首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gabbroic and ultramafic xenoliths and olivine and clinopyroxene phenocrysts in basaltic rocks from Gran Canaria, La Palma, El Hierro, Lanzarote and La Gomera (Canary Islands) contain abundant CO2-dominated fluid inclusions. Inclusion densities are strikingly similar on a regional scale. Histogram maxima correspond to one or more of the following pressures: (1) minimum 0.55 to 1.0 GPa (within the upper mantle); (2) between 0.2 and 0.4 GPa (the Moho or the lower crust); (3) at about 0.1 GPa (upper crust). Fluid inclusions in several rocks show a bimodal density distribution, the lower-density maximum comprising both texturally early and late inclusions. This is taken as evidence for an incomplete resetting of inclusion densities, and simultaneous formation of young inclusions, at well-defined magma stagnation levels. For Gran Canaria, pressure estimates for early inclusions in harzburgite and dunite xenoliths and olivine phenocrysts in the host basanites overlap at 0.9 to 1.0 GPa, indicating that such magma reservoir depths coincide with levels of xenolith entrainment into the magmas. Magma chamber pressures within the mantle, inferred to represent levels of mantle xenolith entrainment, are 0.65–0.95 GPa for El Hierro, 0.60–0.68 GPa for La Palma, and 0.55–0.75 GPa for Lanzarote. The highest-density fluid inclusions in many Canary Island mantle xenoliths have probably survived in-situ near-isobaric heating at the depth of xenolith entrainment. Inclusion data from all islands indicate ponding of basaltic magmas at Moho or lower crustal depths, and possibly at an additional higher level, strongly suggestive of two main crustal accumulation levels beneath each island. We emphasize that repeated magmatic underplating of primitive magmas, and therefore intrusive accretion, are important growth mechanisms for the Canary Islands, and by analogy, for other ocean islands. Comparable fluid inclusion data from primitive rocks in other tectonic settings, including Iceland, Etna and continental rift systems (Hungary, South Norway), indicate that magma accumulation close to Moho depths shortly before eruption is not, however, restricted to oceanic intraplate volcanoes. Lower crustal ponding and crystallization prior to eruption may be the rule rather than the exception, independent of the tectonic setting. Received: 30 May 1997 / Accepted: 6 February 1998  相似文献   

2.
The pressure-temperature stability field of Mg-staurolite, ideally Mg4Al18Si8O46(OH)2, was bracketed for six possible breakdown reactions in the system MgO-Al2O3-SiO2-H2O (MASH). Mg-staurolite is stable at water pressures between 12 and 66 kbar and temperatures of 608–918 °C, requiring linear geotherms between 3 and 18 °C/km. This phase occurs in rocks that were metamorphosed at high-pressure, low-temperature conditions, e.g. in subducted crustal material, provided they are of appropriate chemical composition. Mg-staurolite is formed from the assemblage chlorite + kyanite + corundum at pressures <24 kbar, whereas at pressures up to 27 kbar staurolite becomes stable by the breakdown of the assemblage Mg-chloritoid + kyanite + corundum. Beyond 27 kbar the reaction Mg-chloritoid + kyanite + diaspore = Mg-staurolite + vapour limits the staurolite field on its low-temperature side. The upper pressure limit of Mg-staurolite is marked by alternative assemblages containing pyrope + topaz-OH with either corundum or diaspore. At higher temperatures Mg-staurolite breaks down by complete dehydration to pyrope + kyanite + corundum and at pressures below 14 kbar to enstatite + kyanite + corundum. The reaction curve Mg-staurolite = talc + kyanite + corundum marks the low-pressure stability of staurolite at 12 kbar. Mg-staurolite does not coexist with quartz because alternative assemblages such as chlorite-kyanite, enstatite-kyanite, talc-kyanite, pyrope-kyanite, and MgMgAl-pumpellyite-kyanite are stable over the entire field of Mg-staurolite. Received: 16 April 1997 / Accepted: 24 September 1997  相似文献   

