首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Porewater profiles often are used to identify and quantify important biogeochemical processes occurring in lake sediments. In this study, multiple porewater profiles were obtained from two eutrophic Swiss lakes using porewater equilibrators (peepers) in order to examine spatial and seasonal trends in biogeochemical processes. Variability in profile shapes and concentrations was small on spatial scales of a few meters, but the uncertainty in calculated diffusive fluxes across the sediment surface was, on average, 35%. Focusing of Fe and Mn oxides toward the lake center resulted in systematic increases in porewater concentrations and diffusive fluxes of Fe2+ and Mn2+ with increasing water depth; these fluxes are postulated to be regulated by the pH-dependent dissolution of reduced-metal phases. Despite higher concentrations of inorganic carbon, NH 4 + , Si and P in pelagic compared to littoral sites, diffusive fluxes of these substances across the sediment surface increased only slightly or not at all with increasing water depth. Porewater profiles did reveal temporal changes in Fe2+, Mn2+, Ca2+ and Mg2+ that were an indirect result of the large, seasonal changes in seston deposition, but no clear seasonal variations were found in diffusive fluxes of nutrients across the sediment surface. The intense mineralization occurring at the sediment surface was not reflected in the porewater profiles nor in the calculated diffusive fluxes. Calculated diffusive fluxes across the sediment surface resulted from decomposition occurring primarily in the top 5–7 cm of sediment. Diffusive fluxes from this subsurface mineralization were equal to the solute release from mineralization occurring at the sediment-water interface. Buried organic matter acts as a memory of previous lake conditons; it will require at least a decade before reductions in nutrient inputs to lakes fully reduce the diffusive fluxes into the lake from the buried reservoir of organic matter.  相似文献   

2.
鄱阳湖沉积物和水界面磷的交换通量   总被引:6,自引:0,他引:6  
采用扩散模型法与实验培养法对鄱阳湖沉积物和水界面间可溶性总磷和可溶性磷酸盐的界面交换过程进行研究,并探讨了其影响因素.结果表明,利用2种方法得到鄱阳湖各站点可溶性总磷和可溶性磷酸盐在沉积物与水界面间的交换方向不完全相同,大部分站点沉积物是磷的源,其中,利用扩散模型法估算的可溶性总磷和可溶性磷酸盐平均扩散通量分别为0.052和0.047 mg/(m~2·d),而实验培养法测得可溶性总磷和可溶性磷酸盐的平均交换通量则分别为0.25和0.24 mg/(m~2·d),且各站点利用扩散模型法测得磷的交换通量均小于实验培养法的计算结果.此外,上覆水溶解氧浓度及水体温度对可溶性总磷和可溶性磷酸盐的交换过程均具有一定的影响,表现为温度越高,溶解氧浓度越小,可溶性总磷和可溶性磷酸盐的交换越强烈.  相似文献   

3.
Intense (106 cm−2 sr−1 s−1) fluxes of upflowing ENAs from the polar cap have been observed in the energy range 0.1–13 keV (hydrogen assumed) from the Astrid satellite at 1000 km altitude. If a source altitude of 400 km is assumed, the ENA emissions come from an arc-like region at magnetic latitudes 70–85° extending from dusk over to the nightside. Simulated images show that the observed emissions may be the ENA-albedo effect of the auroral ion precipitation. It is also possible that the observed emissions may originate from upward accelerated ions with cone-like pitch-angle distributions charge exchanging with the upper atmosphere.  相似文献   

4.
Ground-based Fabry–Perot spectrometer observations from the Australian Antarctic stations of Davis and Mawson show an upward wind ≥100 m s−1 in the thermosphere at ∼240 km altitude on the night of Day of Year 159 in 1997. The wind was from a region located poleward of the poleward edge of the discrete auroral oval, and is identified as a further event of the type seen at Mawson, and elsewhere, in earlier work. The upward wind was first seen over Davis station at ∼22:00 UT. As the auroral oval moved northward the region of upward wind followed, and was seen at Mawson (some 4° magnetically north of Davis) just over 1 h later. It is shown that the presence of the large upward wind does, at times, affect the horizontal wind inferred from the off-zenith observations. Correcting the affected measurements for the non-zero upward wind leads to a horizontal wind field more consistent with that derived from observations before and after the vertical wind event. A lower limit of the area of the region of upward wind over Mawson and Davis on this night is estimated as ∼6×1011 m2. The estimated power required to drive the upward wind over this area at 240 km altitude is of order 6×109 W. We estimate that this represents between 3 and 7% of the geomagnetic power input in the southern hemisphere during this interval.  相似文献   

