首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
地形信息对确定DEM适宜分辨率的影响   总被引:2,自引:0,他引:2  
分辨率会直接影响基于栅格数字高程模型(DEM)的数字地形分析结果,因此在实际应用中,需要选择适宜的DEM分辨率。目前采取的基本方法,基于某种地形信息定量刻画尺度效应曲线,从而确定DEM适宜分辨率,但对于采用不同地形信息时所产生的影响尚缺乏研究。本文针对该方法中通常采用的坡度、剖面曲率、水平曲率等3 种地形信息,每种地形信息提取时,分别使用两种不同的常用算法,在3 个不同地形特征的研究区中,逐一计算其在不同分辨率下的局部方差均值,以刻画尺度效应曲线,确定相应的DEM适宜分辨率,并进行对比分析。结果表明:① 采用剖面曲率或水平曲率所得适宜分辨率结果基本相同,但采用坡度所得出的适宜分辨率结果则有明显差别,后者所得的适宜分辨率更粗;② 采用不同地形信息时,越是在平缓地形为主的研究区,所得的适宜分辨率结果越相近,在复合地形特征的研究区所得到的适宜分辨率区间均明显较宽;③ 地形属性计算时所用的算法对适宜分辨率结果的影响不明显。  相似文献   

2.
Terrain analysis applications using remotely sensed Digital Elevation Models (DEMs), nowadays easily available, permit to quantify several river basin morphologic and hydrologic properties (e.g. slope, aspect, curvature, flow path lengths) and indirect hydrogeomorphic indices (e.g. specific upslope area, topographic wetness index) able to characterize the physical processes governing the landscape evolution (e.g. surface saturation, runoff, erosion, deposition). Such DEMs often contain artifacts and the automated hydrogeomorphic characterization of the watershed is influenced by terrain analysis procedures consisting in artificial depression (pit) and flat area treatment approaches combined with flow direction methods.In shallow landslide deterministic models, when applied using topographic dataset at medium scale (e.g. 30 m of resolution), the choice of the most suitable DEM-processing procedure is not trivial and can influence model results. This also affects the selection of most critical areas for further finer resolution studies or for the implementation of countermeasures aiming to landslide risk mitigation.In this paper such issue is investigated using as topographic input the ASTER DEMs and comparing two different combinations of DEM correction and flow routing schemes. The study areas comprise ten catchments in Italy for which hydrogeomorphic processes are significant. Aims of this paper are: 1) to introduce a parameter estimation procedure for the physically-based DEM correction method PEM4PIT (Physical Erosion Model for PIT removal); 2) to investigate the influence of different terrain analysis procedures on results of the slope stability model SHALSTAB (SHAllow Landsliding STABility) using remotely-sensed ASTER DEMs; 3) trying to assess which of terrain analysis methods is more appropriate for describing terrain instability.  相似文献   

3.
Slope is one of the crucial terrain variables in spatial analysis and land use planning, especially in the Loess Plateau area of China which is suffering from serious soil erosion. DEM based slope extracting method has been widely accepted and applied in practice. However slope accuracy derived from this method usually does not match with its popularity. A quantitative simulation to slope data uncertainty is important not only theoretically but also necessarily to applications. This paper focuses on how resolution and terrain complexity impact on the accuracy of mean slope extracted from DEMs of different resolutions in the Loess Plateau of China. Six typical geomorphologic areas are selected as test areas, representing different terrain types from smooth to rough. Their DEMs are produced from digitizing contours of 1:10,000 scale topographic maps. Field survey results show that 5 m should be the most suitable grid size for representing slope in the Loess Plateau area. Comparative and math-simulation methodology was employed for data processing and analysis. A linear correlativity between mean slope and DEM resolution was found at all test areas, but their regression coefficients related closely with the terrain complexity of the test areas. If taking stream channel density to represent terrain complexity, mean slope error could be regressed against DEM resolution (X) and stream channel density (S) at 8 resolution levels and expressed as(0.0015S2 0.031S-0.0325)X-0.0045S2-0.155S 0.1625, with a R2 value of over 0.98. Practical tests also show an effective result of this model in applications. The new development methodology applied in this study should be helpful to similar researches in spatial data uncertainty investigation.  相似文献   

