首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Observational constraints on interior models of the giant planets indicate that these planets were all much hotter when they formed and they all have rock and/or ice cores of ten to thirty earth masses. These cores are probably soluble in the envelopes above, especially in Jupiter and Saturn, and are therefore likely to be primordial. They persist despite the continual upward mixing by thermally driven convection throughout the age of the solar system, because of the inefficiency of double-diffusive convection. Thus, these planets most probably formed by the hydrodynamic collapse of a gaseous envelope onto a core rather than by direct instability of the gaseous solar nebula. Recent calculations by Mizuno (1980, Prog. Theor. Phys.64, 544) show that this formation mechanism may explain the similarity of giant planet core masses. Problems remain however, and no current model is entirely satisfactory in explaining the properties of the giant planets and simultaneously satisfying the terrestrial planet constraints. Satellite systematics and protoplanetary disk nebulae are also discussed and related to formation conditions.  相似文献   

2.
Numerical tests are the basis of a study about the effects caused in the orbits of the planets (1)–(4) by possible errors in the system of planetary masses. The masses of five major and three minor planets are considered. Especially, the effects caused by (1) Ceres in the orbit of (2) Pallas since the time of discovery are found to be large enough for a determination of the mass of Ceres. A first result for this mass is (6.7±0.4)×10–10 solar masses.  相似文献   

3.
M. Podolak  A.G.W. Cameron 《Icarus》1974,22(2):123-148
Models of the giant planets were constructed based on the assumption that the hydrogen to helium ratio is solar in these planets. This assumption, together with arguments about the condensation sequence in the primitive solar nebula, yields models with a central core of rock and possibly ice surrounded by an envelope of hydrogen, helium, methane, ammonia, and water. These last three volatiles may be individually enhanced due to condensation at the period of core formation. Jupiter was found to have a core of about 40 earth masses and a water enhancement in the atmosphere of about 7.5 times the solar value. Saturn was found to have a core of 20 earth masses and a water enhancement in the atmosphere of about 25 times the solar value. Rock plus ice constitute 75–85% of the mass of Uranus and Neptune. Temperatures in the interiors of these planets are probably above the melting points, if there is an adiabatic relation throughout the interiors. Some aspects of the sensitivities of these results to uncertainties in rotational flattening are discussed.  相似文献   

4.
A rich population of low‐mass planets orbiting solar‐type stars on tight orbits has been detected by Doppler spectroscopy. These planets have masses in the domain of super‐Earths and Neptune‐type objects, and periods less than 100 days. In numerous cases these planets are part of very compact multiplanetary systems. Up to seven planets have been discovered orbiting one single star. These low‐mass planets have been detected by the HARPS spectrograph around 30 % of solar‐type stars. This very high occurrence rate has been recently confirmed by the results of the Kepler planetary transit space mission. The large number of planets of this kind allows us to attempt a first characterization of their statistical properties, which in turn represent constraints to understand the formation process of these systems. The achieved progress in the sensitivity and stability of spectrographs have already led to the discovery of planets with masses as small as 1.5 M (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We have tested the implications and limitations of Program ACRETE, a scheme based merely on Newtonian physics and accretion with unit sticking efficiency, devised by Dole in 1970 to simulate the origin of the planets. The dependence of the results on a variety of radial and vertical density distribution laws, on the ratio of gas to dust in the solar nebula, on the total nebula mass, and on the orbital eccentricity, ?, of the accreting grains are explored. Only for a small subset of conceivable cases are planetary systems closely like our own generated. Many models have tendencies toward one of two preferred configurations: multiple-star systems, or planetary systems in which Jovian planets either have substantially smaller masses than in our system or are absent altogether. But for a wide range of cases recognizable planetary systems are generated, ranging from multiple-star systems with accompanying planets, to systems with Jovian planets at several hundred astronomical units, to single stars surrounded only by asteroids. Many systems exhibit planets like Pluto and objects of asteroidal mass, in addition to usual terrestrial and Jovian planets. No terrestrial planets were generated more massive than five Earth masses. The number of planets per system is for most cases of order 10, and, roughly, inversely proportional to ?. All systems generated obey a relation of the Titius-Bode variety for relative planetary spacing. The case with which planetary systems are generated using such elementary and incomplete physical assumptions supports the idea of abundant and morphologically diverse planetary systems throughout the Galaxy.  相似文献   

