首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A spherical harmonic degrees 60, global internal field model is described (called BGS/G/L/0706). This model includes a degree 15 core and piecewise-linear secular variation model and is derived from quiet-time Ørsted and Champ satellite data sampled between 2001.0 and 2005.0. For the satellite data selection, a wide range of geomagnetic index and other data selection filters have been used to best isolate suitably quiet magnetospheric and ionospheric conditions. Only a relatively simple, degree one spherical harmonic, external field model is then required. It is found that a new 'Vector Magnetic Disturbance' index ( VMD ), the existing longitude sector A indices, the auroral zone index IE , and the polar cap index PC are better than Kp and Dst at rejecting rapidly varying external field signals at low, middle, auroral and polar latitudes. The model quality is further enhanced by filling spatial and temporal gaps in the quiet data selection with a second selection containing slightly more disturbed data. It is shown that VMD provides a better parametrization than Dst of the large-scale, rapidly changing, external field. The lithospheric field model between degrees 16 and 50 is robust and displays good coherence with other recently published models for this epoch. BGS/G/L/0706 also shows crustal anomalies consistent with other studies, although agreement is poorer in the southern polar cap. Intermodel coherency reduces above about degree 40, most likely due to incompletely filtered signals from polar ionospheric currents and auroral field aligned currents. The absence of the PC index for the southern hemisphere for 2003 onwards is a particular concern.  相似文献   

2.
The geomagnetic power spectrum   总被引:1,自引:0,他引:1  
Combining CHAMP satellite magnetic measurements with aeromagnetic and marine magnetic data, the global geomagnetic field has now been modelled to spherical harmonic degree 720. An important tool in field modelling is the geomagnetic power spectrum. It allows the comparison of field models estimated from different data sets and can be used to identify noise levels and systematic errors. A correctly defined geomagnetic power spectrum is flat (white) for an uncorrelated field, such as the Earth's crustal magnetic field at long wavelengths. It can be inferred from global spherical harmonic models as well as from regional grids. Marine and aeromagnetic grids usually represent the anomaly of the total intensity of the magnetic field. Appropriate corrections have to be applied in estimating the geomagnetic power spectrum from such data. The comparison of global and regional spectra using a consistently defined azimuthally averaged geomagnetic power spectrum facilitates quality control in field modelling and should provide new insights in magnetic anomaly interpretation.  相似文献   

3.
The modern geomagnetic field is usually expressed as a spherical harmonic expansion. Although the palaeomagnetic record is very incomplete in both space and time, sufficient data are available from a span of ages to generate time-averaged spherical harmonic field models with many degrees of freedom. Here three data sets are considered: directional measurements from lavas, inclination measurements from ocean sediments, and intensity measurements from lavas. Individual data are analysed, as well as site-averages, using the same methods that have been developed for the modern field, to give models for the past 5 Myr. The normal-polarity field model has an axial-dipole intensity similar to that of the modern-day field, whilst the equatorial-dipole component is very much smaller. The field is not axisymmetric, but shows flux concentrations at the core's surface under Canada and Siberia similar to those observed in the field over historical timescales. Tests on synthetic data show that it is unlikely that these similarities result from the overprinting of the palaeomagnetic field due to inadequate cleaning of the samples. The reverse-polarity field model does not show such obvious features, but this may be due to the sparsity of the data.
The patterns observed in the normal-polarity field, with persistent features in the northern hemisphere and a smooth southern hemisphere, could be explained if the present pattern of secular variation is typical of the past several million years. This would reveal itself as large variations over time in the direction of the magnetic vector in regions of high secular variation, with relatively little change over quieter regions. However, we have been unable to find any evidence for a geographical pattern of secular variation in the data.  相似文献   

4.
利用南极地区40多个GPS跟踪站2010年全年的实测数据,实现了极区电离层TEC建模,对多项式模型、广义三角级数函数模型、低阶球谐函数模型、改进的球谐函数模型以及球冠谐函数模型等五种电离层经验模型进行了比较,并评估了其在极区的适用性情况。结果表明,各个模型在极区都可以取得比较好的拟合精度,残差均值在0.1TECU以内,均方根误差在2 TECU以内。  相似文献   