4.
Slope is one of the crucial terrain variables in spatial analysis and land use planning,especially in the Loess Plateau area of China which is suffering from serious soil erosion. DEM based slope extracting method has been widely accepted and applied in practice. However slope accuracy derived from this method usually does not match with its popularity. A quantitative simulation to slope data uncertainty is important not only theoretically but also necessarily to applications. This paper focuses on how resolution and terrain complexity impact on the accuracy of mean slope extracted from DEMs of different resolutions in the Loess Plateau of China. Six typical geomorphologic areas are selected as test areas, representing different terrain types from smooth to rough. Their DEMs are produced from digitizing contours of 1:10,000 scale topographic maps. Field survey results show that 5 m should be the most suitable grid size for representing slope in the Loess Plateau area. Comparative and math-simulation methodology was employed for data processing and analysis. A linear correlativity between mean slope and DEM resolution was found at all test areas,but their regression coefficients related closely with the terrain complexity of the test areas. If taking stream channel density to represent terrain complexity, mean slope error could be regressed against DEM resolution (X) and stream channel density (S) at 8 resolution levels and expressed as (0.0015S2+0.031S-0.0325)X-0.0045S2-0.155S+0.1625, with a R2 value of over 0.98. Practical tests also show an effective result of this model in applications. The new development methodology applied in this study should be helpful to similar researches in spatial data uncertainty investigation.  相似文献   

5.
Slope is one of the crucial terrain variables in spatial analysis and land use planning, especially in the Loess Plateau area of China which is suffering from serious soil erosion. DEM based slope extracting method has been widely accepted and applied in practice. However slope accuracy derived from this method usually does not match with its popularity. A quantitative simulation to slope data uncertainty is important not only theoretically but also necessarily to applications. This paper focuses on how resolution and terrain complexity impact on the accuracy of mean slope extracted from DEMs of different resolutions in the Loess Plateau of China. Six typical geomorphologic areas are selected as test areas, representing different terrain types from smooth to rough. Their DEMs are produced from digitizing contours of 1:10,000 scale topographic maps. Field survey results show that 5 m should be the most suitable grid size for representing slope in the Loess Plateau area. Comparative and math-simulation methodology was employed for data processing and analysis. A linear correlativity between mean slope and DEM resolution was found at all test areas, but their regression coefficients related closely with the terrain complexity of the test areas. If taking stream channel density to represent terrain complexity, mean slope error could be regressed against DEM resolution (X) and stream channel density (S) at 8 resolution levels and expressed as (0.0015S2+0.031S-0.0325)X-0.0045S2-0.155S+0.1625, with a R2 value of over 0.98. Practical tests also show an effective result of this model in applications. The new development methodology applied in this study should be helpful to similar researches in spatial data uncertainty investigation.  相似文献   

6.
This paper explores the quantitative relation between the reliability of slope aspect, gradient, and form mapped from a gridded DEM and the sampling interval (SI) of elevations. Grid DEMs initially interpolated from digitised contours at 10 m were sampled to five other resolution levels. The topographic variables mapped at these SIs were compared with those at 10 m. It is found that the reliability of mapped slope aspect and form is not significantly affected by SI. By comparison, the reliability of slope gradient is more susceptible to SI, especially if it is derived from a gently rolling terrain. Around 90% of the variation in the mapped slope aspect and gradient are accounted for by the inaccuracy of DEMs. A lower percentage exists for slope form. The stability of the mapped topographic variables can be reliably predicted from SI and terrain complexity.  相似文献   

7.
地形湿度指数算法误差的定量评价   总被引:2,自引:0,他引:2  
地形湿度指数(TWI)能够定量指示地形对土壤湿度空间分布的控制,是一种应用广泛的地形属性.目前基于栅格DEM的TWI计算方法结果各异,因此有必要对'TWI算法进行定量评价.对TWI算法通常是应用实际DEM数据进行评价.但实际DEM中存在的数据源误差会干扰对算法误差的评价.针对该问题,本文介绍了一种用不含数据源误差的人造...  相似文献   

