首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
针对青藏高原植被稀疏、土壤颗粒较粗糙的特征,基于Noah陆面过程模型(LSM),模拟了植被和土壤对整个高原多年冻土分布和关键属性特征(包括活动层厚度和年平均地温)的影响,并通过野外调查数据对模拟结果进行了评估。结果表明:在考虑稀疏植被和粗糙土壤后,改进的Noah LSM对青藏高原多年冻土分布和属性的模拟性能都有所改善;多年冻土面积由原始Noah模型模拟的1.216×106 km2减少到1.113×106 km2,模拟的空间差异主要出现在多年冻土与季节冻土的过渡区及高原南部的岛状多年冻土区;模拟的高原平均活动层厚度由原始Noah模型模拟的2.55 m增加到2.92 m,年平均地温也由-2.17℃增加到-1.65℃。总之,青藏高原稀疏植被和粗糙土壤对多年冻土有重要影响。  相似文献   

2.
地表温度综合反映了大气、植被和土壤等因素的能量交换状况, 是冻土分布模型和一些寒区陆面过程模式的上边界条件, 对多年冻土分布制图和活动层厚度估算有重要意义. 为了评估ERA-Interim 地表温度产品在青藏高原地区的适用性, 综合比较了青藏高原69个海拔2 000 m以上气象站1981-2013年地面实际观测值与ERA-Interim之间的差异及其分布状况. 结果表明, 两种资料的变化趋势一致, 但是ERA-Interim地表温度在数值上与实际观测值差别显著, 平均偏低7.4℃. 原因之一可能是由ERA-Interim再分析资料格点的海拔高度与气象站实际海拔高度差异引起的. 根据两种温度产品之间海拔的差异, 对ERA-Interim地表温度重新进行模拟, 经过模拟后的ERA-Interim地表温度与实际观测值的差值在大部分气象站变小, 平均偏高0.4℃. 因此, 经过重新模拟的ERA-Interim地表温度基本能够反映青藏高原地表温度的真实情况. 以模拟后的ERA-Interim地表温度作为地面冻结数模型的输入参数模拟了青藏高原冻土分布, 结果表明青藏高原多年冻土区面积为1.14×106 km2, 季节冻土区面积为1.43×106km2.  相似文献   

3.
基于青藏高原北麓河地区高寒草原、高寒沼泽草甸和高寒草甸生态系统下多年冻土活动层水热过程的监测数据,对活动层水热过程特征开展了相关研究。研究结果显示,在活动层厚度、冻融时间、持续时间以及活动层土壤水分含水量分布方面,不同的高寒生态系统下活动层的上述属性特征差异明显。高寒草原下多年冻土活动层厚度最大,土体开始融化的时间最早,每年持续融化的日数也最长;高寒草甸最小,高寒沼泽草甸居中。高寒草原下活动层土壤含水率从上到下逐渐增加,水分基本集中在活动层的中下部分;高寒沼泽草甸下活动层土壤水分的分布情况相对比较均衡;高寒草甸下活动层土壤含水率分布呈现从上到下逐步减少的模式,越靠近地表土壤含水率越大。对监测数据的进一步分析发现,不同的高寒生态系统下,近地表地温与气温温差累计值、近地表土壤有机质含量、n因子特征以及近地表地温标准差统计特征都具有明显的区别。研究分析表明,多年冻土活动层水热过程特征与高寒生态系统类型具有明显的关联性,高寒生态系统会影响近地表能量通量,从而使地-气热量交换产生差异,这一差异又将改变活动层土壤温度、水分分布特征及其动力学过程。  相似文献   

4.
祁连山区黑河上游俄博岭多年冻土区活动层碳储量研究   总被引:2,自引:2,他引:0  
为了探索在全球气候变化背景下多年冻土区碳储量现状, 通过野外实地勘探和室内实验, 对黑河上游俄博岭多年冻土区地貌特征及不同海拔活动层内的碳储量进行考察和估算. 结果表明: 黑河上游俄博岭冰缘现象显著, 土壤季节冻融过程活跃, 且活动层中碳储量丰富. 在研究区约2.5×106 m2 的范围内, 活动层平均厚度约为1.1 m, 活动层土壤有机质平均含量约为72.1%, 碳储量估算约为1.57 Mt C. 活动层不同深度处有机质含量呈现不同的变化规律. 随着活动层深度增加, 土壤有机质的含量逐渐降低, 在多年冻土上限附近有机质含量较高. 另外, 活动层有机质含量随着海拔和土壤含水量的不同而变化, 同时多年冻土区微地形和地质条件也对有机质含量具有重要的影响.  相似文献   

