首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 640 毫秒
1.
基于CryoSat-2的东南极PANDA断面考察沿线DEM制作及精度分析   总被引:1,自引:0,他引:1  
基于卫星测高数据,国际上先后发布了ICESat DEM、Bamber DEM等全南极DEM.相对于传统高度计,大轨道倾角、长重访周期的设计使CryoSat-2具有更大的数据覆盖范围以及更加密集的轨道覆盖;同时,SARIn模式的启用也提高了CryoSat-2对于南极边缘区域的监测能力.针对利用CryoSat-2数据提取DEM问题,对CroySat-2的轨迹覆盖特征、数据滤波方法、最优内插参数选取以及DEM精度验证等方面进行了探讨,并利用克里金插值法生成了东南极PANDA断面考察沿线1 km分辨率的DEM.结果表明:通过与ICESat数据对比,发现PANDA断面考察沿线DEM整体高程精度约为(1.57±3.30)m;但是,局部区域高程精度分析表明,DEM精度具有不均一性,随着坡度的增加DEM高程精度逐渐下降,高程稳定性也同时下降.  相似文献   

2.
航天飞机雷达地形测绘(shuttle radar topography mission, SRTM)和先进星载热发射和反射辐射成像仪全球数字高程模型(advanced spaceborne thermal emission and reflection radiometer global digital elevation model, ASTER GDEM)提供了全球覆盖面积最广的数字高程模型(digital elevation model, DEM)数据, 但其高程精度还未得到充分验证, 传统地面测量方法很难适用于验证大面积范围的DEM精度.以冰、云和陆地高程卫星/地学激光测高系统(ICESat/GLAS)高程数据为参考, 综合利用地理信息系统(geographic information system, GIS)空间分析、三维可视化与统计分析方法, 对中国典型低海拔沿海平原地区和高海拔山地的两种DEM数据高程精度进行了对比分析.结果表明, 高程值小于20m的低海拔地区, SRTM高程精度达到2.39m, ASTER GDEM的精度达到4.83m, 均远远高于这两种数据的标称精度; 而在西南山地, 这两种DEM的精度大约为20m, 与标称精度相当.最后, 建立了ICESat/GLAS与SRTM和ASTER GDEM的一元线性回归模型, 该模型具有较高的拟合度和显著线性关系, 可用于改善这两种DEM的高程精度.   相似文献   

3.
针对我国资源三号卫星立体影像数据,利用GPS控制点,结合前视、下视、后视区域网平差精化有理函数模型,探讨了资源三号卫星立体影像数据用于重力中区地形改正的高精度DEM生成方法。通过1:1万高精度DEM数据进行地改实验验证表明:资源三号卫星立体影像数据提取的DEM可以满足1:20万区域重力测量中区地改精度要求,为我国重力测量中区地形改正提供了一条有效途径,拓展了资源三号数据在区域重力测量中的应用。  相似文献   

4.
基于ICESat数据的南极冰盖DEM插值方法比较及精度分析   总被引:1,自引:0,他引:1  
南极数字高程模型(DEM)是从事南极地学和环境变化研究的基础. 内插是建立数字高程模型的重要技术点, 插值方法有多种, 根据不同的适用情况, 不同的插值方法各有优劣. 利用克里格、 距离反权、 三角网剖分、 最小曲率以及移动平均5种插值方法分别建立南极冰盖小范围区域的DEM, 通过抽取部分观测数据作为验证值对各插值方法进行了比较. 结果表明: 克里格插值方法的可靠性最好, 稳定性最高. 然后, 利用克里格插值方法, 基于ICESat测高卫星的GLA12数据建立了南极冰盖的DEM. 由于南极大陆实测数据有限, 缺乏对DEM的检核. 为了分析所建DEM的可靠性, 利用中国南极内陆冰盖考察所采集的GPS实测数据, 对所建立的DEM进行了验证分析. 结果显示, DEM在坡度较缓的南极内陆冰盖区域精度较高, 符合度在3 m以内; 距离卫星轨道越近的区域精度越高, 可达到1 m 以内. 在坡度较大, 高程变化较为显著的区域如沿海地区, 精度较低, 差距最大的点超过40 m.  相似文献   