3.
Abundant cone sheets form one of the last magmatic stages in the Tertiary central complex on the Scottish peninsula of Ardnamurchan and can be grouped into a younger inner and an older outer suite relative to a gabbro intrusion. Most of the cone-sheets consist of tholeiitic to transitional basalt with MgO contents between 7.5% and 4%, although more evolved rocks also occur (to 0.5% MgO). The mafic samples are slightly enriched in the light rare earth elements (Chondrite-normalized La/Sm ∼1.1), the enrichment increases in the more evolved rocks. The compositional variation of the basaltic rocks is mainly due to crystal fractionation of olivine and clinopyroxene at depths of ∼10 km but trace elements show simultaneous assimilation of Archean Lewisian granulite crust. The andesitic to rhyolitic lavas formed by fractional crystallization from the contaminated basaltic magma coupled with assimilation of Proterozoic Moine metasediments at uppermost crustal levels. The occurrence of composite cone-sheets with basaltic and rhyolitic parts and mixtures between these magmas implies that the melts ascended successively but within a short period of time. The parental magmas of the Ardnamurchan cone-sheets must have formed at relatively shallow depths in the mantle and are comparable to the youngest tholeiitic lavas from the neighbouring island of Mull. Received: 5 June 1997 / Accepted: 12 November 1997  相似文献   

4.
Genesis of diamonds in the lower mantle   总被引:3,自引:0,他引:3  
The “forbidden” assemblage (ferropericlase + enstatite) as inclusions in diamonds has been taken as evidence to imply that these inclusions and their host diamonds formed initially in the lower mantle. Magnesite is probably the only stable carbonate at depths greater than ∼220 km. Like dehydration reactions, the reaction boundary for the decarbonation of magnesite has a positive dT/dP slope at lower pressures, which becomes negative at higher pressures, if no other phase intervenes. This reaction boundary probably intersects the geotherm between ∼900 and ∼1100 km, below which magnesite decomposes into an assemblage periclase + diamond + oxygen. Thus, ferropericlase is the most likely inclusion in diamond formed in the lower mantle. The high frequency of sole occurrence of ferropericlase in diamonds from Sao Luiz, Brazil seems to substantiate the present speculation. Received: 8 June 1998 / Accepted: 28 September 1998  相似文献   

5.
Structural modifications induced by shock-wave compression up to 40 GPa in anorthite glass are investigated by Raman spectroscopy. In the first investigation, densification increases with increasing shock pressure. A maximum densification of 2.2% is obtained for a shock pressure of 24 GPa. This densification is attributed to a decrease of the average ring size, favoring three-membered rings. The densification is much lower than in silica glass subject to shock at similar pressures (11%), because the T-O-T bond angle decrease is impeded in anorthite glass. For higher shock pressures, the decrease of the recovered densification is attributed to partial annealing of the samples due to high after-shock residual temperatures. The study of the annealing process of the most densified glass by in-situ high temperature Raman spectroscopy confirms that relaxation of the three-membered rings occurs above about 900 K. Received: 21 July 1998 / Revised and accepted: 27 January 1999  相似文献   

6.
Ancient crustal rocks provide the only direct evidence for the processes and products of early Earth differentiation. SHRIMP zircon U-Th-Pb dating has identified, amongst the Acasta gneisses of the western Slave Province, Canada, two metatonalites and a metagranodiorite that have igneous ages of 4002 ± 4, 4012 ± 6 and 4031 ± 3 Ga respectively. These are the first identified Priscoan terrestrial rocks. A record of metamorphic events at ∼3.75, ∼3.6 and ∼1.7 Ga also is preserved. These discoveries approximately double, to ∼40 km2, the area over which ∼4.0 Ga gneisses are known to occur. A single older zircon core in one sample suggests that rocks as old as 4.06 Ga might yet be found in the region. As early as 4.03 Ga, terrestrial differentiation was already producing tonalitic magmas, probably by partial melting of pre-existing, less differentiated crust. Received: 28 February 1997 / Accepted: 9 July 1998  相似文献   

7.
Precious-metal mineralization in the southern Apuseni Mountains of western Romania is hosted by mid-Miocene (∼14 Ma) andesitic stocks and lava flows. The mineralized veins are surrounded by aureoles of hydrothermal alteration, consisting of quartz, sericite, K-feldspar, pyrite and calcite. The alteration process caused a total homogenization of initial 87Sr/86Sr in the rocks. Ages determined for the hydrothermal alteration are 13.7–15.7 Ma, indicating that hydrothermal alteration immediately followed igneous activity. Furthermore, a large influx of radiogenic Sr took place during alteration, this Sr probably being derived from the hydrothermal leaching of continental meta-sedimentary rocks in the basement. Received: 5 December 1997 / Accepted: 26 February 1998  相似文献   