5.
青藏高原多年冻土活动层厚度对气候变化的响应   总被引:12,自引:8,他引:4  
活动层厚度变化将会对多年冻土区生态系统、地气间能水平衡和碳循环等产生重要影响。利用Stefan公式模拟了1981-2010年青藏高原多年冻土区活动层厚度的分布和空间变化特征。结果表明:多年冻土区活动层厚度平均为2.39 m,活动层厚度在羌塘盆地最小,在多年冻土区边缘、祁连山、西昆仑山、念青唐古拉山活动层厚度较大。在气候变化条件下,青藏高原多年冻土区活动层厚度呈整体增大趋势,在1981-2010年,活动层厚度的变化量为-1.54~2.24 m,变化率为-5.90~10.13 cm·a-1,平均每年变化1.29 cm。活动层增厚趋势与年平均气温增大的趋势基本一致,这说明气候变化对活动层厚度变化有很大的影响。  相似文献   

6.
刘志云  黄川  于晖  钟振涛  崔福庆 《冰川冻土》2021,43(5):1458-1467
为探究青藏工程走廊沿线多年冻土区活动层厚度分布情况,结合青藏公路、青藏铁路沿线300个钻孔点的活动层厚度监测数据,基于年平均地表温度、平均植被指数、等效纬度、纬度、高程和含冰量等参数建立了活动层厚度的经验公式、随机森林和径向基函数(radial basis function, RBF)神经网络预测模型。各预测模型结果表明,活动层厚度与各预测因子间具有极强的非线性关系;RBF神经网络预测模型具有最高的预测精确度,拟合优度R2达到0.84。运用RBF神经网络预测模型和高精度遥感数据绘制活动层厚度分布图,分布图显示研究区内活动层厚度主要为2~4 m,总面积为5 468.3 km2,面积占比为47.27%,主要分布于楚玛尔平原至北麓河盆地和唐古拉山区南部至头二九山区;活动层厚度大于4 m次之,总面积为3 382.3 km2,面积占比为29.24%,整体分布偏向南部地区,主要分布于布曲河谷地至头二九山区。并对研究区活动层厚度与含冰量、地温关系进行了研究,结果表明活动层厚度随含冰量增加而减小、随地温升高而增加。  相似文献   

7.
祁连山大通河源区冻土特征及变化趋势   总被引:7,自引:4,他引:3  
大通河源区位于祁连山中东部, 属高山多年冻土区, 利用源区内冻土钻探及监测资料对源区冻土发育的基本特征及变化趋势进行了分析和探讨. 冻土地温分析表明, 源区冻土年平均地温随海拔的变化梯度约为3.82 ℃·km-1, 且冻土地温与表层覆被条件关系密切. 盆地平原地带多年冻土厚度约为17~86 m, 且以海拔每上升100 m冻土厚度增加约10 m的梯度增加. 多年冻土活动层厚度受海拔地带性作用不显著, 更多地受局地因素的控制, 地表覆被条件成为其主要影响因素. 在气温升高以及人类活动日益增多的影响下, 源区冻土整体处于退化状态, 多年冻土年平均地温以0.0075 ℃·a-1的速率上升.  相似文献   