8.
DEM提取黄土高原地面坡度的不确定性   总被引:72,自引:0,他引:72  
选择陕北黄土高原6个典型地貌类型区为试验样区,采用野外实测及高精度的1:1万比例尺DEM为基准数据,研究栅格分辨率及地形粗糙度对DEM所提取地面平均坡度精度的影响。结果显示,对于1:1万比例尺DEM,5 m是保证该地区地形描述精度的理想分辨率尺度;多要素逐步回归模拟的方法进一步揭示了DEM所提取的地面平均坡度误差E与栅格分辨率X以及地形起伏的代表性因子-沟壑密度S之间存在的量化关系为E = (0.0015S2+0.031S-0.0325)X-0.0045S2-0.155S+0.1625,该结果也为确定适用的DEM分辨率提供了理论依据。  相似文献   

9.
地形指数的物理意义分析   总被引:34,自引:4,他引:34  
地形指数模型 ( TOPMODEL)用地形指数在流域中的空间格局来确定流域饱和缺水量的空间分布和产流区的空间位置与范围 ,物理意义明确。本文介绍了地形指数的物理基础及其与土壤水分的关系。分析了地形指数空间变化与汇流面积 a及局地坡度空间变化的关系 ,a范围内有效汇流面积的变化 ,提出了一种确定 a上限值的方法。  相似文献   

10.
基于高分辨率DEM的黄土地貌正负地形自动分割技术研究   总被引:4,自引:0,他引:4  
黄土地貌正负地形自动分割是构建地表空间分布式机理-过程模型的基础。在分析黄土高原地区典型地貌坡面形态及汇流过程特征的基础上,提出了基于5m分辨率栅格DEM自动分割黄土正、负地形的技术方案。该方案首先利用坡面上下游栅格点的坡度对比识别沟沿线点,然后利用汇水模型提取沟沿线点约束的上游汇水区域,从而实现正、负地形的自动分割。在黄土塬区及丘陵沟壑区的实验结果表明,该方法的优点是提取精度高,人工干预少,在不同地貌类型区域内有很好的应用适宜性。  相似文献   

11.
DEM流径算法的相似性分析   总被引:4,自引:0,他引:4  
刘学军  晋蓓  王彦芳 《地理研究》2008,27(6):1347-1357
流径算法是分布式水文模型、土壤侵蚀模拟等研究中的关键技术环节,决定着汇水面积、地形指数等许多重要的地形、水文参数的计算。本文以黄土高原两个典型样区的不同分辨率DEM为研究对象,对常用的五种流径算法(D8、Rho8、Dinf、MFD和DEMON)通过相对差系数、累积频率图、XY散点分布图等进行了定量的对比分析。结果表明:算法的差异主要集中在坡面区域,汇流区域各类算法的差别较小;算法差异在不同DEM尺度下都有所体现,但高分辨率下的差异会更明显;在地形复杂区域,多流向算法要优于单流向算法。研究也进一步指出汇水面积、地形指数等水文参数对流径算法具有强烈的依赖性。  相似文献   

12.
This paper documents resolution dependencies in terrain analysis and describes how they vary across landform location. Six terrain attributes were evaluated as a function of DEM resolution—slope, plan curvature, profile curvature, north–south slope orientation, east–west slope orientation, and topographic wetness index. The research highlights the effect of varying spatial resolution through a spatial sampling/resampling scheme while maintaining sets of indexed sample points at various resolutions. Tested sample points therefore coincide exactly between two directly compared resolutions in terms of their location and elevation value. An unsupervised landform classification procedure based on statistical clustering algorithms was employed to define landform classes in a reproducible manner. Correlation and regression analyses identified sensitive and consistent responses for each attribute as resolution was changed, although the tested terrain attributes responded in characteristically different ways. These responses displayed distinguishable patterns among various landform classes, a conclusion that was further verified by a series of two‐sample, two‐tailed t‐tests.  相似文献   

13.
1 Introduction Automated extraction of drainage features from DEMs is an effective alternative to the tedious manual mapping from topographic maps. The derived hydrologic characteristics include stream-channel networks, delineation of catchment boundaries, catchment area, catchment length, stream-channel long profiles and stream order etc. Other important characteristics of river catchments, such as the stream-channel density, stream-channel bifurcation ratios, stream-channel order, number…  相似文献   