8.
We conducted high-pressure phase equilibrium experiments in the systems MgSiO3 with 15 wt% H2O and Mg2SiO4 with 5 wt% and 11 wt% H2O at 20 ∼ 27 GPa. Based on the phase relations in these systems, together with the previous works on the related systems, we have clarified the stability relations of dense hydrous magnesium silicates in the system MgO-SiO2-H2O in the pressure range from 10 to 27 GPa. The results show that the stability field of phase G, which is identical to phase D and phase F, expands with increasing water contents. Water stored in serpentine in the descending cold slabs is transported into depths greater than 200 km, where serpentine decomposes to a mixture of phase A, enstatite, and fluid. Reaction sequences of the hydrous phases which appear at higher pressures vary with water content. In the slabs with a water content less than about 2 wt%, phase A carries water to a depth of 450 km. Hydrous wadsleyite, hydrous ringwoodite, and ilmenite are the main water reservoirs in the transition zone from 450 to 660 km. Superhydrous phase B is the water reservoir in the uppermost part of the lower mantle from 670 to 800 km, whereas phase G appears in the lower mantle only at depths greater than 800 km. In cold slabs with local water enrichment greater than 2 wt%, the following hydrous phases appear with increasing depths; phase A to 450 km, phase A and phase G from 450 km to 550 km, brucite, superhydrous phase B, and phase G from 550 km to 800 km, and phase G at depths greater than 800 km. Received: 4 August 1999 / Accepted: 1 March 2000  相似文献   

9.
A generalized approach for retrieving equilibrium isotope fractionations from natural rocks is proposed in which models of prograde reaction histories and retrograde diffusional exchange are used to identify coexisting minerals with similar isotope closure temperatures. Examples using literature data and new analyses from 32 natural amphibolite-facies schists demonstrate both the feasibility and limitations of obtaining equilibrium oxygen isotope fractionations from minerals in natural rocks. By screening samples according to the theoretical models, natural data are shown to have highly consistent mineral fractionations (±2σ reproducibilities of ±0.16 to 0.54‰) that within uncertainty reproduce experimental determinations among the minerals quartz, biotite, muscovite, and calcic amphibole. This correspondence indicates that the proposed theoretically-based selection criteria improve the likelihood of measuring equilibrium fractionations. The new data further corroborate the expected progressive enrichment of δ18O in the orthosilicates with increasing Al+Si relative to Fe+Mg: Δ(Ky-Grt) ∼1.05‰, Δ(St-Grt) ∼0.6‰, and Δ(St-Cld) ∼0.3‰ at 525–575 °C. In contrast, typical samples that fail to satisfy screening criteria exhibit fractionations involving quartz, biotite, and amphibole that are strongly disequilibrium because of exchange during cooling. Theoretical screening of samples prior to isotope analysis allows robust, independent assessment of theoretical and experimental determinations of equilibrium isotope fractionations. Received: 14 January 1997 / Accepted: 9 March 1998  相似文献   