6.
With more and more exoplanets being detected, it is paid closer attention to whether there are lives outside solar system. We try to obtain habitable zones and the probability distribution of terrestrial planets in habitable zones around host stars. Using Eggleton’s code, we calculate the evolution of stars with masses less than 4.00 M . We also use the fitting formulae of stellar luminosity and radius, the boundary flux of habitable zones, the distribution of semimajor axis and mass of planets and the initial mass function of stars. We obtain the luminosity and radius of stars with masses from 0.08 to 4.00 M , and calculate the habitable zones of host stars, affected by stellar effective temperature. We achieve the probability distribution of terrestrial planets in habitable zones around host stars. We also calculate that the number of terrestrial planets in habitable zones of host stars is 45.5 billion, and the number of terrestrial planets in habitable zones around K type stars is the most, in the Milky Way.  相似文献   

7.
Abstract— The main asteroid belt has lost >99.9% of its solid mass since the time at which the planets were forming, according to models for the protoplanetary nebula. Here we show that the primordial asteroid belt could have been cleared efficiently if much of the original mass accreted to form planetsized bodies, which were capable of perturbing one another into unstable orbits. We provide results from 25 N‐body integrations of up to 200 planets in the asteroid belt, with individual masses in the range 0.017–0.33 Earth masses. In the simulations, these bodies undergo repeated close encounters which scatter one another into unstable resonances with the giant planets, leading to collision with the Sun or ejection from the solar system. In response, the giant planets' orbits migrate radially and become more circular. This reduces the size of the main‐belt resonances and the clearing rate, although clearing continues. If ~3 Earth masses of material was removed from the belt this way, Jupiter and Saturn would initially have had orbital eccentricities almost twice their current values. Such orbits would have made Jupiter and Saturn 10–100x more effective at clearing material from the belt than they are on their current orbits. The time required to remove 90% of the initial mass from the belt depends sensitively on the giant planets' orbits, and weakly on the masses of the asteroidal planets. 18 of the 25 simulations end with no planets left in the belt, and the clearing takes up to several hundred million years. Typically, the last one or two asteroidal planets are removed by interactions with planets in the terrestrial region  相似文献   

8.
The ESA astrometric mission Gaia, due for a launch in late 2011, will observe a huge number of asteroids (∼350,000 brighter than V<20) with an unprecedented positional precision (at the sub-milliarcsecond level). This precision will play an important role for the mass determination of about hundred minor planets with a relative precision better than 50%. Presently, due primarily to their perturbations on Mars, the uncertainty in the masses of the largest asteroids is the limiting factor in the accuracy of the solar system ephemerides. Besides, such high precision astrometry will enable to derive direct measurements of the masses of the largest asteroids which are of utmost significance for the knowledge of their physical properties. The method for computing the masses is based on the analysis of orbital perturbations during close encounters between massive asteroids (perturbers) and several smaller minor planets (targets). From given criteria of close approaches selection, we give the list of asteroids for which the mass can be determined, and the expected precision of these masses at mission completion. We next study the possible contribution of the ground-based observations for the mass determination in some special observation cases of close approaches.  相似文献   

9.
Adrián Brunini 《Icarus》2005,177(1):264-268
The sample of known exoplanets is strongly biased to masses larger than the ones of the giant gaseous planets of the Solar System. Recently, the discovery of two extrasolar planets of considerably lower masses around the nearby Stars GJ 436 and ρ Cancri was reported. They are like our outermost icy giants, Uranus and Neptune, but in contrast, these new planets are orbiting at only some hundredth of the Earth-Sun distance from their host stars, raising several new questions about their origin and constitution. Here we report numerical simulations of planetary accretion that show, for the first time through N-body integrations that the formation of compact systems of Neptune-like planets close to the hosts stars could be a common by-product of planetary formation. We found a regime of planetary accretion, in which orbital migration accumulates protoplanets in a narrow region around the inner edge of the nebula, where they collide each other giving rise to Neptune-like planets. Our results suggest that, if a protoplanetary solar environment is common in the Galaxy, the discovery of a vast population of this sort of ‘hot cores’ should be expected in the near future.  相似文献   