5.
干涉合成孔径雷达(InSAR)数据已被证明能生成精确的数字高程模型。本文利用欧空局2颗卫星ERS-1/2对西藏羊八井地区成像所获取的相隔仅1天2幅SAR复数影像作了干涉处理和分析,生成了DEM,并与1∶5万DEM比较,对干涉DEM的精度作了评价,并分析了其潜在的制约因素。试验证明,在西藏地区的研究中,InSAR是一种非常有效的手段,不仅可用于地图制图,而且在地球动力学、地貌环境变化等领域也有巨大的潜力。  相似文献   

6.
利用DEM进行多山地区星载SAR影像的正射校正   总被引:3,自引:0,他引:3  
较为平坦地区的原始SAR影像简单采用二维变换函数(如多项式)即能满足精度要求,但在多山地区星载SAR影像的主要几何误差是由于地面高差引起的像点位移,用简单的多项式无法改正这项误差。以西藏墨托实验区为例,选取一定数量的控制点对,利用已有的数字高程模型(DEM)进行三维构像建立SAR影像的模拟影像,再利用模拟的SAR影像对原始的SAR图像进行正射校正。处理试验表明,利用DEM正射校正后的影像与地形图的匹配程度,比仅采用多项式选取地面控制点(GCP)进行校正的匹配程度有明显改善。  相似文献   

7.
南极数字高程模型(DEM)是南极冰盖研究的基础数据,目前国际通用的全南极DEM数据主要有JLB97 DEM、RAMPv2 DEM、ICESat DEM以及Bamber 1km DEM. 利用DEM对DEM验证的方式对四种DEM的精度进行比较分析. 结果表明:Bamber 1km DEM和ICESat DEM之间的高程差异最小,平均高程差小于1.8 m,二者均有较高的可靠性. RAMPv2 DEM与Bamber 1km DEM的高程差大于1.9 m,在81.5° S以南和坡度较大的区域,高程差异更为明显,高程可靠性较低. JLB97 DEM与上述三种DEM的偏差超过10 m,高程可靠性最低.  相似文献   

8.
大气效应尤其是大气水汽含量在时间和空间上变化引起的雷达信号传播延迟,是重轨雷达干涉测量中难以消除的主要误差源之一.当缺乏外部水汽改正数据且仅有少量SAR数据无法进行时间序列方法大气分离情况的大气改正,可利用大气延迟相位与地形的回归性分析进行一定的大气延迟改正.本文针对回归性分析中特征点的选取提出了区间中位数选样方法,并利用Akaike信息准则对大气延迟相位与地形回归模型进行了评价.实验研究表明了本文提出方法的有效性,为InSAR中大气延迟改正提供了参考.  相似文献   

9.
南极洲被巨厚冰雪覆盖,地质构造以南极横断山脉为界,总体分为东南极地盾和西南极活动带。数字高程模型(DEM)是研究南极冰盖变化的基础数据之一。通过多期次数字高程模型相比较获得高程的变化信息,是分析南极冰盖厚度变化和物质平衡的重要手段。然而不同类型DEM之间存的平面误差和垂直误差影响分析结果的精度。首先利用配准消除DEM间的水平误差,然后计算并按坡度提取CryoSat DEM与其他DEM的平均高程差和标准差,最后分析高程差的时空变化特征。通过分析发现,DEM之间存在不同的平面误差。其中TanDEM_X DEM与CryoSat DEM的高程平面偏差最小,而ICESat DEM与CryoSat DEM的高程平面偏差最大。在垂直方向上,0°~1°的坡度范围内,CryoSat DEM与TanDEM_X DEM的平均高程差在3.5~5.5 m之间,标准差小于18.0 m; CryoSat DEM和Bamber 1km DEM的平均高程差在-2.5~+1.0 m之间,标准差小于24.2 m; CryoSat DEM与ICESat DEM的平均高程差在-25.0~-1.0 m之间,标准差小于47.2 m; CryoSat DEM与RAMPv2 DEM的平均高程差在1.3~3.2 m之间,标准差小于45.6 m。通过研究发现南极冰盖内部高程增加,但西南极冰盖和东南极冰盖高程均在降低,且西南极降低明显,同时南极边缘地区高程降低明显。本研究为全球变化研究和南极物质平衡研究提供了重要参考。  相似文献   

