首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
To determine the I distribution in Chinese coals, a nationwide survey was undertaken based on the distribution, periods of formation, rank and production yields of various coal deposits. A total of 305 coal samples were collected and their I contents were determined by catalytic spectrophotometry with pyrohydrolysis. The geochemistry of I during coalification (including both peat diagenesis and coal metamorphism) was assessed. It was found that the I contents of Chinese coals range from 0.04 mg kg–1 to 39.5 mg kg–1 and exhibit a lognormal distribution, with a geometric mean of 1.27 mg kg–1. Statistical correlation analysis and the observation that I contents increase with coal rank indicate that coal I is chalcophile in nature, and not generally organically bound. When peat developed into lignite through diagenesis, 95–99.9% of the original I was lost. The composition and structure of clay minerals present in the coal were controlled by the original depositional environment. The higher the I content of coals, the more likely the original sediments were affected by a marine environment. Iodine contents increased from lignite through sub-bituminous and bituminous coals to anthracite. This indicates that coal absorbed excess I from hydrothermal fluids during metamorphism (including geothermal metamorphism and telemagmatic metamorphism). The telemagmatic metamorphism was caused by magmatic activities that depended on the specific geological structure of the region. In China, most high-rank coals were formed by telemagmatic metamorphism.  相似文献   

2.
Two South African coals of the same rank and age, but different in maceral composition were subjected to extensive structural analyses. Inertinite-rich Highveld coal (dominated by semifusinite) and vitrinite-rich Waterberg coal were studied to determine structural differences and similarities. The two coals had similar carbon content ( 84%, dmmf) and vitrinite reflectance (mean-maximum 0.71% for vitrinite-rich vs. 0.75% for inertinite-rich), but differed in hydrogen content (6.23% for vitrinite-rich and 4.53% for inertinite-rich). The inertinite-rich coal was more aromatic (86% for inertinite-rich and 76% for vitrinite-rich) and more polycondensed (indicated by a higher bridgehead carbon content). The inertinite-rich coal was structurally more ordered, with a higher degree of crystalline stacking. Both coals had similar average aromatic cluster sizes (16 carbons for vitrinite-rich and 18 carbons for inertinite-rich) and number of cluster attachments (6 attachments for vitrinite-rich and 5 attachments for inertinite-rich). Mass spectrometry showed that both coals consist of similar molecular weight distributions; ranging to approximately 1700 m/z with a maximum abundance of  450 m/z for the vitrinite-rich coal and  550 m/z for the inertinite-rich coal. Compared to the Argonne Premium coals the South African vitrinite-rich Waterberg coal was comparable to the coals in the high-volatile bituminous range and inertinite-rich Highveld was closer to the medium- to low-volatile bituminous range. Both coals were surprisingly similar in bulk characterization, although inertinite-rich Highveld coal was structurally more ordered, hydrogen deficient, and more aromatic.  相似文献   