8.
刘杨  赵林  李韧 《冰川冻土》2013,35(2):280-290
利用唐古拉综合观测场活动层及气象塔2007年的数据资料, 结合SHAW模型在3种不同地表反照率选取方案下进行模拟试验, 对唐古拉地区活动层土壤水热特征进行了单点数值模拟研究.通过观测值与3种模拟值的对比分析, 结果表明: SHAW模型能够较为好地模拟多年冻土区地表能量通量、 活动层土壤温度特征, 而对土壤含水量模拟不太理想, 但对其变化趋势模拟较好; 在模拟试验中, 模型输入参数地表反照率取1-12月各月平均地表反照率后, 模型对地表能量通量、 活动层土壤温度和湿度的模拟效果有了明显的提高; 而用一种地表反照率参数化方案的计算结果对模型输入参数进行修正后, 模型对活动层土壤温度和湿度的模拟效果有了明显的提高, 对地表能量通量的模拟效果提高不明显.总体上, SHAW模型对高原多年冻土区土壤冻融过程的模拟具有优势, 是研究高海拔多年冻土区活动层土壤水热过程较为理想的陆面模型.  相似文献   

9.
唐古拉地区活动层土壤水热特征的模拟研究   总被引:13,自引:8,他引:5  
利用唐古拉监测点实测气象及活动层土壤水热资料,结合SHAW模型,对青藏高原高海拔多年冻土区活动层土壤的水热特征进行了模拟研究,并与观测结果进行了对比.结果显示:SHAW模型对活动层陆面能量通量(净辐射、地表面热通量、潜热及感热)和活动层土壤温度的模拟比较成功;对活动层水分的模拟结果参差不齐,有些深度土壤水分模拟不理想,但有一半以上观测深度的模拟结果相对较好.土壤水分模拟结果产生误差的原因比较复杂,初始含水量的选取、土壤结构参数及水热动力学参数的不确定性是导致模拟结果误差的可能原因.总体上,SHAW模型是研究高海拔多年冻土区活动层土壤水热过程较理想的陆面模式.  相似文献   

10.
土壤热通量是地表能量平衡的重要分量,其估算方案在研究地表能量平衡研究中必不可少。利用青藏公路沿线5个站点0~20 cm的实测土壤层温、湿度及5 cm土壤热通量资料,以翁笃鸣气候学计算方案为基础建立了优化的5 cm土壤热通量计算方案。通过唐古拉和西大滩两个独立站点的检验结果表明,优化方案的结果相对于原方案有较大的改善,唐古拉和西大滩5 cm土壤热通量均方根误差值分别减小了3.2 W·m-2和4.8 W·m-2,而相对误差分别减小了61.9%和36.1%,即新方案能够较好地估算出青藏公路沿线多年冻土区5 cm土壤热通量。使用优化方案模拟了青藏公路沿线11个站点5 cm土壤热通量变化,结果显示,近十年青藏公路沿线土壤热通量呈现出增大的趋势,其中,5 cm土壤热通量增大了近1.0 W·m-2,而且各观测场的年平均土壤热通量值均大于0.0 W·m-2,表明就年尺度而言,热量有盈余,盈余热量用于加热下层土壤,引起活动层厚度增加,平均状况下土壤热通量每增大1.0 W·m-2,活动层厚度增大约21.0 cm。  相似文献   

11.
冯晓琳  张艳林  常晓丽 《冰川冻土》2021,43(5):1468-1479
大兴安岭北部是我国唯一的中高纬度多年冻土区,其水热特征分析对陆气能量交换、生态系统和气候变化等研究有重要意义。基于2011—2020年期间对大兴安岭森林生态站附近的湿地多年冻土开展的气温和0~2 m地温和土壤含水量数据,对大兴安岭湿地多年冻土活动层的水热特征进行了分析。结果表明:湿地多年冻土活动层内地温的变幅随深度减小,且具有滞后性。融化期地表温度高于深层地温,冻结期相反。2012年、2013年、2019年和2020年的平均融化速率分别为0.49、0.61、0.47和0.56 cm·d-1,向上平均冻结速率分别为1.34、2.12、2.58和1.65 cm·d-1。向下平均冻结速率分别为1.69、1.02、3.32和1.00 cm·d-1,最大融化深度分别为78.73、85.65、66.22和74.94 cm。2012年5月—2013年5月期间,土壤未冻水含量随地温变化的拟合关系较好,相关系数大于0.90,且深层拟合效果优于表层。融化期土壤水分变化幅度大,与地温的相关性差,随深度增加相关性减弱。湿地充足的水分为多年冻土的双向冻结提供了条件。研究成果可为大兴安岭湿地多年冻土区的冻融循环、水热耦合机理和模拟研究提供数据基础和理论依据。  相似文献   