10.
用InSAR技术提取数字高程模型的研究   总被引:2,自引:1,他引:2  
合成孔径雷达干涉测量(InSAR,Synthetic Aperture Radar)是一种获取地面数字高程模型(DEM)和探测地面微小形变的新技术。这里概述了干涉测量的发展历史,介绍了干涉测量的基本原理,并利用青藏高原库塞湖地区的数据对干涉测量获得地面数字高程模型进行了详细的阐述,最后对生成的地面数字高程模型进行结果分析。  相似文献   

11.
The development of satellite technology is rapidly increasing the evolution of remote sensing. Satellite images give extensive useful information about the land structure that is easily manageable in the process of generating true, high-speed information which allows the forecasting of future environmental and urban planning. Remote sensing comprises active and passive systems. Passive sensors detect natural radiation that is emitted or reflected by the object or surrounding area being observed. Active systems which produce their own electromagnetic energy and their main properties are their ability of collecting data in nearly all atmospheric conditions, day or night. These systems are frequently used to generate a digital elevation model (DEM) because they cover large areas. DEM supplies essential data for applications that are concerned with the Earth’s surface and DEMs derived from survey data are accurate but very expensive and time consuming to create. However, the use of satellite remote sensing to provide images to generate a DEM is considered to be an efficient method of obtaining data. Interferometric Synthetic Aperture Radar (InSAR) is a new geodetic technique for determining earth topography. InSAR measurements are highly dense and they only give information in Line of Sight of Radar. In the study, interferograms were produced from the InSAR images taken by ERS satellites in 1992 and 2007 and we developed the methods to generate a DEM using the InSAR technique and present the results relating to Kayseri Province in Turkey. The accuracy of the DEM derived from the InSAR technique is evaluated in comparison with a reference DEM generated from contours in a topographical map.  相似文献   

12.
《Earth》2007,82(3-4):217-249
Rapidly-flowing ice streams are the arterial drainage routes in continental ice sheets and exert a major influence on ice sheet mass balance. Recent observations have revealed that ice stream flow exhibits considerable variability, with relatively rapid changes taking place in speed and direction. This spatial and temporal variability is intimately linked to the conditions at the base of the ice streams and the distribution of localised patches of basal friction, known as ‘sticky spots’. In this paper, we provide a detailed review of sticky spot observations from both contemporary and palaeo-ice stream beds in order to better understand their nature and influence. Observations and theoretical considerations reveal four primary causes of ‘stickiness’: (i), bedrock bumps; (ii), till-free areas; (iii), areas of ‘strong’ (well drained) till; and (iv), freeze-on of subglacial meltwater. These may act together in one location, or in isolation; and a progressive increase in their distribution could lead to ice stream shut-down. Bedrock bumps are influential under active ice streams, where they provide form drag and can create thinner ice which increases the likelihood of basal freeze-on. Increased bed roughness may prevent the lateral migration of some ice streams but bedrock bumps are unlikely to cause ice stream shut-down because, over long time-scales, ice stream erosion might be expected to reduce their amplitude. The influence of till-free areas beneath an ice stream will depend critically on the amount of water that might be drawn out of the surrounding till to lubricate such areas. They are likely to be most important in ice stream onset zones but their identification has proved difficult beneath active ice streams. If an ice stream operates solely by till deformation, it is conceivable that a progressive increase in the exposure of till-free areas could lead to shut-down through a process of sediment exhaustion. Areas of strong, well drained till have been identified beneath both active and ancient ice streams and are most likely to result from the reorganisation of subglacial meltwater. The collapse of an inefficient ‘cannalised’ system to a more efficient ‘channelised’ system can occur rapidly and this mechanism has been hypothesised as a candidate for ice stream shut-down in both contemporary and palaeo-settings. Basal freeze-on has also been observed and inferred from beneath modern and palaeo-ice streams, and a reduction in basal meltwater supply coupled with ice stream drawdown and the advection of cold ice increases the likelihood of switching off an ice stream. A paucity of data from ice stream sticky spots limits a better understanding of their nature, distribution and evolution beneath ice streams. Future technological advances are likely to improve the resolution of the data collected from the beds of modern ice streams but well-preserved palaeo-ice stream beds also hold potential for investigating their influence on ice stream flow and we present simple landsystems models to aid their identification. Such data will considerably enhance the basal boundary condition in ice stream models which will, ultimately, refine our predictions of the response of contemporary ice sheets to future changes in climate.  相似文献   