5.
Summary. We have determined the lateral distribution of Love-wave phase velocities in the Pacific for the periods 40, 67, 91 and 125 s. Application of the pure-path and spherical harmonic representation methods indicates that the velocities are primarily a function of the age of the seafloor. A comparison of the results from these two techniques indicates inherent modelling constraints in both methods. The pure-path method is limited by its a priori nature while the spherical harmonic approach is unsuitable in describing sharp lateral velocity gradients. To circumvent these limitations, we propose the sequential application of the pure-path and spherical harmonic methods. The sequential inversion separates the velocity distribution into two separate components; velocity as a function of the age of the oceanic plate and variations superimposed on this relationship. Application of this method demonstrates the presence of velocity anomalies which cannot be modelled by an age–velocity relationship. These anomalies are tentatively correlated with regions of anomalous seafloor depths and/or the presence of active hot-spots. In the central south Pacific, an area with numerous active hot-spots coincides roughly with a region of anomalously slow Love wave velocities. A method for determining the errors associated with the slowness distributions calculated by the spherical harmonic method is presented and provides a means for determining the resolvability of these features.  相似文献   

6.
冰川冰储量不仅是冰川的重要属性,而且是核算冰川水资源及预测冰川变化的基础数据,因此准确计算冰川冰储量及其变化具有重要的理论与现实意义。目前冰川储量估算的主要方法有经验公式法、冰厚模型估算法、探地雷达法;冰川储量相对变化计算方法有实地测量法和遥感监测法。通过系统分析和讨论各计算方法的原理、现状及存在的问题,以期为冰川储量估算提供方法参考。研究表明:对于冰川冰储量计算而言,经验公式法适用于区域性或全球性的冰川储量估算;模型估算法适用于个体或小范围冰川储量估算;探地雷达法适用于人类易到达区域冰川储量的估算。对于冰川冰储量相对变化计算,实地测量法适用于对精度要求高且满足实地测量条件的单条或中小型冰川,遥感监测法适用于全球性冰储量变化估算,但需改进算法和提高数据空间分辨率。目前,随着无人机技术的逐步应用,以及冰川流速等理论模型的提出,为冰川冰储量估算方法的发展提供了新契机。  相似文献   

7.
We incorporate a maximum entropy image reconstruction technique into the process of modelling the time-dependent geomagnetic field at the core–mantle boundary (CMB). In order to deal with unconstrained small lengthscales in the process of inverting the data, some core field models are regularized using a priori quadratic norms in both space and time. This artificial damping leads to the underestimation of power at large wavenumbers, and to a loss of contrast in the reconstructed picture of the field at the CMB. The entropy norm, recently introduced to regularize magnetic field maps, provides models with better contrast, and involves a minimum of a priori information about the field structure. However, this technique was developed to build only snapshots of the magnetic field. Previously described in the spatial domain, we show here how to implement this technique in the spherical harmonic domain, and we extend it to the time-dependent problem where both spatial and temporal regularizations are required. We apply our method to model the field over the interval 1840–1990 from a compilation of historical observations. Applying the maximum entropy method in space—for a fit to the data similar to that obtained with a quadratic regularization—effectively reorganizes the magnetic field lines in order to have a map with better contrast. This is associated with a less rapidly decaying spectrum at large wavenumbers. Applying the maximum entropy method in time permits us to model sharper temporal changes, associated with larger spatial gradients in the secular variation, without producing spurious fluctuations on short timescales. This method avoids the smearing back in time of field features that are not constrained by the data. Perspectives concerning future applications of the method are also discussed.  相似文献   

