首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper has introduced the method of self-similarity analysis of time series into the analysis and study of earthquake sequence, and then researched its application in earthquake prediction. As parameter of earthquake time series, we can take the cumulated sum of the numbers of equivalent earthquakesQN*, the numbers of equivalent earthquakeN*, maximum magnitudeM max, average magnitudeQ=ΣN*, and the difference ΔN* between the numbersN* in two adjacent time intervals. The given method may be applied to analysis of long-period seismic sequences in different regions as well as to anlysis of seismic sequence in the aftershock region of strong earthquake. For making quantitative analysis the coefficient of self-similarity of earthquake sequence in order of timeμs was introduced. The results of self-similarity analysis were obtained for the earthquake sequences in North China, West South China, the Capital region of China, and for the East Yamashi region of Japan. They show that in period or half year to several years beforeM⩾7.0 andM⩾6.0 earthquakes occurred in these regions separately, the self-similarity coefficientμs calculated by using the above-mentioned parameters had remarkably anamalous decrease variations. The duration time ofμs anomaly depends on the earthquake magnitude and may be different from different regions. Therefore, the self-similarity coefficient in order of timeμs can be considered as a long-medium term precursory index. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 455–462, 1993.  相似文献   

2.
We have employed 10 digital records and computed the spectral magnitude and the seismic radiated energy for 18 large earthquakes (M s≥6) occurred in Eur-asian belt during 1986–1989. The nine digital stations (CD-SN) distribute all over China and one in Germany. The spectral magnitudes of various period have different stability among stations. The stability is better for maximum spectral magnitudemi and seismic radiated energyE, their differences among stations are smaller, especially for the stations where the ray path main penetrates the low mantle. But the stability of corner period is usually not good. The relation between seismic radiated energy and seismic moment magnitudeM w is lg (E)=1.5Mw+c, wherec is a constant. The maximum spectral magnitudemi=M w+0.1, it is consistant with theoretical prediction. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 418–426, 1993. This work supported by the Deutsche Forschungsgemeinschaft, Bonn, F. R. Germany. The support is grateful acknowledge.  相似文献   

3.
SourceparametersoftheGonghe,QinghaiProvince,China,earthquakefrominversionofdigitalbroadbandwaveformdataLI-SHENGXU(许立生)andYUN...  相似文献   

4.
The mantle magnitudeM m is used on a dataset of more than 180 wavetrains from 44 large shallow historical earthquakes to reassess their moments, which in many cases had been previously estimated only on the basis of the earthquake's rupture area. We provide 27 new or revised values ofM o, based on the spectral amplitudes of surface waves recorded at a number of stations, principally Uppsala and Pasadena. Among them, and most significantly, we document a large low-frequency component to the source of the 1923 Kanto earthquake: the low-frequency seismic moment is 2.9×1028 dyn-cm, in accord with geodetic observations. On the other hand, we revise downwards the seismic moment of the 1906 Ecuador event, which did not exceed 6×1028 dyn-cm.Finally, the study of the 1960 Chilean and 1964 Alaskan earthquakes whose exceptionally large moments are properly retrieved throughM m measurements, serves proof that this approach performs flawlessly even for the very greatest earthquakes, and is therefore successful in its goal to avoid the saturation effects plaguing any magnitude scale measured at a fixed period.  相似文献   

5.
ntroductionXinjiangisaseismicalyactiveregioninChina,andJiashiisafocalmonitoringareainXinjiang.IntheperiodfromJanuary21toApril...  相似文献   

6.
Near-field records of two strong aftershocks with magnitudeM S=6.7 andM S=6.3 in the Lancang-Gengma earthquakes sequence, Yunnan Province, November 1988, are used to calculate the response spectrum. The instruments, site conditions and the methods for computing are also illustrated in this paper. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 338–343, 1991. This project is supported by The Chinese Joint Seismological Science Foundation, SSB and the West Yunnan Earthquake Prediction Test Field, Yunnan Seismological Bureau.  相似文献   