5.
Groundwater circulation is known to be one of the agents responsible for the redistribution of geothermal energy by acting as a source or sink in the course of its movement through porous media. Heat transport in groundwater systems is considered to be a coupled process and the theory based on this was used to analyse temperature profiles of 30 thermally stable observation wells in a deep, semi-confined aquifer system in the Tokyo Metropolitan area. Vertical water fluxes in the semi-confined aquifers and the associated upward heat fluxes were estimated from a heat flux equation that describes convection and conduction processes of heat transport in one dimension. The vertical downward water fluxes in Shitamachi lowland, Musashino and Tachikawa terraces were 0.69.26.91 × 10?9, 1.46-70.92 × 10?9 and 2.61.2204 × 10?9 m/s, respectively. A vertical upward water flux of 1.80-33.60 × 10?9 m/s was estimated in Shitamachi lowland. The water flux generally decreased with increasing depth for observation wells which intercepted more than one semi-confining layer. The estimated upward heat fluxes for Shitamachi lowland, Musashino and Tachikawa terraces were 0.32-1.12, 0.49-1.21 and 1.00-11.62 W/m2, respectively. The heat flux was highest in Tachikawa terrace where a major fault, the Tachikawa fault, is located. Generally, the estimated heat flux was higher in the semi-confining layers than in the aquifers. Areas with heat sources and sinks as well as groundwater flow patterns in the semi-confined aquifers were revealed by heat flux and temperature distributions in the study area.  相似文献   

6.
Observations from the special UK EISCAT program UFIS are presented. UFIS is a joint UHF-VHF experiment, designed to make simultaneous measurements of enhanced vertical plasma flows in the F-region and topside ionospheres. Three distinct intervals of upward ion flow were observed. During the first event, upward ion fluxes in excess of 1013 m–2 s–1 were detected, with vertical ion velocities reaching 300 ms–1 at 800 km. The upflow was associated with the passage of an auroral arc through the radar field of view. In the F-region, an enhanced and sheared convection electric field on the leading edge of the arc resulted in heating of the ions, whilst at higher altitudes, above the precipitation region, strongly enhanced electron temperatures were observed; such features are commonly associated with the generation of plasma upflows. These observations demonstrate some of the acceleration mechanisms which can exist within the small-scale structure of an auroral arc. A later upflow event was associated with enhanced electron temperatures and only a moderate convection electric field, with no indication of significantly elevated ion temperatures. There was again some evidence of F-region particle precipitation at the time of the upflow, which exhibited vertical ion velocities of similar magnitude to the earlier upflow, suggesting that the behaviour of the electrons might be the dominant factor in this type of event. A third upflow was detected at altitudes above the observing range of the UHF radar, but which was evident in the VHP data from 600 km upwards. Smaller vertical velocities were observed in this event, which was apparently uncorrelated with any features observed at lower altitudes. Limitations imposed by the experimental conditions inhibit the interpretation of this event, although the upflow was again likely related to topside plasma heating.  相似文献   

7.
The benthic fluxes (diffusive and with chambers) of dissolved inorganic carbon (DIC), dissolved oxygen (DO) and total alkalinity (TA) have been calculated in summertime in the estuary system formed by the mouths of the Tinto and Odiel rivers (SW of Spain). An increase of DIC in interstitial water with depth was found for all stations showing values of up to 28 mM at a depth of 5 cm. The diffusive fluxes of DIC and TA obtained ranging between 1.8–7.8 and 1.5–7.3 mmol m−2 d−1, respectively. These intervals are in agreement with those found for other coastal systems. Considering the plots of DIC vs. alkalinity (ΔDIC/ΔTA) in the first 30 cm of interstitial water, it was deduced that sulphate reduction and the oxidation of sulphides seem to have special relevance in the sediments of the stations studied. The benthic fluxes of inorganic carbon and DO measured by benthic chambers were variable, presenting elevated values (309–433 mmol DIC m−2 d−1 and 50–120 mmol DO m−2 d−1). The most elevated fluxes of DIC were seen at the stations with high anthropogenic influence (close to populated areas and industrial discharges). A great proportion of these fluxes are due to CaCO3 dissolution processes, which constitute an estimated 49% of total DIC flux. DIC and DO benthic flux quotients were far in excess of unity, indicating the significance processes of anaerobic degradation of organic material at the stations studied.  相似文献   