3.
Thermally metamorphosed Tertiary age coals from Tanjung Enim in South Sumatra Basin have been investigated by means of petrographic, mineralogical and chemical analyses. These coals were influenced by heat from an andesitic igneous intrusion. The original coal outside the metamorphosed zone is characterized by high moisture content (4.13–11.25 wt.%) and volatile matter content (> 40 wt.%, daf), as well as less than 80 wt.% (daf) carbon and low vitrinite reflectance (VRmax = 0.52–0.76%). Those coals are of subbituminous and high volatile bituminous rank. In contrast the thermally metamorphosed coals are of medium-volatile bituminous to meta-anthracite rank and characterized by low moisture content (only < 3 wt.%) and volatile matter content (< 24 wt.%, daf), as well as high carbon content (> 80 wt.%, daf) and vitrinite reflectance (VRmax = 1.87–6.20%). All the studied coals have a low mineral matter content, except for those which are highly metamorphosed, due to the formation of new minerals.The coalification path of each maceral shows that vitrinite, liptinite and inertinite reflectance converge in a transition zone at VRmax of around 1.5%. Significant decrease of volatile matter occurs in the zone between 0.5% and 2.0% VRmax. A sharp bend occurs at VRmax between 2.0% and 2.5%. Above 2.5%, the volatile matter decreases only very slightly. Between VRr = 0.5% and 2.0%, the carbon content of the coals is ascending drastically. Above 2.5% VRr, the carbon content becomes relatively stable (around 95 wt.%, daf).Vitrinite is the most abundant maceral in low rank coal (69.6–86.2 vol.%). Liptinite and inertinite are minor constituents. In the high rank coal, the thermally altered vitrinite composes 82.4–93.8 vol.%. Mosaic structures can be recognized as groundmasss and crack fillings. The most common minerals found are carbonates, pyrite or marcasite and clay minerals. The latter consist of kaolinite in low rank coal and illite and rectorite in high rank coal. Change of functional groups with rank increase is reflected most of all by the increase of the ratio of aromatic C–H to aliphatic C–H absorbances based on FTIR analysis. The Oxygen Index values of all studied coals are low (OI < 5 mg CO2/g TOC) and the high rank coals have a lower Hydrogen Index (< 130 mg HC/g TOC) than the low rank coals (about 300 mg HC/g TOC). Tmax increases with maturity (420–440 °C for low rank coals and 475–551 °C for high rank coals).Based on the above data, it was calculated that the temperature of contact metamorphism reached 700–750 °C in the most metamorphosed coal.  相似文献   

4.
An evaluation was made of the degree of coalification of two coal balls from the Illinois Basin of the Pennsylvanian (upper Carboniferous) of the United States. Previous interpretations are mainly misleading and contradictory, primarily because of the assumption that the brown color and exceptional cellular and subcellular preservation typical of American coal balls imply chemical preservation of cellulose and lignin, the primary components of peat. Xylem tissue from a medullosan seed fern contained in a coal ball and the coal attached to the coal ball from the Calhoun coal bed, Mattoon Formation, Illinois, was analyzed by elemental, petrographic, and nuclear magnetic resonance (NMR) techniques to determine the degree of coalification. The NMR and elemental data indicate the lack of cellulose and lignin and a probable rank of high-volatile C bituminous coal. These data corroborate data for a coal ball from the Herrin (No. 6) coal bed (Carbondale Formation, Middle Pennsylvanian) and support our hypothesis that the organic matter in coal balls of the Pennsylvanian strata of the United States is coalified to about the same degree as the surrounding coal. Data presented show a range of lower reflectances for xylem tissue and vitrinite in the analyzed coal balls compared with vitrinite in the attached coal.The data reported indicate that physical preservation of organic matter in coal balls does not imply chemical preservation. Also our study supports the hypothesis that compactional (static load) pressure is not a prerequisite for coalification up to a rank of high-volatile C bituminous coal.A whole-rock analysis of the Calhoun coal ball indicates a similarity to other carbonate coal balls from the United States. It consists primarily of calcium carbonate and 1–2% organic matter; silica and alumina together make up less than 0.5%, indicating the lack of minerals such as quartz and clays.  相似文献   

5.
The coal deposits of southern Africa (Botswana, Malawi, Mozambique, Namibia, South Africa, Swaziland, Tanzania, Zambia and Zimbabwe) are reviewed. The coal seams formed during two periods, the Early Permian (Artinskian–Kungurian) and the Late Permian (Ufimian–Kazanian). The coals are associated with non-marine terrestrial clastic sedimentary sequences, most commonly mudrock and sandstones, assigned to the Karoo Supergroup. The Early Permian coals are most commonly sandstone-hosted while the younger coals typically occur interbedded with mudstones. The sediments were deposited in varying tectono-sedimentary basins such as foreland, intracratonic rifts and intercratonic grabens and half-grabens. The depositional environments that produced the coal-bearing successions were primarily deltaic and fluvial, with some minor shoreline and lacustrine settings. Coals vary in rank from high-volatile bituminous to anthracite and characteristically have a relatively high inertinite component, and medium- to high-ash content. In countries where coal is mined, it is used for power generation, coking coal, synfuel generation, gasification and for (local) domestic household consumption.  相似文献   