8.
SUMMARY
Since the time Roberts & Scott (1965) first expressed the key 'frozen flux' hypothesis relating the secular variation of the geomagnetic field (SV) to the flow at the core surface, a large number of studies have been devoted to building maps of the flow and inferring its fundamental properties from magnetic observations at the Earth's surface. There are some well-known difficulties in carrying out these studies, such as the one linked to the non-uniqueness of the flow solution [if no additional constraint is imposed on the flow (Backus 1968)] which has been thoroughly investigated. In contrast little investigation has been made up to now to estimate the exact importance of other difficulties, although the different authors are usually well aware of their existence. In this paper we intend to make as systematic as possible a study of the limitations linked to the use of truncated spherical harmonic expansions in the computation of the flow. Our approach does not rely on other assumptions than the frozen flux, the insulating mantle and the large-scale flow assumptions along with some simple statistical assumptions concerning the flow and the Main Field. Our conclusions therefore apply to any (toroidal, steady or tangentially geostrophic) of the flow models that have already been produced; they can be summarized in the following way: first, because of the unavoidable truncation of the spherical harmonic expansion of the Main Field to degree 13, no information will ever be derived for the components of the flow with degree larger than 12; second, one may truncate the spherical harmonic expansion of the flow to degree 12 with only a small impact on the first degrees of the flow. Third, with the data available at the present day, the components of the flow with degree less than 5 are fairly well known whereas those with degree greater than 8 are absolutely unconstrained.  相似文献   

9.
We analyse the external field generated by a uniform distribution of magnetic susceptibility contained in an oblate spheroidal shell when it is magnetized by an internal magnetic field of arbitrary complexity. The situation is more relevant to the Earth than that of a spherical shell considered by Runcorn (1975a ) (in the context of lunar magnetism), because of the larger flattening of the Earth than that of the Moon. We find that, to first order in the susceptibility, each internal harmonic in a spheroidal harmonic expansion of the magnetic potential generates just one non-vanishing external field coefficient, unlike in the spherical case when all harmonics vanish identically. The field generated is proportional to the susceptibility, thickness of the shell and square of the Earth's eccentricity, and hence it appears that this field amplification mechanism will be very ineffective for the Earth.  相似文献   

10.
The maximum entropy technique is an accepted method of image reconstruction when the image is made up of pixels of unknown positive intensity (e.g. a grey-scale image). The problem of reconstructing the magnetic field at the core–mantle boundary from surface data is a problem where the target image, the value of the radial field Br , can be of either sign. We adopt a known extension of the usual maximum entropy method that can be applied to images consisting of pixels of unconstrained sign. We find that we are able to construct images which have high dynamic ranges, but which still have very simple structure. In the spherical harmonic domain they have smoothly decreasing power spectra. It is also noteworthy that these models have far less complex null flux curve topology (lines on which the radial field vanishes) than do models which are quadratically regularized. Problems such as the one addressed are ubiquitous in geophysics, and it is suggested that the applications of the method could be much more widespread than is currently the case.  相似文献   

11.
We present a spectral-finite-element approach to the 2-D forward problem for electromagnetic induction in a spherical earth. It represents an alternative to a variety of numerical methods for 2-D global electromagnetic modelling introduced recently (e.g. the perturbation expansion approach, the finite difference scheme). It may be used to estimate the effect of a possible axisymmetric structure of electrical conductivity of the mantle on surface observations, or it may serve as a tool for testing methods and codes for 3-D global electromagnetic modelling. The ultimate goal of these electromagnetic studies is to learn about the Earth's 3-D electrical structure.
Since the spectral-finite-element approach comes from the variational formulation, we formulate the 2-D electromagnetic induction problem in a variational sense. The boundary data used in this formulation consist of the horizontal components of the total magnetic intensity measured on the Earth's surface. In this the variational approach differs from other methods, which usually use spherical harmonic coefficients of external magnetic sources as input data. We verify the assumptions of the Lax-Milgram theorem and show that the variational solution exists and is unique. The spectral-finite-element approach then means that the problem is parametrized by spherical harmonics in the angular direction, whereas finite elements span the radial direction. The solution is searched for by the Galerkin method, which leads to the solving of a system of linear algebraic equations. The method and code have been tested for Everett & Schultz's (1995) model of two eccentrically nested spheres, and good agreement has been obtained.  相似文献   

12.
Spherical Slepian functions and the polar gap in geodesy   总被引:4,自引:0,他引:4  
The estimation of potential fields such as the gravitational or magnetic potential at the surface of a spherical planet from noisy observations taken at an altitude over an incomplete portion of the globe is a classic example of an ill-posed inverse problem. We show that this potential-field estimation problem has deep-seated connections to Slepian's spatiospectral localization problem which seeks bandlimited spherical functions whose energy is optimally concentrated in some closed portion of the unit sphere. This allows us to formulate an alternative solution to the traditional damped least-squares spherical harmonic approach in geodesy, whereby the source field is now expanded in a truncated Slepian function basis set. We discuss the relative performance of both methods with regard to standard statistical measures such as bias, variance and mean squared error, and pay special attention to the algorithmic efficiency of computing the Slepian functions on the region complementary to the axisymmetric polar gap characteristic of satellite surveys. The ease, speed, and accuracy of our method make the use of spherical Slepian functions in earth and planetary geodesy practical.  相似文献   