14.
The sensitivity of streamflow simulated with the Soil and Water Assessment Tool (SWAT) model to Digital Elevation Model (DEM) resolution, DEM source and DEM resampling technique is still poorly understood. The objective of this study is to compare SWAT model streamflow estimates in the Johor River Basin (JRB), Malaysia for DEMs differing in resolution (from 20 to 1500 m), sources (Shuttle Radar Topography Mission: SRTM v4.1, Advanced Space-borne Thermal Emission and Reflection Radiometer: ASTER GDEM2, EarthEnv-DEM90 and Global Multi-resolution Terrain Elevation Data 2010: GMTED2010) and resampling technique (nearest neighbour, bilinear interpolation, cubic convolution and majority). The key findings were as follows: (1) SRTM v4.1 (Root Mean Square Error (RMSE) = 11.16 m) and EarthEnv-DEM90 (RMSE = 12.4 m) had better vertical accuracy over the JRB compared to the ASTER GDEM2 (RMSE = 16.95 m); (2) Accurate annual streamflow simulations were obtained by using nearly all of the DEM resolutions, as pointed out by a relative error (RE) lower than 7% from 20 to 50 m and from 100 to 800 m DEMs; (3) Prediction errors were the lowest for ASTER GDEM2 (RE = 3.9%), followed by SRTM v4.1 (RE = 5.4%), EarthEnv-DEM90 (RE = 6.3%), and GMTED2010 (RE = 7.3%); (4) the majority and nearest neighbour resampling techniques performed the best (RE of 6.0%), followed by bilinear interpolation (RE of 7.2%) and cubic convolution (7.5%). The study indicates that DEM resolution is the most sensitive SWAT model DEM parameter compared to DEM source and DEM resampling technique for streamflow simulation within SWAT.  相似文献   

15.
Hydrologic data derived from digital elevation models (DEM) has been regarded as an effective method in the spatial analysis of geographical information systems (GIS). However, both DEM resolution and terrain complexity has impacts on the accuracy of hydrologic derivatives. In this study, a multi-resolution and multi-relief comparative approach was used as a major methodology to investigate the accuracy of hydrologic data derived from DEMs. The experiment reveals that DEM terrain representation error affects the accuracy of DEM hydrological derivatives (drainage networks and watershed etc.). Coarser DEM resolutions can usually cause worse results. However, uncertain result commonly exists in this calculation. The derivative errors can be found closely related with DEM vertical resolution and terrain roughness. DEM vertical resolution can be found closely related with the accuracy of DEM hydrological derivatives, especially in the smooth plain area. If the mean slope is less than 4 degrees, the derived hydrologic data are usually unreliable. This result may be helpful in estimating the accuracy of the hydrologic derivatives and determining the DEM resolution that is appropriate to the accuracy requirement of a particular user. By applying a threshold value to subset the cells of a higher accumulation flow, a stream network of a specific network density can be extracted. Some very important geomorphologic characteristics, e.g., shallow and deep gullies, can be separately extracted by means of adjusting the threshold value. However, such a flow accumulationbased processing method can not correctly derive those streams that pass through the working area because it is hard to accumulate enough flow direction values to express the stream channels at the stream's entrance area. Consequently, errors will definitely occur at the stream’s entrance area. In addition, erroneous derivatives can also be found in deriving some particular rivers, e.g., perched (hanging up) rivers, anastomosing rivers and braided rivers. Therefore, more work should be done to develop and perfect the algorithms.  相似文献   

16.
DEM 点位地形信息量化模型研究   总被引:2,自引:0,他引:2  
董有福  汤国安 《地理研究》2012,31(10):1825-1836
针对DEM 点位, 首先应用微分几何法对其所负载的语法信息量进行测度, 其次根据地形特征点类型及地形结构特征确定其语义信息量, 然后基于信息学理论构建了DEM 点位地形信息综合量化模型。在此基础上, 以黄土丘陵沟壑区作为实验样区, 对DEM 点位地形信息量提取方法及其在地形简化中的初步实例应用进行了探讨和验证。实验结果显示, 所提出的DEM 点位地形信息量化方案可行;基于DEM 地形信息量指数的多尺度DEM 构建方案, 具有机理明确、易于实现的特点, 并通过优先保留地形骨架特征点, 可以有效减少地形失真, 从而满足不同层次的多尺度数字地形建模和表达要求。对DEM 点位地形信息进行有效量化, 为认识DEM 地形信息特征提供了一个新的切入点, 同时为多尺度数字地形建模提供理论依据与方法支持。  相似文献   