6.
The Upper Carboniferous, coal-bearing sequence of the Intrasudetic Basin (SW Poland) includes coals ranging from high-volatile bituminous to anthracitic rank. The lowest values of reflectance are recorded around the basin margins (0.6% R0 max), the highest ones appear in the center of the basin (exceeding 4% R0 max). Reflectance gradients are very high, reaching 0.6%/100 m in the centre of the basin.A comparison of the isoreflectance maps for three lithostratigraphical units—the Walbrzych, Bialy Kamien and Zacler Formations, with the present-day burial depth and the depth of burial during the Westphalian B/C—indicates that there is a strong relationship between reflectance and the sediment cover during the Westphalian B/C, particularly in the vicinity of Walbrzych and Lubawka. This suggests that the increase in coal rank is related to the increase in cover which permitted the temperature to build-up to high values.In the eastern and central parts of the basin and the Nowa Ruda area, higher reflectance than that derived from burial depth is observed which is believed to result from higher heat flow from the basement. The volcanic rocks of the Intrasudetic Basin appear to have little effect on coal rank and are not considered to be a significant contributor to the heat flow of the region.During coalification, the oldest Westphalian coal seams were buried to about 700 m and the youngest seams of the Walbrzych Formation to 900 m. Around the basin margins the coals had reached their present-day rank by the Westphalian B/C and in the central part probably by the end of the Stephanian. Most effective coalification took place during the Westphalian A,B occupying a period of less than 20 million years. The coalification temperature is calculated to be 160–170°C with a geothermal gradient of 8–10°C/100 m. These geothermal conditions support the suggestion of a volcanic origin for the Intrasudetic Basin.  相似文献   

7.
Coalified logs ranging in age from Late Pennsylvania to Miocene and in rank from lignite B to bituminous coal were analyzed by 13C nuclear magnetic resonance (NMR) utilizing the cross-polarization, magic-angle spinning technique, as well as by infrared spectroscopy. The results of this study indicate that at least three major stages of coalification can be observed as wood gradually undergoes transformation to bituminous coal. The first stage involves hydrolysis and loss of cellulose from wood with retention and differential concentration of the resistant lignin. The second stage involves conversion of the lignin residues directly to coalified wood of lignitic rank, during which the oxygen content of intermediate diagenetic products remains constant as the hydrogen content and the carbon content increases. These changes are thought to involve loss of methoxyl groups, water, and C3 side chains from the lignin. In the third major stage of coalification, the coalified wood increases in rank to subbituminous and bituminous coal; during this stage the oxygen content decreases, hydrogen remains constant, and the carbon content increases. These changes are thought to result from loss of soluble humic acids that are rich in oxygen and that are mobilized during compaction and dewatering. Relatively resistant resinous substances are differentially concentrated in the coal during this stage. The hypothesis that humic acids are formed as mobile by-products of the coalification of lignin and function only as vehicles for removal of oxygen represents a dramatic departure from commonly accepted views that they are relatively low-molecular-weight intermediates formed during the degradation of lignin that then condense to form high-molecular-weight coal structures.  相似文献   

8.
The association between specific mineral and organic constituents in two Asturian bituminous coals of different rank was studied. For this, raw coals were fractionated by density and the variation of a number of parameters was followed in parallel. Results of coal chemical analyses, including analyses for 22 elements, were used to establish the elemental association with coal organic matter. Petrographic analyses determined the distribution of macerals among densimetric fractions, vitrinite reflectance being at a minimum in the intermediate density fractions. Mineral species were identified by X-ray diffraction, FT-IR spectroscopy and Mössbauer spectroscopy. Comparison of trends for different parameters determined using this set of techniques allowed classification of the various minerals according to their association with organic matter. Carbonates seem to be specifically associated with the organic matter of the low-volatile bituminous coal whereas sulfides concentrate in the organic matter of the high-volatile bituminous coal. Vitrinite is the maceral exhibiting the most probable association with inorganic matter. The possibility of a merely physical association of fine-grained detrital minerals with organic matter cannot be excluded; nevertheless, one must bear in mind that even this type of interaction is important due to its effect on various coal preparation and utilization processes.  相似文献   