8.
Plasma patches are regions of enhanced ionization that are created in the dayside cusp or equatorward of the cusp in the sunlit hemisphere during northward interplanetary magnetic field. After formation, and a change to a southward interplanetary magnetic field, they drift across the polar cap with the prevailing convection speed. As a plasma patch propagates, charge exchange reactions occur, which lead to the production of both ion and neutral particles throughout the patch. In the region directly above the patch, an upward jet of H+ and O+ forms. This ion jet, in turn, acts to produce an upward flux of neutral H and O stream particles because of charge exchange reactions between the ion jet and the background neutral atmosphere. A three-dimensional, time-dependent model of the ion and neutral polar winds was used in order to study the evolution of the neutral stream particles that are produced in a ‘representative’ propagating plasma patch, with the anticipation that the neutral stream particles produced by the ion jet would display a distinct signature. However, the outflow of neutral H atoms above a patch is only slightly visible in the simulation due to a continuous outflow flux of H (∼109 cm−2 s−1) across the entire polar cap. On the other hand, the upward flux of neutral O from the patch is more dependent on both the state of the ionosphere and the amount of heating, with increased upward fluxes over areas where the heating is high. Typically, the upward neutral O streams are predominantly located in the pre-midnight auroral oval.  相似文献   

9.
The newest observational evidence on asymmetrical deformation of the Earth   总被引:3,自引:0,他引:3  
IntroductionWhat is the shape of the Earth? Does it change continuously? It is a scientific question since the ancient times and is still being observed and explored at present. In 250 BC, Greek scholar Eratosthene supposed the shape of the Earth to be spherical according to the observations to the Sun and estimated the perimeter of the Earth to be 4 000 km (King-Hele, 1976) according to the camel-walking distance. Until the 16th century, the Earth was considered to be a very symmetrical …  相似文献   

10.
If the interpretation of the D″ layer at the base of the mantle as a thermal boundary layer, with a temperature increment in the order of 800 K, is correct, then the formation of deep-mantle plumes to vent material from it appears inevitable. We demonstrate quantitatively that the strong temperature dependence of viscosity guides the upward flow into long-lived chimneys that are ~ 20 km in diameter near the base of the mantle and decrease in width with progressive upward softening and partial melting of plume material. The speed of flow up the axis of the plume is correspondingly fast; 1.6 m y?1 at the base and 4.8 m y?1 at 670 km depth. Thermal diffusive spreading of a heated plume is compensated by a slow horizontal convergence of mantle material toward the chimney in response to the lower pressure there. This convergence, which contributes only a small increment to the flux of material up the plume, also serves to throttle the flow in the chimney. The global plume mass flux necessary to transport 1.6 × 1012 W of core heat upward through the mantle is 1.8 × 106 kg s?1. At its base, plume material is probably still significantly below its solidus or eutectic temperature, but substantial partial melting is very likely as it rises. We speculate that a small fraction of this fluid component eventually emerges at the surface in “hot spots”, with the fate of the remainder being unknown. The behaviour and properties of D″ and of plumes are closely coupled. Not only are plumes a necessary consequence of a thermal boundary layer, but their existence is impossible without that layer.  相似文献   

11.
Activities of a suite of radioisotopes ranging in half-life from 5.6 days (52Mn) to 3.7 m.y. (53Mn) have been measured in the Dhajala chondrite. The results show that all the radioactivities are close to the expected levels except54Mn and 22Na. Their activities are higher than those based on the interplanetary fluxes at 1 A.U. near the ecliptic, expected immediately before the fall of Dhajala, corresponding to the time of solar minimum. Furthermore, activity ratios of 54Mn/53Mn and 22Na/26Al are higher by 30–50% than expected. The departure from the expected values is discussed in terms of spatial variations of cosmic rays based on the computed orbital parameters of the meteoroid. If the galactic cosmic ray fluxes in the equatorial region (±15°) are assumed to be the same as in the ecliptic plane then these results suggest higher fluxes by 33 ± 7% at heliographic latitudes 15–40°S, during solar minimum.  相似文献   

