise orbit products. The APOD satellites are manufactured by China Spacesat Co. Ltd. and the payload instruments include an atmospheric density detector(ADD), a dual-frequency dualmode global navigation satellite system(GNSS) receiver(GPS and Beidou), a satellite laser ranging(SLR) reflector, and an S/Xband very long baseline interferometry(VLBI) beacon. In this paper, we compare the GNSS precise orbit products with colocated SLR observations, and the 3 D orbit accuracy shows better than 10 cm RMS. These results reveal the great potential of the onboard micro-electro-mechanical system(MEMS) GNSS receiver. After calibrating ADD density estimates with precise orbit products, the accuracy of our density products can reach about 10% with respect to the background density. Density estimates from APOD are of a great importance for scientific studies on upper atmosphere variations and useful for model data assimilation.  相似文献   

19.
This contribution investigates two different ways for mitigating the aliasing errors in ocean tides. This is done, on the one hand, by sampling the satellite observations in another direction using the pendulum satellite mission configuration. On the other hand, a mitigation of the temporal aliasing errors in the ocean tides can be achieved by using a suitable repeat period of the sub-satellite tracks.The findings show, firstly, that it is very beneficial for minimizing the aliasing errors in ocean tides to use pendulum configuration; secondly, optimizing the orbital parameter to get shorter repeat orbit mode can be effective in minimizing the aliasing errors. This paper recommends the pendulum as a candidate for future gravity mission to be launched in longer repeating orbit mode with shorter “sub-cycle” repeat periods to improve the temporal resolution of the satellite mission.  相似文献   

20.
PROMICS-3 is a plasma experiment flown in the Russian project Interball. It performs three-dimensional (3D) measurements of ions in the energy range 4 eV–70 keV with mass separation and of electrons in the energy range 12 eV–35 keV. The Interball project consists of two main satellites, the Tail Probe and the Auroral Probe, each with one subsatellite. The Interball Tail Probe was launched on 3 August 1995, into a 65° inclination orbit with apogee at about 30 RE. Both main satellites carry identical PROMICS-3 instruments and thus direct comparisons of the particle distributions will be possible once the Auroral Probe is launched. Furthermore, PROMICS-3-Tail is the first instrument measuring the 3D ion distribution function in the magnetospheric boundary layers at high latitudes. In this paper we describe the PROMICS-3 instrument and show initial results from the Tail probe, measurements of the mag-netosheath, plasma sheet, and ring current plasmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号