9.
In the present study, petrographic and geochemical investigation of Meghalayan coal deposits have been carried out to classify these coals in terms of rank, type and grade, using Indian and International classification schemes. Based on petrographic and geochemical characteristics, an attempt has also been made to identify the potential utilization of Meghalayan coals for various industrial applications. According to the study, these coals have been classified as sub-bituminous C to high volatile bituminous in rank, vitric in type and clean to ashy in grade. Considering their hydrocarbon potential, these coals are suitable for liquefaction and gasification.  相似文献   

10.
The Elk Valley coalfield of British Columbia is one of the major coal producing areas in Canada. The coals are of Cretaceous and Jurassic–Cretaceous age and range in rank from high-volatile to low-volatile bituminous (%Romax: 0.8–1.6). Coal seams from outcrops and active mines in this coalfield were analysed for rank and maceral composition using reflected light microscopy, for geochemistry using AAS, INAA, and ICPES, and also by proximate and ultimate analyses. The Elk Valley coal seams contain low average concentrations of hazardous elements such as As, Mo, Pb, and Se. However, there are seams that contain relatively high concentrations of some of these elements, such as 8 mg/kg and 108 mg/kg of arsenic. When the geochemistry of coal seams is compared within the different parts of the coalfield, the elemental composition amongst the seams from various sections located in the central area of the coalfield is similar. Coal seams in the northern area of the coalfield have different geochemistry than coal seams in other areas of the coalfield; seams in the northern area have much higher As, Br, Cr, Cu, Fe, K, and Na content, but contain less Ca.  相似文献   

11.
The Rocky Mountain basins of western North America contain vast deposits of coal of Cretaceous through early Tertiary age. Coalbed methane is produced in Rocky Mountain basins at depths ranging from 45 m (150 ft) to 1,981 m (6,500 ft) from coal of lignite to low-volatile bituminous rank. Although some production has been established in almost all Rocky Mountain basins, commercial production occurs in only a few. Despite more than two decades of exploration for coalbed methane in the Rocky Mountain region, it is still difficult to predict production characteristics of coalbed methane wells prior to drilling. Commonly cited problems include low permeabilities, high water production, and coals that are significantly undersaturated with respect to methane. Sources of coalbed gases can be early biogenic, formed during the early stages of coalification, thermogenic, formed during the main stages of coalification, or late stage biogenic, formed as a result of the reintroduction of methane-generating bacteria by groundwater after uplift and erosion. Examples of all three types of coalbed gases, and combinations of more than one type, can be found in the Rocky Mountain region. Coals in the Rocky Mountain region achieved their present ranks largely as a result of burial beneath sediments that accumulated during the Laramide orogeny (Late Cretaceous through the end of the Eocene) or shortly after. Thermal events since the end of the orogeny have also locally elevated coal ranks. Coal beds in the upper part of high-volatile A bituminous rank or greater commonly occur within much more extensive basin-centered gas deposits which cover large areas of the deeper parts of most Rocky Mountain basins. Within these basin-centered deposits all lithologies, including coals, sandstones, and shales, are gas saturated, and very little water is produced. The interbedded coals and carbonaceous shales are probably the source of much of this gas. Basin-centered gas deposits become overpressured from hydrocarbon generation as they form, and this overpressuring is probably responsible for driving out most of the water. Sandstone permeabilities are low, in part because of diagenesis caused by highly reactive water given off during the early stages of coalification. Coals within these basin-centered deposits commonly have high gas contents and produce little water, but they generally occur at depths greater than 5,000 ft and have low permeabilities. Significant uplift and removal of overburden has occurred throughout the Rocky Mountain region since the end of the Eocene, and much of this erosion occurred after regional uplift began about 10 Ma. The removal of overburden generally causes methane saturation levels in coals to decrease, and thus a significant drop in pressure is required to initiate methane production. The most successful coalbed methane production in the Rocky Mountain region occurs in areas where gas contents were increased by post-Eocene thermal events and/or the generation of late-stage biogenic gas. Methane-generating bacteria were apparently reintroduced into the coals in some areas after uplift and erosion, and subsequent changes in pressure and temperature, allowed surface waters to rewater the coals. Groundwater may also help open up cleat systems making coals more permeable to methane. If water production is excessive, however, the economics of producing methane are impacted by the cost of water disposal.  相似文献   