10.
This paper contains a numerical study of the stability of resonant orbits in a planetary system consisting of two planets, moving under the gravitational attraction of a binary star. Its results are expected to provide us with useful information about real planetary systems and, at the same time, about periodic motions in the general four-body problem (G4) because the above system is a special case of G4 where two bodies have much larger masses than the masses of the other two (planets). The numerical results show that the main mechanism which generates instability is the destruction of the Jacobi integrals of the massless planets when their masses become nonzero and that resonances in the motion of planets do not imply, in general, instability. Considerable intervals of stable resonant orbits have been found. The above quantitative results are in agreement with the existing qualitative predictions  相似文献   

11.
In this paper I recount the events which have led to the discovery of the first planets beyond the Solar System. The two planets circling an old neutron star, the 6.2 ms pulsar PSR B1257+12, were discovered in 1991 with the 1000 ft Arecibo radio telescope. The pulsar itself was detected by a large, all-sky survey conducted during the telescope maintenance period in early 1990. The subsequent timing observations have shown that the only plausible explanation of the variability of pulse arrival times of PSR B1257+12 was the existence of at least two terrestrial-mass planets around it. The third, Moon-mass planet in the system was detected in 1994, along with the measurement of perturbations resulting from a near 3:2 mean motion resonance between the two more massive bodies, which has provided the confirmation of a planetary origin of the observed variations of pulse arrival times. Further observations and analyses have resulted in an unambiguous measurement of orbital inclinations and masses of the planets in 2003. The measured approximate coplanarity of the orbits along with the inner solar system – like dynamical properties of the pulsar planets strongly suggest their origin in a protoplanetary disk, just like in the case of planets around normal stars. The existence of such a system predicts that rocky, Earth-mass planets should be common around various kinds of stars.  相似文献   

12.
系外类地行星是目前搜寻地外生命的主要目标.随着观测仪器的发展,现在已经能探测到低于10个地球质量的系外行星.该文简要回顾了系外类地行星的形成与演化,介绍了当前研究它们内部结构的模型和方法,以及由此得出的类地行星质量-半径关系.同时,对应不同的行星初始物质成分,讨论了各种可能的大气结构.最后介绍了未来的空间任务在相关方面的工作.  相似文献   

13.
Recent Doppler velocity measurements have revealed the existence of two planets orbiting the star HD 12661 on medium-eccentricity orbits. The inner planet has a period of 263.6 d and a mass of 2.3 Jupiter masses, and the outer planet has a period of 1444.5d and a mass of 1.57 Jupiter masses. The stability of this system requires the two planets to be in a state of mean-motion orbit resonances. By numerical method we have studied the orbit migration and stability of the system in its early ages under the action of the proto-stellar disk, and calculated the probabilities of the planets being captured into the mean -motion resonances during their migrations. It is found that at present the two planets are probably situated at the edge of the 11:2 mean-motion resonance and are in chaotic motions. This result may be helpful to clarify the arguments on the present configuration. Besides, it is indicated that very probably, after the formation of the system, the gaseous disk has almost disappeared before the planets migrated to the present configuration.  相似文献   

14.
The accumulation of giant planets involves processes typical for terrestrial planet formation as well as gasdynamic processes that were previously known only in stars. The condensible element cores of the gas-giants grow by solid body accretion while envelope formation is governed by stellar-like equilibria and the dynamic departures thereof. Two hypotheses for forming Uranus/Neptune-type planets — at sufficiently large heliocentric distances while allowing accretion of massive gaseous envelopes, i.e. Jupiter-type planets at intermediate distances — have been worked out in detailed numerical calculations: (1) Hydrostatic gas-accretion models with time-dependent solid body accretion-rates show a slow-down of core-accretion at the appropriate masses of Uranus and Neptune. As a consequence, gas-accretion also stagnates and a window is opened for removing the solar nebula during a time of roughly constant envelope mass. (2) Gasdynamic calculations of envelope accretion for constant planetesimal accretion-rates show a dynamic transition to new envelope equilibria at the so called critical mass. For a wide range of solar nebula conditions the new envelopes have respective masses similar to those of Uranus and Neptune and are more tightly bound to the cores. The transitions occur under lower density conditions typical for the outer parts of the solar nebula, whereas for higher densities, i.e. closer to the Sun, gasdynamic envelope accretion sets in and is able to proceed to Jupiter-masses.  相似文献   