12.
The three-dimensional structure of mesoscale eddies in the western tropical Pacific(6°S–20°N, 120°E–150°E)is investigated using a high-resolution ocean model simulation. Eddy detection and eddy tracking algorithms are applied to simulated horizontal velocity vectors, and the anticyclonic and cyclonic eddies identified are composited to obtain their three-dimensional structures. The mean lifetime of all long-lived eddies is about 52 days, and their mean diameter is 147 km. Two typical characteristics of mesoscale eddies are revealed and possible dynamic explanations are analyzed. One typical characteristic is that surface eddies are generally separated from subthermocline eddies along the bifurcation latitude(~13°N) of the North Equatorial Current in the western tropical Pacific, which may be associated with different eddy energy sources and vertical eddy energy fluxes in subtropical and tropical gyres. Surface eddies have maximum swirl velocities of 8–9 cm s~(-1) and can extend to about 1500 m depth. Subthermocline eddies occur below 200 m, with their cores at about 400–600 m depth, and their maximum swirl velocities can reach 10 cm s~(-1). The other typical characteristic is that the meridional velocity component of the eddy is much larger than the zonal component. This characteristic might be due to more zonal eddy pairs(two eddies at the same latitude),which is also supported by the zonal wavelength(about 200 km) in the high-frequency meridional velocity component of the horizontal velocity.  相似文献   

13.
The effects of temperature, diffusive boundary-layer thickness, and sediment composition on fluxes of inorganic N and P were estimated for sediment cores with oxidized surfaces from nearshore waters (2?C10?m) of a montane oligotrophic lake. Fluxes of N and P were not affected by diffusive boundary-layer thickness but were strongly affected by temperature. Below 16?°C, sediments sequestered small amounts of P and released small amounts of N. Above 16?°C, the seasonal maximum water temperature, sediments were substantial sources of N (NH4 +?CN?=?2?C24?mg?m?2 d?1; NO3 ??+?NO2 ??CN?=?2?C5?mg?m?2 d?1) and P (0.1?C0.4?mg?m?2 d?1), indicating potential responsiveness of sediment?Cwater nutrient exchange, and of corresponding phytoplankton growth, to synoptic warming.  相似文献   

14.
The hyporheic zone of riverbed sediments has the potential to attenuate nitrate from upwelling, polluted groundwater. However, the coarse‐scale (5–10 cm) measurement of nitrogen biogeochemistry in the hyporheic zone can often mask fine‐scale (<1 cm) biogeochemical patterns, especially in near‐surface sediments, leading to incomplete or inaccurate representation of the capacity of the hyporheic zone to transform upwelling NO3?. In this study, we utilised diffusive equilibrium in thin‐films samplers to capture high resolution (cm‐scale) vertical concentration profiles of NO3?, SO42?, Fe and Mn in the upper 15 cm of armoured and permeable riverbed sediments. The goal was to test whether nitrate attenuation was occurring in a sub‐reach characterised by strong vertical (upwelling) water fluxes. The vertical concentration profiles obtained from diffusive equilibrium in thin‐films samplers indicate considerable cm‐scale variability in NO3? (4.4 ± 2.9 mg N/L), SO42? (9.9 ± 3.1 mg/l) and dissolved Fe (1.6 ± 2.1 mg/l) and Mn (0.2 ± 0.2 mg/l). However, the overall trend suggests the absence of substantial net chemical transformations and surface‐subsurface water mixing in the shallow sediments of our sub‐reach under baseflow conditions. The significance of this is that upwelling NO3?‐rich groundwater does not appear to be attenuated in the riverbed sediments at <15 cm depth as might occur where hyporheic exchange flows deliver organic matter to the sediments for metabolic processes. It would appear that the chemical patterns observed in the shallow sediments of our sub‐reach are not controlled exclusively by redox processes and/or hyporheic exchange flows. Deeper‐seated groundwater fluxes and hydro‐stratigraphy may be additional important drivers of chemical patterns in the shallow sediments of our study sub‐reach. © 2015 The Authors. Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   