10.
Calculated phase equilibria among the minerals sodic amphibole, calcic amphibole, garnet, chloritoid, talc, chlorite, paragonite, margarite, omphacite, plagioclase, carpholite, zoisite/clinozoisite, lawsonite, pyrophyllite, kyanite, sillimanite, quartz and H2O are presented for the model system Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O (NCFMASH), which is relevant for many greenschist, blueschist, amphibolite and eclogite facies rocks. Using the activity-composition relationships for multicomponent amphiboles constrained by Will and Powell (1992), equilibria containing coexisting calcic and sodic amphiboles could be determined. The blueschist–greenschist transition reaction in the NCFMASH system, for example, is defined by the univariant reaction sodic amphibole + zoisite = calcic amphibole + chlorite + paragonite + plagioclase (+ quartz + H2O) occurring between approximately 420 and 450 °C at 9.5 to 10 kbar. The calculated petrogenetic grid is a valuable tool for reconstructing the PT-evolution of metabasic rocks. This is shown for rocks from the island of Samos, Greece. On the basis of mineral and whole rock analyses, PT-pseudosections were calculated and, together with the observed mineral assemblages and reaction textures, are used to reconstruct PT-paths. For rocks from northern Samos, pseudomorphs after lawsonite preserved in garnet, the assemblage sodic amphibole-garnet-paragonite-chlorite-zoisite-quartz and the retrograde appearance of albitic plagioclase and the formation of calcic amphibole around sodic amphibole constrain a clockwise PT-path that reaches its thermal maximum at some 520 °C and 19 kbar. The derived PT-trajectory indicates cooling during exhumation of the rocks and is similar to paths for rocks from the western part of the Attic-Cycladic crystalline complex. Rocks from eastern Samos indicate lower pressures and are probably related to high-pressure rocks from the Menderes Massif in western Turkey. Received: 8 July 1997 / Accepted: 11 February 1998  相似文献   

11.
Camiguin is a small volcanic island located 12 km north of Mindanao Island in southern Philippines. The island consists of four volcanic centers which have erupted basaltic to rhyolitic calcalkaline lavas during the last ∼400 ka. Major element, trace element and Sr, Nd and Pb isotopic data indicate that the volcanic centers have produced a single lava series from a common mantle source. Modeling results indicate that Camiguin lavas were produced by periodic injection of a parental magma into shallow magma chambers allowing assimilation and fractional crystallization (AFC) processes to take place. The chemical and isotopic composition of Camiguin lavas bears strong resemblance to the majority of lavas from the central Mindanao volcanic field confirming that Camiguin is an extension of the tectonically complex Central Mindanao Arc (CMA). The most likely source of Camiguin and most CMA magmas is the mantle wedge metasomatized by fluids dehydrated from a subducted slab. Some Camiguin high-silica lavas are similar to high-silica lavas from Mindanao, which have been identified as “adakites” derived from direct melting of a subducted basaltic crust. More detailed comparison of Camiguin and Mindanao adakites with silicic slab-derived melts and magnesian andesites from the western Aleutians, southernmost Chile and Batan Island in northern Philippines indicates that the Mindanao adakites are not pure slab melts. Rather, the CMA adakites are similar to Camiguin high-silica lavas which are products of an AFC process and have negligible connection to melting of subducted basaltic crust. Received: 27 February 1998 / Accepted: 27 August 1998  相似文献   

12.
Uranium deposits containing molybdenum and fluorite occur in the Central Mining Area, near Marysvale, Utah, and formed in an epithermal vein system that is part of a volcanic/hypabyssal complex. They represent a known, but uncommon, type of deposit; relative to other commonly described volcanic-related uranium deposits, they are young, well-exposed and well-documented. Hydrothermal uranium-bearing quartz and fluorite veins are exposed over a 300 m vertical range in the mines. Molybdenum, as jordisite (amorphous MoS2), together with fluorite and pyrite, increase with depth, and uranium decreases with depth. The veins cut 23-Ma quartz monzonite, 20-Ma granite, and 19-Ma rhyolite ash-flow tuff. The veins formed at 19-18 Ma in a 1 km2 area, above a cupola of a composite, recurrent, magma chamber at least 24 × 5 km across that fed a sequence of 21- to 14-Ma hypabyssal granitic stocks, rhyolite lava flows, ash-flow tuffs, and volcanic domes. Formation of the Central Mining Area began when the intrusion of a rhyolite stock, and related molybdenite-bearing, uranium-rich, glassy rhyolite dikes, lifted the fractured roof above the stock. A breccia pipe formed and relieved magmatic pressures, and as blocks of the fractured roof began to settle back in place, flat-lying, concave-downward, “pull-apart” fractures were formed. Uranium-bearing, quartz and fluorite veins were deposited by a shallow hydrothermal system in the disarticulated carapace. The veins, which filled open spaces along the high-angle fault zones and flat-lying fractures, were deposited within 115 m of the ground surface above the concealed rhyolite stock. Hydrothermal fluids with temperatures near 200 °C, 18OH2O∼−1.5, DH2O∼−130, log f O2 about −47 to −50, and pH about 6 to 7, permeated the fractured rocks; these fluids were rich in fluorine, molybdenum, potassium, and hydrogen sulfide, and contained uranium as fluoride complexes. The hydrothermal fluids reacted with the wallrock resulting in precipitation of uranium minerals. At the deepest exposed levels, wallrocks were altered to sericite; and uraninite, coffinite, jordisite, fluorite, molybdenite, quartz, and pyrite were deposited in the veins. The fluids were progressively oxidized and cooled at higher levels in the system by boiling and degassing; iron-bearing minerals in wall rocks were oxidized to hematite, and quartz, fluorite, minor siderite, and uraninite were deposited in the veins. Near the ground surface, the fluids were acidified by condensation of volatiles and oxidation of hydrogen sulfide in near-surface, steam-heated, ground waters; wall rocks were altered to kaolinite, and quartz, fluorite, and uraninite were deposited in veins. Secondary uranium minerals, hematite, and gypsum formed during supergene alteration later in the Cenozoic when the upper part of the mineralized system was exposed by erosion. Received: 23 June 1997 / Accepted: 15 October 1997  相似文献   