7.
Historically, large and potentially hazardous earthquakes have occurred within the interior of Alaska. However, most have not been adequately studied using modern methods of waveform modeling. The 22 July 1937, 16 October 1947, and 7 April 1958 earthquakes are three of the largest events known to have occurred within central Alaska (M s =7.3,M s =7.2 andM s =7.3, respectively). We analyzed teleseismic body waves to gain information about the focal parameters of these events. In order to deconvolve the source time functions from teleseismic records, we first attempted to improve upon the published focal mechanisms for each event. Synthetic seismograms were computed for different source parameters, using the reflectivity method. A search was completed which compared the hand-digitized data with a suite of synthetic traces covering the complete parameter space of strike, dip, and slip direction. In this way, the focal mechanism showing the maximum correlation between the observed and calculated traces was found. Source time functions, i.e., the moment release as a function of time, were then deconvolved from teleseismic records for the three historical earthquakes, using the focal mechanisms which best fit the data. From these deconvolutions, we also recovered the depth of the events and their seismic moments. The earthquakes were all found to have a shallow foci, with depths of less than 10 km.The 1937 earthquake occurred within a northeast-southwest band of seismicity termed the Salcha seismic zone (SSZ). We confirm the previously published focal mechanism, indicating strike-slip faulting, with one focal plane parallel to the SSZ which was interpreted as the fault plane. Assuming a unilateral fault model and a reasonable rupture velocity of between 2 and 3 km/s, the 21 second rupture duration for this event indicates that all of the 65 km long SSZ may have ruptured during this event. The 1947 event, located to the south of the northwest-southeast trending Fairbanks seismic zone, was found to have a duration of about 11 seconds, thus indicating a rupture length of up to 30 km. The rupture duration of the 1958 earthquake, which occurred near the town of Huslia, approximately 400 km ENE of Fairbanks, was found to be about 9 seconds. This gives a rupture length consistent with the observed damage, an area of 16 km by 64 km.  相似文献   

8.
We extend to the regional field of distances the procedure of one-station estimation of seismic moments using the mantle magnitudeM m, as introduced earlier in the case of teleseismic events. A theoretical analysis of the validity of the asymptotic expansion of normal modes in terms of surface waves, which was used in the development ofM m, upholds the validity of the algorithm for distances as short as 1.5°. This is confirmed by the analysis of a dataset of 149 GEOSCOPE records obtained at distances ranging from 1.5 to 15°, from earthquakes with moments between 1024 and 2.5×1027 dyn-cm. The performance ofM m as measured in terms of average residual with respect to published values ofM 0, and standard deviation of the residuals, is not degraded in this distance range, with respect to the teleseismic case. This indicates that the mantle magnitudeM mcan be reliably used at regional distances, notably for tsunami warning applications.  相似文献   

9.
In the light of the single scattering model of coda originating from local earthquakes, and based on the aftershock coda registered respectively at the 4 short period stations installed near the foci shortly after theM7.6 Lancang andM7.2 Gengma earthquakes, this paper has tentatively calculated the rate of amplitude attenuation and theQ c-value of the coda in the Lancang and Gengma areas using a newly-founded synthetic determination method. Result of the study shows the rate of coda amplitude attenuation demonstrates remarkable regional differences respectively in the southern and northern areas. The southern area presents a faster attenuation (Q c=114), whereas the northern area shows a slower attenuation (Q c=231). The paper also discusses the reasons causing such differences. Result of the study also suggests a fairly good linear relation between the coda source factorA o(f) and the seismic moment and the magnitude. Using the earthquake scaling law, the following formulas can be derived: lgM 0=lgA 0(f)+17.6,M D=0.67lgA 0(f)+1.21 and logM 0=1.5M D+15.79. In addition, the rates of amplitude attenuationβ s andβ m are respectively calculated using the single scattering and multiple scattering models, and the ratioβ sm=1.20−1.50 is found for the results respectively from the two models. Finally, the mean free pathL of the S-wave scattering in the southern and northern areas are determined to be 54 km and 122 km respectively by the relations which can distinguish between the inherentQ i and scatteringQ s, testify to this areas having lowQ-values correspond to stronger scatterings. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, 71–82, 1992. This study is partly supported by the Seismological Science Foundation of the State Seismological Bureau of China, and the present English version of the paper is translated from its Chinese original by Wenyi Xia, Seismological Bureau of Yunnan Province.  相似文献   

10.
We describe a fully automated seismic event detection and location system, providing for real-time estimates of the epicentral parameters of both local and distant earthquakes. The system uses 12 telemetered short-period stations, with a regional aperture of 350 km, as well as two 3-component broad-band stations. Detection and location of teleseismic events is achieved independently and concurrently on the short-period and long-period channels. The long-period data is then used to obtain an estimate of the seismic momentM 0 of the earthquake through the mantle magnitudeM m, as introduced byOkal andTalandier (1989). In turn, this estimate ofM 0 is used to infer the expected tsunami amplitude at Papeete, within 15 minutes of the recording of Rayleigh waves. The performance of the method is discussed in terms of the accuracy of the epicentral parameters and seismic moment obtained in real time, as compared to the values later published by the reporting agencies. Our estimates are usually within 3 degrees of the reported epicenter, and the standard deviation on the seismic moment only 0.19 unit of magnitude for a population of 154 teleseismic events.  相似文献   