15.
The processes of water movement through the Coombe Deposit in a chalk dry valley near Eastbourne in Southeast England were investigated using simple methods based on regular weekly measurements of rainfall, soil water content, and soil water potential. The drainage flux (recharge) through the soil was determined using the water balance method during the winter and the zero flux plane (ZFP) method after the appearance of the ZFP in the spring. The unsaturated hydraulic conductivity was derived applying Darcy's Law in a novel way using the measured potential gradients and weekly drainage fluxes. The derived conductivity characteristics were adequate to identify the flow mechanisms, to illustrate the difference in behaviour between the horizons of the soil profile, and to give some indication of pore water velocities. The mean daily drainage flux at 2.85 m depth during the recharge period from 10 October 1980 to 29 May 1981 was 1.6 mm d?1. Weekly mean rates of up to 3.7 mm d?1 were observed, but peak short term rates must have considerably exceeded this figure. It was shown that, in the lower part of the Coombe Deposit, when drainage fluxes are large, much of the flux passes through a very small proportion of the wetted cross-sectional area of the soil. This gives rise to pore water velocities of at least 3 m d?1 at a depth of 2.85 m and 0.5 m d?1 between 0.5 m and 2.5 m depth. These results show that pollutants may be moved very rapidly through the profile in this, and similar, material. The core sampling techniques normally used to monitor pollutant movement in the chalk are unlikely to succeed in detecting this movement, not only because it is transient but also because it occupies only a very small proportion of the water filled pores.  相似文献   

16.
Results from hydrometric and isotopic investigations of unsaturated flow during snowmelt are presented for a hillslope underlain by well-sorted sands. Passage of melt and rainwater through the vadose zone was detected from temporal changes in soil water 2H concentrations obtained from sequential soil cores. Bypassing flow was indicated during the initial snowmelt phase, but was confined to the near-surface zone. Recharge below this zone was via translatory flow, as meltwater inputs displaced premelt soil water. Estimates of premelt water fluxes indicate that up to 19 per cent of the premelt soil water may have been immobile. Average water particle velocities during snowmelt ranged from 6.2 × 10?7 to 1.1 × 10?6 ms?1, suggesting that direct groundwater recharge by meltwater during snowmelt was confined to areas where the premelt water table was within 1 m of the ground surface. Soil water 2H signatures showed a rapid response to isotopically-heavy rain-on-snow inputs late in the melt. In addition, spatial variations in soil moisture content at a given depth induced a pronounced lateral component to the predominantly vertical transport of water. Both factors may complicate isotopic profiles in the vadose zone, and should be considered when employing environmental isotopes to infer recharge processes during snowmelt.  相似文献   

17.
A wave flume experiment was conducted to study nutrient fluxes at water-sediment interface of Meiliang Bay under different hydrodynamic conditions. The results reveal that hydrodynamics has remarkable effects on nutrient fluxes in this area. With a bottom wave stress of 0.019 N m?2 (equivalent to disturbance caused by wind SE 5–7 m s?1 at the sediment sample site of Meiliang Bay), the fluxes of TN, TDN and NH4 +-N were separately 1.92 × 10?3, ?1.81 × 10?4 and 5.28 × 10?4 mg m?2 s?1 (positive for upward and negative for downward), but for TP, TDP and SRP, the fluxes were 5.69 × 10?4, 1.68 × 10?4 and ?1.29 × 10?4 mg m?2 s?1. In order to calculate the released amount of nutrients based on these results, statistic analysis on the long-term meteorological data was conducted. The result shows that the maximum lasting time for wind SE 5–7 m s?1 in this area is about 15 h in summer. Further calculation shows that 111 t TN, 32 t NH4 +-N, 34 t TP and 10 t TDP can be released into water (the sediment area was 47.45% of the whole surface area), resulting in concentration increase of 0.025, 0.007, 0.007 and 0.002 mg L?1 separately. With stronger disturbance (bottom wave stress is 0.217 N m?2 which is equivalent to disturbance caused by wind SE 10–11 m s?1 at the same site), there has been significant increase of nutrient fluxes (1.16 × 10?2, 6.76 × 10?3, 1.14 × 10?2 and 2.14 × 10?3 mg m?2 s?1 for TN, DTN and NH4 +-N and TP). The exceptions were TDP with flux having a decrease (measured to be 9.54 × 10?5 mg m?2 s?1) and SRP with flux having a small increase (measured to be 5.42 × 10?5 mg m?2 s?1). The same statistic analysis on meteorological data reveal that the maximum lasting time for wind SE 10–11 m s?1 is no more than 5 h. Based on the nutrient fluxes and the wind lasting-time, similar calculations were also made suggesting that 232 t TN, 134.9 t TDN, 228 t NH4 +-N, 42.7 t TP, 2.0 t TDP and 1.1 t SRP will be released from sediment at this hydrodynamic condition resulting in the concentration increases of 0.050, 0.029, 0.049, 0.009, 0.0004 and 0.0002 mg L?1. Therefore in shallow lakes, surface disturbance can lead to significant increase of nutrient concentrations although some components in water column had negative flux with weak disturbance (e.g. TDN and SRP in this experiment). In this case, sediment looks to be a source of nutrients. These nutrients deposited in sediment can be carried or released into water with sediment resuspension or changes of environmental conditions at water-sediment interface, which can have great effects on aquatic ecosystem and is also the characteristics of shallow lakes.  相似文献   