17.
This paper examines the effect of scale (exhibited by spatial sampling) in modeling mean slope from lidar data using two representations of scale: lidar posting density (i.e. post‐spacing) and DEM resolution (i.e. cell size). The study areas selected include six small (i.e. approximately 3 km2) urban drainage basins in Richland County, SC, USA, which share similar hydrologic characteristics. This research spatially sampled an airborne lidar dataset collected in 2000 at a 2 m nominal posting density to simulate lidar posting density at various post‐spacings, from 2 m through 10 m. DEMs were created from the lidar observations at a corresponding cell size using spatial interpolation. Finally, using these DEMs, a sensitivity analysis between modeled terrain slope and lidar post‐spacing was conducted. Results of the sensitivity analyses showed that the deviation between mean slope and modeled mean slope decreases with finer posting density and DEM resolution. The relationship of mean slope with varying cell sizes and post‐spacing suggests a linear and a logarithmic function, respectively, for all study areas. More importantly, cell size has a greater effect on mean slope than lidar posting density. Implications of these results for lumped hydrologic modeling are then postulated.  相似文献   

18.
Digital elevation models (DEMs) vary in resolution and accuracy by the production method. DEMs with different resolutions and accuracies can generate varied topographic and hydrological features, which can in turn affect predictions by soil erosion models, such as the WEPP (Water Erosion Prediction Project) model. This study investigates the effects of DEMs on deriving topographic and hydrological attributes, and on predicting watershed erosion using WEPP v2006.5. Six DEMs at three resolutions from three sources were prepared for two small forested watersheds located in northern Idaho, USA. These DEMs were used to calculate topographic and hydrological parameters that served as inputs to WEPP. The model results of sediment yields and runoffs were compared with field observations. For both watersheds, DEMs with different resolutions and sources generated varied watershed shapes and structures, which in turn led to different extracted hill slope and channel lengths and gradients, and produced substantially different erosion predictions by WEPP.  相似文献   

19.
This paper examines the impact of DEM resolution on the accuracy of terrain representation and of the gradient determined. The DEMs of three terrain types with diverse complexities were constructed from digitizing contours and then kriging. The accuracy (RMSE) of the DEMs was regressed against contour density (D) and DEM resolution (S) at six resolution levels. It is found that RMSE may be expressed as (7.274 1.666S)D/1000 with an R value of 0.9659. The representation accuracy decreases moderately at an intermediate resolution, but sharply at coarse resolutions for all three terrain types. Resolution reduction profoundly affects the gradient determined from the DEM. While exerting little influence on mean gradient, resolution significantly affects the standard deviation of gradient, especially for a simple terrain. The results obtained in this study may be used to determine the DEM resolution that is appropriate to the accuracy requirements of a particular user.  相似文献   

20.
The geometry of impounded surfaces is a key tool to reservoir storage management and projection. Yet topographic data and bathymetric surveys of average-aged reservoirs may be absent for many regions worldwide. This paper examines the potential of contour line interpolation (TOPO) and Structure from Motion (SfM) photogrammetry to reconstruct the topography of existing reservoirs prior to dam closure. The study centres on the Paso de las Piedras reservoir, Argentina, and assesses the accuracy and reliability of TOPO- and SfM- derived digital elevation models (DEMs) using different grid resolutions. All DEMs were of acceptable quality. However, different interpolation techniques produced different types of error, which increased (or decreased) with increasing (or decreasing) grid resolution as a function of their nature, and relative to the terrain complexity. In terms of DEM reliability to reproduce area–elevation relationships, processing-related disagreements between DEMs were markedly influenced by topography. Even though they produce intrinsic errors, it is concluded that both TOPO and SfM techniques hold great potential to reconstruct the bathymetry of existing reservoirs. For areas exhibiting similar terrain complexity, the implementation of one or another technique will depend ultimately on the need for preserving accurate elevation (TOPO) or topographic detail (SfM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号