15.
The migration and growth of protoplanets in protostellar discs   总被引:1,自引:0,他引:1  
We investigate the gravitational interaction of a Jovian-mass protoplanet with a gaseous disc with aspect ratio and kinematic viscosity expected for the protoplanetary disc from which it formed. Different disc surface density distributions are investigated. We focus on the tidal interaction with the disc with the consequent gap formation and orbital migration of the protoplanet. Non-linear two-dimensional hydrodynamic simulations are employed using three independent numerical codes.
A principal result is that the direction of the orbital migration is always inwards and such that the protoplanet reaches the central star in a near-circular orbit after a characteristic viscous time‐scale of ∼104 initial orbital periods. This is found to be independent of whether the protoplanet is allowed to accrete mass or not. Inward migration is helped by the disappearance of the inner disc, and therefore the positive torque it would exert, because of accretion on to the central star. Maximally accreting protoplanets reach about 4 Jovian masses on reaching the neighbourhood of the central star. Our results indicate that a realistic upper limit for the masses of closely orbiting giant planets is ∼5 Jupiter masses, if they originate in protoplanetary discs similar to the minimum-mass solar nebula. This is because of the reduced accretion rates obtained for planets of increasing mass.
Assuming that some process such as termination of the inner disc through a magnetospheric cavity stops the migration, the range of masses estimated for a number of close orbiting giant planets as well as their inward orbital migration can be accounted for by consideration of disc–protoplanet interactions during the late stages of giant planet formation.  相似文献   

16.
The principal dynamical properties of the planetary and satellite systems listed in Section 2 require these bodies to have condensed in highly-flattened nebulae which provided the dissipation forces that produced the common directions of orbital motion, and the lowe andi values. Minimum masses of these nebulae can be estimated on the assumption that the initial solar abundances apply, starting from the empirical data on present planetary and satellite compositions and masses. The asteroids and comets are assumed to be direct condensations and accretion products in their respective zones (2–4 AU and 20–50 AU), without the benefit of gravitational instability in the solar nebula, owing to the comparatively low density there; with gravitational instability accelerating and ultimately dominating the accretion of the planets and major satellites, in zones approaching and exceeding the local Roche density. Only in the case of Jupiter, gravitational instability appears to have dominated from the outset; the other planets are regarded as hybrid structures, having started from limited accretions. In Section 3 the empirical information on protostars is reviewed. ‘Globules’ are described, found to have the typical range of stellar masses and with gaseous compositions now well known thanks largely to radio astronomy. They contain also particulate matter identified as silicates, ice, and probably graphite and other carbon compounds. The measured internal velocities would predict a spread of total angular momenta compatible with the known distribution of semi-major axes in double stars. The planetary system is regarded as an ‘unsuccessful’ binary star, in which the secondary mass formed a nebula instead of a single stellar companion, with 1–2% of the solar mass. This mass fraction gives a basis for an estimate of thefrequency of planetary systems. The later phases of the globules are not well known empirically for the smaller masses of solar type; while available theoretical predictions are mostly made for non-rotating pre-stellar masses. Section 5 reviews current knowledge of the degree of stability of the planetary orbits over the past 4.5×109 yr, preparatory to estimates of their original locations and modes of origin. The results of the Brouwer and Van Woerkom theory and of recent numerical integrations by Cohenet al. indicate no drastic changes in Δa/a over the entire post-formation history of the planets. Unpublished numerical integrations by Dr P. E. Nacozy show the remarkable stability of the Jupiter-Saturn system as long as the planetary masses are well below 29 times their actual values. Numerical values of Δa/a are collected for all planets. The near resonances found for both pairs of planets and of satellites are briefly reviewed. Section 6 cites the statistics on the frequency and masses of asteroids and information on the Kirkwood gaps, both empirical and theoretical. An analogous discussion is made for the Rings of Saturn, including its extension observed in 1966 to the fourth Saturn satellite, Dione. The reality, or lack of it, of the divisions in the Rings are considered. The numbers of Trojan asteroids are reviewed, as is the curious, yet unexplained, bimodal distribution of their orbital inclinations. Important information comes from the periods of rotation of the asteroids and the orientation of their rotational axes. The major Hirayama families are considered as remnants of original asteroid clusterings whose membership has suffered decreases through planetary perturbations. Other families with fewer large members may be due to collisions. The three main classes of meteorites, irons, stones, and carbonaceous chondrites all appear to be of asteroidal origin and they yield the most direct evidence on the early thermal history of the solar system. While opinion on this subject is still divided, the author sees in the evidence definite confirmation of thecold origin of the planetary system, followed by ahot phase due to the evolving sun that caused the dissolution of the solar nebula. This massive outward ejection, that included the smaller planetesimals, appears to have caused the surface melting of the asteroids by intense impact, with the splashing responsible for the formation of the chondrules. The deep interiors of the asteroids are presumably similar to the C1 meteorites which have recently been found to be more numerous in space by two orders of magnitude than previously supposed.  相似文献   