12.
In order to understand the hydrothermal activity mechanism of active layers to rainfall in permafrost regions caused by humidification of climate, the differences of ground surface energy balance and hydrothermal activity in different types of shallow soil with the consideration of rainfall were discussed. Based on the meteorological data in 2013 observed at Beiluhe observation station of Tibet Plateau, three types of shallow ground soil (i.e., sandy soil, sandy loam and silty clay) were selected to compare the differences in the water content and energy balance at the ground surface, dynamic processes of water and energy transport in active layers and coupling mechanism under rainfall condition in the plateau using a coupled water-vapor-heat transport model. The results show that the increase of soil particle size leads to the increase of surface net radiation and latent heat of evaporation, but the decrease of soil heat flux. The difference of surface energy balance, especially the sensible heat flux and latent heat of evaporation, are larger in the warm season but smaller in the cold season. The liquid water transport under hydraulic gradient and the water-vapor transport under thermal gradient are obvious as the particle size in soil increases. However, the water-vapor flux under thermal gradient increases but the liquid water flux under hydraulic potential gradient decreases. As a result, the water content in shallow soil decreases accordingly but it increases slightly at the depth of 25 ~75 cm. Moreover, with the increase of soil particle size, the thermal conductivity of soil, convective heat transfer under rainfall and surface evaporation increase, but the soil heat conduction flux and soil temperature gradient decrease. Thus, soil temperature in sandy soil is much higher than that of sandy loam and silty clay at the same depth. The permafrost table declines with the increase of the thickness of active layer, which is unfavourable to permafrost stability. The results can provide theoretical reference for stability prediction and protection of permafrost caused by humidification of climate.  相似文献   

13.
地温年变化深度的准确判断对于多年冻土发育特征评估、寒区冻土模式下边界深度的确定具有重要意义.通过对青藏高原地区典型钻孔地温数据进行分析,初步揭示了多年冻土地温年变化深度的变化规律及其影响因素,并提出一种简化了地表和活动层状态影响的地温年变化深度估算方法.结果表明:研究区低温冻土的地温年变化深度平均值比高温冻土大4.6 m,随着冻土温度升高,地温年变化深度基本上呈减小趋势,部分低温冻土钻孔由于土层含水率过高导致地温年变化深度相对较小;由于活动层水热动态和冻融过程的影响,地温年变化深度与浅层(0.5 m)温度年较差相关性不显著,而与多年冻土上限附近温度年较差的大小呈显著正相关关系;地层介质的热扩散率差异是导致地温年变化深度区域差异和变化的主要原因,土层含水率、温度、质地以及水的相态是影响地层热物理性质重要因素.  相似文献   

14.
The active layer in permafrost regions plays an important role in energy exchange between permafrost and atmosphere. Rainfall is one of the dominant factors affecting thermal-moisture dynamics of the active layer. To better understand the thermal-moisture dynamics and the interaction between rainfall and the active layer in-detail, in situ experiment was carried out and soil temperature, soil moisture and soil heat flux of the active layer were measured from 2007 to 2009. The observation data demonstrated that the volumetric soil water content of the active layer remained fairly constant during the winter and had a notable fluctuation resulted from evapotranspiration and rewetting from rainfall events in summer. The daily variation amplitude of soil temperature and soil heat flux in summer was bigger than that in winter. Soil moisture content increased and soil temperature decreased after rainfall. Rainfall in summer led to the change of surface energy balance and caused subsurface soil cooling. The convective heat transfer from water infiltration reduced the temperature gradient along depth and changed near-surface heat fluxes. The increase in rainfall may mitigate permafrost degradation on the Tibetan Plateau.  相似文献   

15.
青藏高原冻土区活动层厚度分布模拟   总被引:16,自引:10,他引:6  
活动层夏季融化、冬季冻结的近地表土(岩)层,是冻土地区热力动态最活跃的岩层,在冻土研究中有着重要意义.根据青藏高原地区80个气象观测台站1991-2000年的地面温度观测资料结合数字高程模型,计算出青藏高原冻土区的地面冻结指数和地面融化指数,然后应用斯蒂芬公式分别得到多年冻土区的季节融化深度和季节冻土区的季节冻结深度.  相似文献   