13.
The Hercynian mercury mineralization of Las Cuevas is hosted by a highly folded and sheared sequence of basalts, intrusive breccias, slates, psamitic rocks and quartzites. The mineral paragenesis is simple and consists of cinnabar, native mercury and pyrite. Hydrothermal alteration can be divided into `proximal' and `distal' with respect to the mineralized bodies. The proximal alteration (≤1.3 m wide) consists of quartz-pyrophyllite-kaolinite, quartz-pyrophyllite-(kaolinite)-(illite), and quartz-illite-(pyrophyllite)-(kaolinite). The distal alteration (∼100 m wide) consists of (quartz)-illite-chlorite-(pyrophyllite), or rectorite-(chlorite). These assemblages overprint an earlier, regional alteration consisting of quartz-chlorite-albite-carbonates (±ankerite, ±siderite, ±magnesite, ±calcite). The mercury deposit of Las Cuevas can be regarded as an unusual combination of mercury deposition and advanced argillic alteration within a relatively deep environment (≥1.8 km). Received: 3 February 1998 / Accepted: 8 June 1998  相似文献   

14.
Determination of the phase boundary between ilmenite and perovskite structures in MgSiO3 has been made at pressures between 18 and 24 GPa and temperatures up to 2000 °C by in situ X-ray diffraction measurements using synchrotron radiation and quench experiments. It was difficult to precisely define the phase boundary by the present in situ X-ray observations, because the grain growth of ilmenite hindered the estimation of relative abundances of these phases. Moreover, the slow reaction kinetics between these two phases made it difficult to determine the phase boundary by changing pressure and temperature conditions during in situ X-ray diffraction measurements. Nevertheless, the phase boundary was well constrained by quench method with a pressure calibration based on the spinel-postspinel boundary of Mg2SiO4 determined by in situ X-ray experiments. This yielded the ilmenite-perovskite phase boundary of P (GPa) = 25.0 (±0.2) – 0.003 T (°C) for a temperature range of 1200–1800 °C, which is generally consistent with the results of the present in situ X-ray diffraction measurements within the uncertainty of ∼±0.5 GPa. The phase boundary thus determined between ilmenite and perovskite phases in MgSiO3 is slightly (∼0.5 GPa) lower than that of the spinel-postspinel transformation in Mg2SiO4. Received: 19 May 1999 / Accepted: 21 March 2000  相似文献   

15.
Summary Major and trace element data as well as Sr and Nd isotope compositions for submarine lavas from the flanks of Réunion island are reported. The submarine basalts of the island have major and trace element compositions similar to those of the subaerial basaltic rocks. This implies that no compositional change occurs in the shield-building magmas of the two Réunion volcanoes. Fractional crystallization of lavas from both Piton de la Fournaise and Piton des Neiges begin well within the mantle at pressures up to 1 GPa which is significantly deeper than the crust-mantle boundary at about 12 km depth. The Réunion primary magmas form at an average depth of about 4 GPa in agreement with the thickness of the plate beneath the island. Lavas from both Réunion volcanoes have similar trace element compositions with the exception of lower Th/Ba for Piton des Neiges which implies a relatively homogeneous plume source during, at least, the last 2 Ma. The lack of any variation in the partial melting processes during this time span implies a thermal steady state of the plume centre. The Réunion lavas form either from a source that was enriched by partial melting or that contains recycled enriched MORB. Based on MORB- like Ce/Pb and Nb/U ratios an influence by fluid-metasomatized mantle, sediment or continental crustal material in the Réunion source appears unlikely. Received August 15, 2000; revised version accepted June 21, 2001  相似文献   