11.
A data set of nineteen, mainly shallow, moderate to large earthquakes, which occurred in the Aegean and the surrounding area, has been used to derive empirical relations for kinematic fault parameters. Thus the relations between seismic momentM 0 and magnitudeM s andm b and betweenM 0 andM s and fault dimensionsS andL have been determined. From these relations and theoretical ones it was deduced that earthquakes in the Aegean and the surrounding events, chiefly interplate, are characterized by low average stress drop values. Values of ranging from 1 to 30 bar are consistent with the data. It was also found that, in general terms, most of the data obey the geometrical similarity conditionL=2w, whereL is the fault length measured along the strike andw is its width measured along the dip. For strike-slip faults, however, the conditionL=4w seems to hold.  相似文献   

12.
Measurements are taken of the mantle magnitudeM m , developed and introduced in previous papers, in the case of the 1960 Chilean and 1964 Alaskan earthquakes, by far the largest events ever recorded instrumentally. We show that theM m algorithm recovers the seismic moment of these gigantic earthquakes with an accuracy (typically 0.2 to 0.3 units of magnitude, or a factor of 1.5 to 2 on the seismic moment) comparable to that achieved on modern, digital, datasets. In particular, this study proves that the mantle magnitudeM m does not saturate for large events, as do standard magnitude scales, but rather keeps growing with seismic moment, even for the very largest earthquakes. We further prove that the algorithm can be applied in unfavorable experimental conditions, such as instruments with poor response at mantle periods, seismograms clipped due to limited recording dynamics, or even on microbarograph records of air coupled Rayleigh waves.In addition, we show that it is feasible to use acoustic-gravity air waves generated by those very largest earthquakes, to obtain an estimate of the seismic moment of the event along the general philosophy of the magnitude concept: a single-station measurement ignoring the details of the earthquake's focal mechanism and exact depth.  相似文献   

13.
By statistica means, the temporal variation of the seismic activity in Albania is discussed in this study. We have investigated the seismic energy release for this century also using the periodogram technique to study the time series of the seismic energy release.A sequentially stationary model to evaluate the seismic rates for Albanian earthquakes with magnitudeM s 6.0, is constructed, by using the least square method.The study of seismic energy release for Albanian earthquakes of this century and the time distribution of major earthquakes for the last two centuries supports the cyclicity of the seismic activity in a regional scale.  相似文献   

14.
The method of relative seismic moment tensor determination proposed byStrelitz (1980) is extended a) from an interactive time domain analysis to an automated frequency domain procedure, and b) from an analysis of subevents of complex deep-focus earthquakes to the study of individual source mechanism of small events recorded at few stations.The method was applied to the recovery of seismic moment tensor components of 95 intermediate depth earthquakes withM L=2.6–4.9 from the Vrancea region, Romania. The main feature of the obtained fault plane solutions is the horizontality ofP axes and the nonhorizontal orienaation ofT axes (inverse faulting). Those events with high fracture energy per unit area of the fault can be grouped unambiguously into three depth intervals: 102–106 km, 124–135 km and 141–152 km. Moreover, their fault plane solutions are similar to ones of all strong and most moderate events from this region and the last two damaging earthquakes (November 10, 1940 withM W=7.8 and March 4 1977 withM W=7.5) occurred within the third and first depth interval, respectively. This suggests a possible correlation at these depths between fresh fracture of rocks and the occurrence of strong earthquakes.  相似文献   

15.
A multi-parametric study of empirical relationships between macroseismic data and magnitude is presented for the Italian region by the analysis of a new extended data set concerning 146 earthquakes. The available magnitude determinations include all of the most intense earthquakes which occurred in Italy in the last century and have been obtained by an accurate revision of original instrumental data. Intensity data have been revised and upgraded on the basis of the most recent studies: only local intensities directly documented have been used. Macroseismic determinations ofM s ,m B andM wa magnitudes have been performed. The empirical relationships between maximum felt intensity (I max ) and magnitude have been determined by the use of a distribution-free approach and a linear regression analysis. This last parameterization allows for the explanation of more than 60% of the variation in magnitude. In order to improve these results, the linear dependence between magnitude,I max and average distances (in logarithm) corresponding to fixed attenuation values has been explored. The comparison between instrumental magnitudes and corresponding macroseismic estimates obtained from empirical relationships shows that the respective uncertainties are comparable.  相似文献   