12.
张磊  田苗苗  曾世攀  郭鲁成  卢硕  唐俊 《岩土力学》2022,43(11):3015-3026
中国包含多种煤阶煤层,由于煤质、地质条件等差异,不同煤层中的水分赋存情况也具有较大差异性。煤阶、饱水度作为影响液氮低温致裂效果的两个重要因素,有必要对其进行深入研究。为此,分别选择褐煤、烟煤与无烟煤3种煤阶煤样,并制备得出饱水度分别为0%、33%与99%的煤样进行液氮溶浸处理,使用摄像机定点拍摄、观察煤样表面宏观裂隙处理前后的演化规律,并对煤样进行氮气渗流试验。试验结果表明:液氮溶浸后褐煤因产生的一条与多条贯穿裂隙发生整体结构上的断裂,烟煤表面有新裂隙产生,原生宏观裂隙有一定的扩展与延伸,无烟煤表面宏观裂隙无明显发育;煤样饱水度越高,液氮的致裂增透效果越显著;液氮溶浸对3种煤阶煤样的致裂增透效果关系为:褐煤>烟煤>无烟煤,在完全干燥状态下,由于热应力不足以破坏颗粒间链接,烟煤与无烟煤的增透效果近似相等;对于褐煤,液氮溶浸处理对完全干燥状态下的煤体即产生有效致裂,渗透率平均增幅高达559.35%,对于烟煤,在饱水度为33%和99%的状态下,液氮溶浸对煤体具有明显致裂效果,渗透率平均增幅分别为330.60%和448.77%,对于无烟煤,在饱水度为99%的状态下液氮溶浸处理才能对煤体产生有效致裂,渗透率平均增幅为185.53%。  相似文献   

13.
A ‘soft’ carbon-based high-volatile bituminous (Ro max=0.68%) coal and a ‘hard’ carbon-based Pennsylvania anthracite (Ro max=5.27%) were deformed in the steady state at high temperatures and pressures in a series of coaxial and simple shear deformation experiments designed to constrain the role of shear strain and strain energy in the graphitization process. Tests were carried out in a Griggs-t type solid (NaCl) medium apparatus at T=400–900°C, constant displacement rates of 10-5−10-6 s−1, at confining pressures of 0.6 GPa (coaxial) or 0.8 and 1.0 GPa (simple shear). Coaxial samples were shortened up to 50%, whereas shear strains up to 4.9 were attained in simple shear tests. Experiments lasted up to 118 h. Deformed, high-volatile bituminous coal was extensively coked and no correlation between strain and Ro max, bireflectance or coal texture was observed in any samples. With increasing temperature, Ro max and bireflectance increase in highly anisotropic, coarse mosaic units, but remain essentially constant in the fine granular mosaic, which becomes more abundant at higher temperatures. Graphite-like reflectances are observed locally only in highly reactive macerals and in pyrolytic carbon veins. The degree of molecular ordering attained in deformed bituminous coal samples appears to be determined by the heating-pressurization path rather than by subsequent deformation.Graphitization did not occur in coaxially deformed anthracite. Nonetheless, dramatic molecular ordering occurs at T>700°C, with average bireflectance values increasing from 1.68% at 700°C to 6.36% at 900°C. Anisotropy is greatest in zones of high strain at all temperatures. In anthracite samples deformed in simple shear over the 600–900°C range at 1.0 GPa, the average Ro max values increase up to 11.9%, whereas average bireflectance values increase up to 10.7%. Bireflectance increases with progressive bedding rotation and, thus, with increasing shear strain. Graphitization occurs in several anthracite samples deformed in simple shear at 900°C. X-ray diffraction and transmission electron microscopy of highly anisotropic material in one sample confirms the presence of graphite with d002=0.3363 nm. These data strongly suggest that shear strain, through its tendency to align basic structural units, is the factor responsible for the natural transformation of anthracite to graphite at temperatures far below the 2200°C required in hydrostatic heating experiments at ambient pressure.  相似文献   