16.
The infrared spectrum of CaAl2Si2O7 · H2O-lawsonite, has been characterized to pressures of 20 GPa at 300 K. Our results constrain the response to compression of the silicate tetrahedra, hydroxyl units, and water molecules in this material. The asymmetric and symmetric stretching and bending vibrations of the Si2O7 groups (at zero pressure frequencies between 600 and 1000 cm−1) increase in frequency with pressure at rates between 3.6 and 5.9 cm−1/GPa. All silicate modes appear to shift continuously with pressure to 20 GPa, although the lowest frequency stretching vibration becomes unresolvable above 18 GPa, and a splitting of the main bending vibration is observed near this pressure. The O-H stretches of the hydroxyl units exhibit a discontinuity in their mode shifts at ∼8–9 GPa, which we interpret to be produced by a pressure-induced change in hydrogen bonding. The stretching and bending vibrations of the water molecule are relatively unaffected by compression to 20 GPa, thus demonstrating that the structural cavities in which water molecules reside are relatively rigid. Significant changes in the amplitude of the O-H stretches of the hydroxyl and water units are observed at this pressure as well; nevertheless, our results demonstrate that the dominant structural units in lawsonite persist metastably at 300 K with only modest structural modifications well beyond the known stability field of this phase. Received: 10 July 1998 / Revised, accepted: 23 October 1998  相似文献   

17.
Lower Calcsilicate Unit metasediments and underlying migmatitic Napperby Gneiss metagranite at Conical Hill in the Reynolds Range, central Australia, underwent regional high-grade (∼680 to 720 °C), low-pressure/high-temperature metamorphism at 1594 ± 6 Ma. The Lower Calcsilicate Unit is extensively quartz veined and epidotised, and discordant grandite garnet + epidote quartz veins may be traced over tens of metres depth into pegmatites that pooled at the Lower Calcsilicate Unit-Napperby Gneiss contact. The quartz veins were probably precipitated by water-rich fluids that exsolved from partial melts derived from the Napperby Gneiss during cooling from the peak of regional metamorphism to the wet granite solidus. Pb stepwise leaching (PbSL) on garnet from three discordant quartz veins yielded comparable single mineral isochrons of 1566 ± 32 Ma, 1576 ± 3 Ma and 1577 ± 5 Ma, which are interpreted as the age of garnet growth in the veins. These dates are in good agreement with previous Sensitive High Resolution Ion Microprobe (SHRIMP) ages of zircon and monazite formed during high-temperature retrogression (1586 ± 5 to 1568 ± 4 Ma) elsewhere in the Reynolds Range. The relatively small age difference between peak metamorphism and retrograde veining suggests that partial melting and melt crystallisation controlled fluid recycling in the high-grade rocks. However, PbSL experiments on epidote intergrown with, and partially replacing, garnet in two of the veins yielded isochrons of 1454 ± 34 and 1469 ± 26 Ma. The ∼100–120 Ma age difference between intergrown garnet and late epidote from the same vein suggests that the vein systems may have experienced multiple episodes of fluid flow. Received: 24 April 1998 / Accepted: 17 December 1998  相似文献   