13.
The Digital Elevation Models (DEMs), which represent the variation of elevation in a terrain at spatial level, are an important source of input to a variety of applications for deriving a number of terrain parameters such as relative relief, slope, aspect direction etc. In recent years, Synthetic Aperture Radar Interferometry has been viewed as a powerful approach to derive quality DEMs from a pair of SAR images. Despite the interferometric technique is often limited by several de-correlations several researchers demonstrate its effectiveness in topographic mapping. The DEM accuracy is strongly influenced by the effectiveness of the phase unwrapping technique. In this study an effective adaptive filtering approach has been used to reduce the phase noise due to de-correlation and in improving the accuracy of phase unwrapping. Two well known phase unwrapping approaches such as branch cut and minimum cost flow network have been used. Interferometric data from ASAR sensor onboard ENVISAT satellite have been used. A highly undulated terrain condition near Dehradun city situated in Uttarakhand state of India was selected to investigate the performance of this adaptive filtering approach. The RMS error between the InSAR derived elevations and the map derived elevations was obtained as 7.2 m using adaptive filter. However, elevation map of the study area could not be generated due to high de-correlation effect without the use of adaptive filter. This result clearly demonstrates the effectiveness of adaptive filtering approach for generation of DEM at meter level accuracy, which is sufficient for many engineering applications.  相似文献   

14.
Decomposing co-seismic deformation is an immediate need for researchers who are interested in earthquake inversion analysis and geo-hazard mapping. However, conventional InSAR or digital elevation models (DEMs) imagery analyses only provide the displacement in the Line-of-Sight (LOS) direction or elevation changes. The 2004 Mid-Niigata earthquake in Japan provides lessons on how to decompose co-seismic deformation from two sets of DEMs. If three adjacent points undergo a rigid-body-translation movement, their co-seismic deformation can be decomposed by solving simultaneous equations. Although this method has been successfully used to discuss tectonic deformations, the algorithm needed improvement and a more rigorous algorithm, including a new definition of nominal plane, DEMs comparability improvement and matrix condition check is provided. Even with these procedures, the obtained decomposed displacement often showed remarkable scatter prompting the use of the moving average method, which was used to determine both tectonic and localized displacement characteristics. A cut-off window and a pair of band-pass windows were selected according to the regional geology and construction activities to ease the tectonic and localized displacement calculations, respectively. The displacement field of the tectonic scale shows two major clusters of large lateral components, and coincidently major visible landslides were found mostly within them. The localized displacement helps to reveal hidden landslides in the target area. As far as the Kizawa hamlet is concerned, the obtained vectors show down-slope movements, which are consistent with the observed traces of dislocations that were found in the Kizawa tunnel and irrigation wells. The method proposed has great potential to be applied to understanding post-earthquake rehabilitation in other areas.  相似文献   