17.
We investigate the migration of massive extrasolar planets caused by gravitational interaction with a viscous protoplanetary disc. We show that a model in which planets form at 5 au at a constant rate, before migrating, leads to a predicted distribution of planets that is a steeply rising function of log( a ), where a is the orbital radius. Between 1 and 3 au, the expected number of planets per logarithmic interval in a roughly doubles. We demonstrate that, once selection effects are accounted for, this is consistent with current data, and then extrapolate the observed planet fraction to masses and radii that are inaccessible to current observations. In total, approximately 15 per cent of stars targeted by existing radial velocity searches are predicted to possess planets with masses  0.3< M p sin( i )<10 M J  and radii  0.1< a <5 au  . A third of these planets (around 5 per cent of the target stars) lie at the radii most amenable to detection via microlensing. A further  5–10  per cent of stars could have planets at radii of  5< a <8 au  that have migrated outwards. We discuss the probability of forming a system (akin to the Solar system) in which significant radial migration of the most massive planet does not occur. Approximately  10–15  per cent of systems with a surviving massive planet are estimated to fall into this class. Finally, we note that a smaller fraction of low-mass planets than high-mass planets is expected to survive without being consumed by the star. The initial mass function for planets is thus predicted to rise more steeply towards small masses than the observed mass function.  相似文献   

18.
A list of selected binary stars is presented that have been observed for several decades using a 26-inch refractor at the Pulkovo Observatory. These stars are at a distance from 3.5 to 25 pc from the Sun. They belong to spectral classes F, G, K, and M. Their masses range from 0.3 to 1.5 solar masses. We have analyzed them as possible parent stars for exoplanets taking into account the physical characteristics of these stars. In view of dynamic parameters and orbital elements that we have obtained by Pulkovo observations, ephemerides of positions for the coming years are calculated. The boundaries of the habitable zones around these stars are calculated. The astrometric signal that depends on the gravitational influence of hypothetical planets is estimated. Space telescopes for astrometric observations with microsecond accuracy can be used to detect Earth-like planets near the closest stars of this program. This paper presents an overview of astrometric programs of searches for exoplanets.  相似文献   

19.
Abstract— All terrestrial planets, the Moon, and small bodies of the inner solar system are subjected to impacts on their surface. The best witness of these events is the lunar surface, which kept the memory of the impacts that it underwent during the last 3.8 Gyr. In this paper, we review the recent studies at the origin of a reliable model of the impactor population in the inner solar system, namely the near‐Earth object (NEO) population. Then we briefly expose the scaling laws used to relate a crater diameter to body size. The model of the NEO population and its impact frequency on terrestrial planets is consistent with the crater distribution on the lunar surface when appropriate scaling laws are used. Concerning the early phases of our solar system's history, a scenario has recently been proposed that explains the origin of the Late Heavy Bombardment (LHB) and some other properties of our solar system. In this scenario, the four giant planets had initially circular orbits, were much closer to each other, and were surrounded by a massive disk of planetesimals. Dynamical interactions with this disk destabilized the planetary system after 500–600 Myr. Consequently, a large portion of the planetesimal disk, as well as 95% of the Main Belt asteroids, were sent into the inner solar system, causing the LHB while the planets reached their current orbits. Our knowledge of solar system evolution has thus improved in the last decade despite our still‐poor understanding of the complex cratering process.  相似文献   

20.
Carusi  A.  Pozzi  F. 《Earth, Moon, and Planets》1978,19(1):65-70
A new technique for close encounter dynamics computation between a planet and a minor object has been developed.Such a technique is based on Greenspan'sdiscrete mechanics, whose main feature is the exact conservation of the invariants of motion for a dynamical system.Many kinds of close interactions can be treated with this method, such as collisions, temporary stellite captures, ejections from the solar system and orbital evolutions over a long time period.With some minor modifications, the method herein described may be used to treat also some other general cases, such as interactions with two or more planets, interactions among bodies of comparable masses, accumulation of small bodies in a jet-stream and so on.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号