16.
TheresearchonrelationshipbetweenwavelettransformonverticaldeformationandmoderateearthquakesinHexiregion,GansuProvinceYONG-ZH...  相似文献   

17.
Broadband P and S waves source spectra of 12 MS5.0 earthquakes of the 1997 Jiashi, Xinjiang, China, earthquake swarm recorded at 13 GDSN stations have been analyzed. Rupture size and static stress drop of these earthquakes have been estimated through measuring the corner frequency of the source spectra. Direction of rupture propagation of the earthquake faulting has also been inferred from the azimuthal variation of the corner frequency. The main results are as follows: ①The rupture size of MS6.0 strong earthquakes is in the range of 10~20 km, while that of MS=5.0~5.5 earthquakes is 6~10 km.② The static stress drop of the swarm earthquakes is rather low, being of the order of 0.1 MPa. This implies that the deformation release rate in the source region may be low. ③ Stress drop of the earthquakes appears to be proportional to their seismic moment, and also to be dependent on their focal mechanism. The stress drop of normal faulting earthquakes is usually lower than that of strike-slip type earthquakes. ④ For each MS6.0 earthquake there exists an apparent azimuthal variation of the corner frequencies. Azimuthally variation pattern of corner frequencies of different earthquakes shows that the source rupture pattern of the Jiashi earthquake swarm is complex and no uniform rupture expanding direction exists.  相似文献   

18.
This paper aims to analyse the geoelectrical resistivityρ s data on the dipole electrode sounding, which were firstly accumulated from the earthquake prone region in China. The analyses on the one order difference value of the geoelectrical resistivity indicated that, firstly, more than 4 percent of theρ s data reveals the precursors by 3 to 76 days ahead the earthquakes occurring, with the magnitude range of 4 ≤M ≤ 6. 4, in a region of 100 km around the station, and secondly, the results revealed that the seasonal variation ofρ s data were slight. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, 211–219, 1992.  相似文献   

19.
According to geological tectonics and seismic activites this paper devided North China (30°–45°N, 105°–130°E) into four areas. We analyzed the North China earthquake catalogue from 1970 to 1986 (from 1965 to 1986 for Huabei, the North China, plain region) and identified forty-two bursts of aftershock. Seven of them occurred in aftershock regions of strong earthquakes and seventeen of them in the seismic swarm regions. The relation between strong earthquakes with the remaining eighteen bursts of aftershocks has been studied and tested statistically in this paper. The result of statistical testing show that the random probabilityp of coincidence of bursts of aftershock with subsequent strong earthquakes is less than six percent. By Xu’sR scoring method the efficacy of predicting strong earthquake from bursts of aftershock is estimated greater than 39 percent. Following the method proposed in the paper we analyzed the earthquake catalogue of China from 1987 to June, 1988. The results show that there was only one burst of aftershock occurred on Jan. 6, 1988 withM=3.6 in Xiuyan of Northeast China. It implicates that a potential earthquake withM S⩽5 might occur in one year afterwards in the region of Northeast China. Actually on Feb. 25, 1988 an earthquake withM S=5.3 occurred in Zhangwu of Northeast China. Another example is Datong-Yanggao shock on October 18, 1989 which is a burst of aftershock. Three hours after an expected shock withM =6.1 took place in the same area. Two examples above have been tested in practical prediction and this shows that bursts of aftershocks are significant in predicting strong earthquakes. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 273–280, 1991. Part of earthquake catalogue is from Jinbiao Chen, Peiyan Chen and Quanlin Li.  相似文献   

20.
Based on the tsunami data in the Central American region, the regional characteristic of tsunami magnitude scales is discussed in relation to earthquake magnitudes during the period from 1900 to 1993. Tsunami magnitudes on the Imamura-Iida scale of the 1985 Mexico and 1992 Nicaragua tsunamis are determined to bem=2.5, judging from the tsunami height-distance diagram. The magnitude values of the Central American tsunamis are relatively small compared to earthquakes with similar size in other regions. However, there are a few large tsunamis generated by low-frequency earthquakes such as the 1992 Nicaragua earthquake. Inundation heights of these unusual tsunamis are about 10 times higher than those of normal tsunamis for the same earthquake magnitude (M s =6.9–7.2). The Central American tsunamis having magnitudem>1 have been observed by the Japanese tide stations, but the effect of directivity toward Japan is very small compared to that of the South American tsunamis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号