15.
《Quaternary Science Reviews》2007,26(5-6):585-597
This paper examines ice-sheet wide variations in subglacial thermal regime and ice dynamics using the landform record exposed on the beds of former mid-latitude ice sheets (the Laurentide, Cordilleran, Fennoscandian and British-Irish Ice Sheets). We compare the landform patterns beneath these former ice sheets to the flow organisation beneath parts of the contemporary Antarctic Ice Sheet inferred from RADARSAT-1 Antarctic Mapping Project (RAMP) data. The evidence preserved in the landform record and observed on contemporary ice masses can be grouped into four major ice-dynamical components that collectively define the subglacial thermal organisation (STO) of ice sheets. These ice-dynamical components are frozen-bed patches, ice streams, ice-stream tributaries and lateral shear zones. Frozen-bed patches appear at a wide range of spatial scales, spanning four orders of magnitude. In some areas, frozen-bed zones comprise large proportions of the bed (e.g. near the ice divide in continental areas), whilst in other areas they constitute isolated “islands” in areas dominated by thawed-bed conditions. Ice streams, narrow zones of fast flow in ice sheets that are otherwise dominated by slow sheet flow, are also common features of Quaternary ice sheets. Tributaries to ice streams flow at velocities intermediate between full ice-stream and sheet flow, and may divert ice drainage from one primary ice-stream corridor to an adjacent one. Sharp lateral boundaries between landforms indicate sliding and non-sliding conditions, respectively. These lateral boundaries represent important discontinuities in the glacial landscape and mark the location of shear zones between thawed-bed ice streams and intervening frozen-bed areas. We use the landform evidence in the area around Great Bear Lake, Canada to trace the evolution of an ice-stream web through time, demonstrating that frozen-bed patches are integral components of this complex system. We conclude that frozen-bed patches are important for the stability of ice sheets because they laterally constrain and isolate peripheral drainage basins and their ice streams.  相似文献   

16.
文章以中国北方山区为试验研究区,对其大比例尺地形图进行了等高线矢量化,利用典型的3种内插算法分别建立DEM.然后采用数值精度指标结合显著性检验进行精度定量分析,并辅以视觉特征上能够体现插值质量的方法(地形属性可视化分析和等高线分析)对生成的DEM进行质量评价.结果表明,TIN方法生成的DEM精度最高,且晕渲图能够较好地反映山区的真实地形,由其回放的等高线与原始等高线吻合度高;相对高差越大,TIN插值较IDW插值的优越性越明显.  相似文献   

17.
Interferometric synthetic aperture radar (InSAR) analysis is a radar technique for generating large-area maps of ground deformation using differences in the phase of microwaves returning to a satellite. In recent years, high-resolution SAR sensors have been developed that enable small-scale slope deformation to be detected, such as the partial block movement of a landslide. The L-band SAR (PALSAR-2) is mounted on Advanced Land Observing Satellite-2 (ALOS-2), which was launched on 24 Mar. 2014. Its main improvements compared with ALOS are enhanced resolution of as high as 3 m with a high-frequency recurrence period (14 days). Owing to its high resolution and the use of the L-band, PALSAR-2 can obtain reflective data passing through a tree canopy surface, unlike the other synthetic aperture radars. Therefore, the coherence of InSAR in mountainous forest areas is less likely to decrease, making it advantageous for the extraction of slope movement. In this study, to verify the accuracy of InSAR analysis using PALSAR-2 data, we compared the results of InSAR analysis and the measurement of the displacement in a landslide by global navigation satellite system (GNSS) observation. It was found that the average difference between the displacements obtained by InSAR analysis and the field measurements by GNSS was only 15.1 mm in the slant range direction, indicating the high accuracy of InSAR analysis. Many of the areas detected by InSAR analysis corresponded to the locations of surface changes due to landslide activity. Additionally, in the areas detected by InSAR analysis using multiple datasets, the ground changes due to landslide movement were confirmed by site investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号