13.
A generalized database of global palaeomagnetic data from 3719 lava flows and thin dykes of age 0–5 Ma has been constructed for use with a relational database management system. The database includes all data whose virtual geomagnetic poles (VGP) lie within 45 of the spin axis and can be used for studies of palaeosecular variation and for geomagnetic field modelling. Because many of these data were collected and processed more than 15–20 years ago, each result has been characterized according to the demagnetization procedures carried out. Analysis of these data in terms of the latitude variation of the angular dispersion of VGPs (palaeosecular variation from lavas) strongly suggests that careful data selection is required and that many of the older studies may need to be redone using more modern methods. Differences between the angular dispersions for separate normal- and reverse-polarity data sets confirm that many older studies have not been adequately cleaned magnetically. Therefore, the use of the database for geomagnetic field modelling should be carried out with some caution. Using a VGP cut-off angle that varies with latitude, the best data set consists of 2636 results that show a smooth increase of VGP angular dispersion with latitude. Model G for palaeosecular variation, which is based on modelling of the antisymmetric (dipole) and symmetric (quadrupole) dynamo families, provides a good fit to these results.  相似文献   

14.
b
Spherical harmonics are orthonormalized using the Gram-Schmidt process in a function space. The problem of linear dependence of spherical harmonics over the oceans is studied using the Gram matrices and consequently three sets of orthonormal (ON) functions have been constructed. For the process an efficient formula for computing inner products of spherical harmonics has been developed. Important spectral properties of the ON functions are addressed. The ON functions may be used for representing the sea surface topography (SST) in the analysis of satellite altimeter data. The geoid error can be transformed to a representation by the ON functions and hence the comparison of powers of the geoid error and the SST signal only over the oceans is possible, leading to a better way of determining the cut-off frequency of the SST in the simultaneous solution using satellite altimeter data. As a case study, the modified Levitus SST is expanded into the ON functions. The results show that 99.90 per cent of that signal's energy is contained within degree 24 of the orthonormal functions. Such expansions also render better spectral behaviour of oceanic signals as compared to that from spherical harmonic expansions. The study shows that these generalized Fourier functions are suitable for spectral analyses of oceanic signals and they can be applied to future altimetric mission where the geoid and the SST are to be recovered.  相似文献   

15.
Rotation of the geomagnetic field about an optimum pole   总被引:2,自引:0,他引:2  
Since 1693, when Halley proposed that secular change was the result of the westward drift of the main field, his simple model has undergone many refinements. These include different drift rates for dipole and non-dipole parts; separation into drifting and standing parts; latitudinal dependence of drift rate; northward drift of the dipole; and non-longitudinal rotations of the individual harmonics of the geomagnetic field. Here we re-examine the model of Malin and Saunders, in which the main field is rotated about an optimum pole which does not necessarily coincide with the geographical pole. The optimum pole and rotation angle are those that bring the main field for epoch T 1 closest to that for T 2 , as indicated by the coefficients of correlation between the spherical harmonic coefficients for the two epochs, after rotation. Malin and Saunders examined the pole positions and rates of rotation using data from 1910 to 1965, and noticed a number of trends. We show that these trends are confirmed by recent IGRF models, spanning the interval 1900–2000 and to degree and order 10. We also show that the effect of the level of truncation is small.  相似文献   

16.
Summary. Three complementary methods for the extraction of the M2 ocean tide using SEASAT altimetry are presented and compared. The first method (that developed by Cartwright & Alcock), which provides 'point measurements'of the tide at the crossovers of the SEASAT repeat orbit ground track, has been applied to a study of the tide in tropical ocean areas. The other two methods involve spatial expansions of M2 in terms of either surface spherical harmonics (in the case of the method developed by Mazzega) or Platzman normal modes of the world ocean. The results obtained by each method from only one month of SEASAT data reproduce many features of the tide represented in recent tidal models, and promise well for satellite altimetry as a future source of tidal knowledge.  相似文献   