18.
The horizontal and vertical sand mass fluxes in aeolian sand transport are investigated in a wind tunnel by PTV (particle tracking velocimetry). According to the particle velocity and volume fraction of each individual particle from PTV images, the total horizontal sand mass flux, the horizontal mass fluxes of ascending and descending sand particles, and upward and downward vertical sand fluxes are analyzed. The results show that the horizontal mass fluxes of ascending and descending sand particles generally decrease with the increase of height and can be described by an exponential function above about 0.03 m height. At the same friction velocity, the decay heights of the total horizontal sand mass flux and the horizontal mass fluxes of ascending and descending sand particles are very similar. The proportion of horizontal mass flux of ascending sand particles is generally about 0.3–0.42, this means the horizontal mass flux of descending sand particles makes an important contribution to the total horizontal sand mass flux. Both the upward and downward vertical sand mass fluxes generally decrease with height and they are approximately equal at the same height and friction velocity. The relation between upward (or downward) vertical sand mass flux and horizontal sand mass flux can be described by a power function. The present study is used to help understand the transport of ascending and descending sand particles. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Fluxes of latent heat, sensible heat, and water vapor, including turbulent deposition of fog droplets, were measured for two months in autumn 2005 within a subtropical montane cypress forest in Taiwan. The goal of the study was to determine whether significant evapotranspiration can occur during foggy conditions. Water vapor fluxes, QW, as determined with the Bowen Ratio method, were compared to those simultaneously measured with the eddy covariance method. The median Bowen Ratio was 1.06, and the median QW flux was 5 · 2 × 10?5 kg m?2 s?1. The vertical gradients of temperature and specific humidity over the forest, ΔT and Δq, peaked around noon during days without fog, and were reduced during foggy conditions. For 66% of the data points, ΔT and Δq were negative, corresponding to positive (upward) fluxes of sensible heat QH and latent heat QE. A Monte Carlo simulation proved that statistically significant evapotranspiration rates, i.e., upward water vapor fluxes, occurred during fog. At the same time, deposition fluxes of fog droplets occurred. Our results show that even during fog events, significant evapotranspiration may occur. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
For various groups of photospheric magnetic fields differing in strength, averaged synoptic maps have been obtained from the data of the Kitt Peak National Solar Observatory (1976–2003). The latitudinal profiles of magnetic field fluxes are considered individually for each 5-G field strength interval. Changes in the maxima of the latitude profiles and their localization in the latitude are studied. The results are evidence that the latitudinal distribution of the magnetic fields changes significantly at field strengths of 5, 15, and 50 G. The magnetic flux for groups of fields differing in strength decreases monotonically as the strength increases, starting from B > 5 G; the fluxes of the southern hemisphere exceed those of the northern hemisphere. A very special group is formed by the weakest fields with B < 5 G, which are opposite in phase to stronger fields in terms of localization and time changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号