16.
多年冻土区活动层冻融状况及土壤水分运移特征   总被引:14,自引:8,他引:6  
利用位于典型多年冻土区的唐古拉综合观测场2007年9月1日—2008年9月1日实测活动层剖面土壤温度和水分数据,对多年冻土区活动层的冻结融化规律进行研究;同时,对冻融过程中的活动层土壤液态水含量的变化特征进行分析,探讨了活动层内部土壤水分分布特征及其运移特点对活动层冻结融化过程的影响. 结果表明:活动层融化过程从表层开始向下层土壤发展,冻结过程则会出现双向冻结现象. 一个完整的年冻融循环中活动层冻结过程耗时要远远小于融化过程. 活动层土壤经过一个冻融循环,土壤水分整体呈现下移的趋势,土壤水分逐步运移至多年冻土上限附近积累. 同时,土壤水分含量和运移特征会对活动层冻融过程产生显著的影响.  相似文献   

17.
为了研究封闭道碴层对其下部多年冻土是否具有积极的保护作用,在青藏铁路北麓河试验段附近建立了封闭碎石道碴坑和卵石地表对比试验场,并对下部地温进行监测.结果发现:经过两个冻融循环后,道碴坑底部(1.3 m深度处)年平均地温为-1.11℃,比卵石地表相同深度低0.73℃;道碴坑中部(0.7m深度处)年平均地温为-1.60℃,比卵石地表相同深度地温低1.4℃.封闭碎石道碴层可以提升冻土上限,降低多年冻土温度,对下部多年冻土起到很好的保护作用.封闭道碴层的这种降温效果是由于道碴层具有可变导热系数的特点,暖季道碴层上部温度高,下部温度低,不产生对流,等效导热系数小,传入道碴层以下土体的热量较少;相反寒季道碴层上部温度低,下部温度高,产生自然对流,等效导热系数增大,有利于道碴层以下土体释放热量.  相似文献   

18.
杨成松  程国栋 《冰川冻土》2011,33(3):469-478
利用土壤表层温度计算Stefan公式中融化指数,并结合铁路沿线地下冰和土体干密度分布特征,由Stefan公式集合预报未来100 a逐年最大季节融化深度;利用铁路沿线地下冰和干密度分布特征计算冻土融化时最大沉降量空间分布,与Stefan公式计算得到的活动层厚度变化数据叠加分析,得到未来100 a逐年的沉降量空间分布及其置...  相似文献   

19.
多年冻土活动层, 尤其是浅层土壤的水热传输机制, 以及冻融过程的时空异质性是研究地-气间能水交换的关键。利用位于青藏高原中部的唐古拉和通天河两个活动层观测场2013年的土壤温度和水分数据, 比较了不同下垫面浅层土壤日冻融循环过程的差异, 以及不同冻融阶段的地温日变化及热扩散率特征。结果表明: 根据一日之内地温的正负波动, 浅层土壤的冻融过程可以划分为解冻期、 完全融化期、 始冻期和完全冻结期四个时期, 其中解冻期和始冻期统称为日冻融循环发生期。解冻期的持续天数和深度明显高于始冻期, 高寒草原的日冻融循环天数和发生深度明显高于高寒草甸。浅层土壤(0 ~ 20 cm)日地温变化普遍呈现明显的正弦波动趋势, 且不同冻融阶段的振幅差异较大, 由于相变的缘故, 解冻期的日地温变化振幅最小。高寒草甸的日地温振幅显著低于高寒草原, 说明日地温动态与土壤质地和土壤水分密切相关, 植被作为热绝缘层, 减弱了地温对气温波动的响应。地表下5 ~ 10 cm的热扩散率显著大于10 ~ 20 cm深度, 且5 - 10月融化季的热扩散率显著大于冻结季。热传导对流方程可以描述多年冻土区典型下垫面在季节冻融循环周期内不同月份的水分迁移方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号