17.
无定河流域降雨量空间变异性研究   总被引:28,自引:4,他引:28  
李丽娟  王娟  李海滨 《地理研究》2002,21(4):434-440
运用地质统计学中的普通KRIGING方法 ,对 1 990~ 1 997年无定河流域 67个雨量站的年降雨量进行了插值及空间场变异分析。分析发现降雨量的频率分布符合对数正态分布 ,采用对数克立格方法为计算工具进行分析 ,结果显示实验半变异函数符合一般的球状模型。从获得的参数可知 ,1 990~ 1 997年期间 ,变程各不相同 ,甚至差异很大。 1 991年最小 ,为2 0 1 7km ,1 994年最大 ,为 68 65km ,说明了该年无定河流域的降雨量空间变化在所分析的时间序列中是最缓和的 ,这与 1 994年的变异系数最小也相吻合。同时各个年份计算结果均显示有块金值 ,说明在小于变程的空间尺度上仍然存在随机效应。最后运用克立格方法对该流域的部分区域降雨量进行了空间插值成图。  相似文献   

18.
Summary. The classical theory of multipoles is used to calculate the true quadrupole and octupole parameters for six different models of Jupiter's main magnetic field. These six magnetic-field models, which are based on measurements made by the Pioneer 10 and Pioneer 11 spacecraft, are specified in terms of the fifteen spherical harmonic coefficients required to define the Jovian dipole (3), quadrupole (5) and octupole (7). The set of five equations for the quadrupole parameters and the set of seven equations for the octupole parameters are each solved iteratively to give the corresponding true multipole moment and the directions of the associated multipole axes. It is found that the five quadrupole parameters are defined reasonably accurately by the Pioneer measurements, as are the three dipole parameters, but it is concluded that there are appreciable uncertainties in each of the seven octupole parameters. The true quadrupole and octupole magnetic moments are typically 14 and 5 per cent, respectively, of the dipole moment. These percentages are significantly different from the corresponding percentages for the pseudo-magnetic moments, namely 24 and 21 per cent, which are usually quoted in discussions of the higher multipoles of the Jovian magnetic field. Both the true and pseudo-multipole moments are larger for Jupiter than for the Earth. It is suggested finally that a proper multipole expansion of Jupiter's main magnetic field may have important applications in quantitative studies of several problems involving the Jovian magnetosphere, such as the decimetric and decametric radio emissions from Jupiter.  相似文献   

19.
Summary. The method of stochastic inversion, previously applied to secular variation data, is applied to main field data. Adaptations to the method are required: non-linear, as well as linear, data are used; allowance is made for crustal components in the observatory data; and the prior information is specified differently. The requirement that the models should satisfy a finite lower bound on the Ohmic heating in the core provides strong prior information and gives finite error estimates at the core—mantle boundary.
The new method is applied to data from the epochs 1969.5 and 1980.0. The resulting field models are very much more complex than other models, such as the IGRF models extrapolated to the core, and show considerable small-scale detail which, on the basis of the error analysis, can be believed.
The flux integral over the northern hemisphere is computed at each epoch; the difference between the two epochs is approximately one standard deviation, suggesting that the question as to whether the decay of the dipole is consistent with the frozen-flux hypothesis has been resolved in favour of the hypothesis.  相似文献   

20.
Summary. A problem in modelling electromagnetic fields used in exploration geophysics is treated mathematically. Analytical expressions are obtained for the electric field due to a harmonic current in a horizontal loop on or above a conducting ground in which is buried a conductive and permeable sphere (ore body). The loop is coaxial with the sphere. For a general time-varying current in the loop, the analysis is carried to the stage where a Fourier inversion can be used to obtain readily the electric field in the time-domain. A new relationship between spherical and cylindrical wave functions is obtained as a transformation of local elements.
Solution of this problem has not been presented before in this form. Lee's solution of 1975 which uses an integral-equation formulation treats a similar problem without taking account of differences in magnetic permeability. The effects of magnetic permeability may have important and useful implications for geophysical explorations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号