18.
We present evidence for a thick (∼100 km) sequence of cogenetic rocks which make up the root of the Sierra Nevada batholith of California. The Sierran magmatism produced tonalitic and granodioritic magmas which reside in the Sierra Nevada upper- to mid-crust, as well as deep eclogite facies crust/upper mantle mafic–ultramafic cumulates. Samples of the mafic–ultramafic sequence are preserved as xenoliths in Miocene volcanic rocks which erupted through the central part of the batholith. We have performed Rb-Sr and Sm-Nd mineral geochronologic analyses on seven fresh, cumulate textured, olivine-free mafic–ultramafic xenoliths with large grainsize, one garnet peridotite, and one high pressure metasedimentary rock. The garnet peridotite, which equilibrated at ∼130 km beneath the batholith, yields a Miocene (10 Ma) Nd age, indicating that in this sample, the Nd isotopes were maintained in equilibrium up to the time of entrainment. All other samples equilibrated between ∼35 and 100 km beneath the batholith and yield Sm-Nd mineral ages between 80 and 120 Ma, broadly coincident with the previously established period of most voluminous batholithic magmatism in the Sierra Nevada. The Rb-Sr ages are generally consistent with the Sm-Nd ages, but are more scattered. The 87Sr/86Sr and 143Nd/144Nd intercepts of the igneous-textured xenoliths are similar to the ratios published for rocks outcroping in the central Sierra Nevada. We interpret the mafic/ultramafic xenoliths to be magmatically related to the upper- and mid-crustal granitoids as cumulates and/or restites. This more complete view of the vertical dimension in a batholith indicates that there is a large mass of mafic–ultramafic rocks at depth which complement the granitic batholiths, as predicted by mass balance calculations and experimental studies. The Sierran magmatism was a large scale process responsible for segregating a column of ∼30 km thick granitoids from at least ∼70 km of mainly olivine free mafic–ultramafic residues/cumulates. These rocks have resided under the batholith as granulite and eclogite facies rocks for at least 70 million years. The presence of this thick mafic–ultramafic keel also calls into question the existence of a “flat” (i.e., shallowly subducted) slab at Central California latitudes during Late Cretaceous–Early Cenozoic, in contrast to the southernmost Sierra Nevada and Mojave regions. Received: 27 December 1997 / Accepted: 11 June 1998  相似文献   

19.
 In Oman, the convergence between Arabia and Eurasia resulted in the Late Cretaceous overthrusting of oceanic crust and mantle lithosphere onto the Arabian continental margin. During this compressional event, a part of the continental plate was subducted to a depth of more than 60 km (0.5 GPa, 250–350  °C to more than 2.0 GPa, 550  °C) resulting in progressive metamorphism of the continental margin sediments, well exposed in the Saih Hatat tectonic window, northeastern Oman Mountains. We attempt to constrain the possibility of one continuous history of extension (starting along the east Arabian continental margin in the Permian) that was followed by one continuous history of convergence starting at 90 Ma near a dead oceanic ridge. This compression resulted in the observed progressive metamorphism by ophiolite overthrusting onto the continental margin. Constraining arguments are the palaeogeographic setting before ophiolite obduction of the As Sifah units and the Hawasina Complex near Ghurba. Detrital chromites in the Triassic–Cretaceous metasediments of the Hawasina Complex are compared with magmatic Semail chromites, and the whole-rock chemistry of these metasediments and associated metabasites are investigated. In contrast to former hypotheses, differences in the chemical composition between detrital and magmatic chromites, and the probable origin of all detrital chromites in the Hawasina Basin from Permian age oceanic rocks, suggest that the high-pressure metamorphic sediments of As Sifah can be considered as part of the basal deposits of the Hawasina Basin. Received: 1 September 1998 / Accepted: 18 January 1999  相似文献   

20.
A progressive change in the level of shock deformation is documented in autochthonous rocks from the central uplift of the Slate Islands impact structure, Lake Superior. Correlation of these observations, which are based mainly on the relative frequency of planar features of specific crystallographic orientation in quartz, with experimental data is used to estimate the average shock pressures recorded in the samples studied. Recorded pressures range from 5.8 to 15.3 GPa and generally increase towards the proposed shock centre. Variations in the shock response of quartz of different grain size and texture are observed within and between samples. It is apparent that large interlocking quartz grains in eyes record approximately 15–20% higher levels of shock deformation than small grains in mosaics or large isolated phenocrysts. These variations in shock deformation are attributed to the effect of shock wave reverberations between grains and length of shock pulse duration within grains.Comparison of the Slate Islands data with similar observations at the larger Charlevoix impact structure indicates that the rate of change of recorded shock pressure with distance is greater at the Slate Islands structure. This is interpreted as due to variations in the strain rates and/or the rate of shock wave attenuation with radial distance between impact structures of different size.Contribution from Earth Physics Branch No. 626  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号