14.
A quantitative 13C-NMR technique was applied to humic acids, isolated from total solvent extracts obtained from coals, varying in rank from lignite to medium volatile bituminous. The results from elemental analysis and 13C-NMR structural ratios are interpreted in the form of three distinct structural phases in the maturation of coal humic acids. These phases reflect the rank of the parent coals. A decrease in polar functional group content and corresponding increase in aromaticity is observed with increasing maturation of humic acid chemical structure. Limits are postulated for the oxygen content and level of aromaticity for humic acids derived from higher rank coals.  相似文献   

15.
Complete sorption isotherm characteristics of methane and CO2 were studied on fourteen sub-bituminous to high-volatile bituminous Indian Gondwana coals. The mean vitrinite reflectance values of the coal samples are within the range of 0.64% to 1.30% with varying maceral composition. All isotherms were conducted at 30 °C on dry, powdered coal samples up to a maximum experimental pressure of ~ 7.8 MPa and 5.8 MPa for methane and CO2, respectively.The nature of the isotherms varied widely within the experimental pressure range with some of the samples remained under-saturated while the others attained saturation. The CO2 to methane adsorption ratios decreased with the increase in experimental pressure and the overall variation was between 4:1 and 1.5:1 for most of the coals. For both methane and CO2, the lower-ranked coal samples generally exhibited higher sorption affinity compared to the higher-ranked coals. However, sorption capacity indicates a U-shaped trend with rank. Significant hysteresis was observed between the ad/desorption isotherms for CO2. However, with methane, hysteresis was either absent or insignificant. It was also observed that the coal maceral compositions had a significant impact on the sorption capacities for both methane and CO2. Coals with higher vitrinite contents showed higher capacities while internite content indicated a negative impact on the sorption capacity.  相似文献   

16.
This paper presents geological settings, stratigraphy, coal quality, petrography, reserves and the tectonic history of the Mongolian coal-bearing basins. This is based on a synthesis of the data from nearly 50 coal deposits. The results of ultimate and proximate analyses, and calorific value, maceral composition and vitrinite reflectance data is given.The coal deposits of Mongolia tend to become younger from west to east and can be subdivided into two provinces, twelve basins, and three areas. Main controlling factor of coal rank is the age of the coal bearing sequences. Western Mongolian coal-bearing province contains mostly high rank bituminous coal in strata from Late Carboniferous. The basins in southern Mongolia and the western part of central Mongolia have low rank bituminous coal in strata from the Permian. The northern and central Mongolian basins contain mainly Jurassic subbituminous coal, whereas the Eastern Mongolian province has Lower Cretaceous lignite. The Carboniferous, Permian and Jurassic coal-bearing sequences were mainly deposited in foreland basins by compressional tectonic event, whereas Cretaceous coal measures were deposited in rift valleys caused by extensional tectonic event. Petrographically, Mongolian coals are classified as humic type. Vitrinite/huminite groups of Carboniferous, Permian, and Cretaceous coal range from 44.9% to 82.9%. Inertinite group varies between 15.0% and 53.3%, but liptinite group does not exceed more than 7%. Jurassic coals are characterized by high percentages of vitrinite (87.3% to 96.6%) and liptinite groups (up to 11.7%). This might be explained by paleoclimatic conditions. Mongolian coal reserves have been estimated to be 10.2 billion tons, of which a predominant portion is lignite in the Eastern Mongolian province and coking coal in the South Gobi basin.  相似文献   

17.
The effect of petrographic composition on the methane sorption capacity has been determined for a suite of coals and organic-rich shales. Subbituminous and bituminous coals were separated into bright and dull lithotypes by hand-picking. The methane sorption capacities range between 0.5 and 23.9 cm3/g at a pressure of 6 MPa. The low volatile bituminous Canmore coal and the anthracite sample have the highest capacities with the “natural coke” having the lowest. For low-rank coals there is no significant difference between bright and dull samples except for one coal with the dull sample having a greater sorption capacity than its bright equivalent. For higher-rank coals, the bright samples have a greater methane capacity than the dull samples and the difference between sample pairs increases with rank. The boghead coal samples have the highest sorption capacities in the liptinite-rich coals suite and are higher than subbituminous to medium volatile bituminous samples. Pore size distribution indicates that methane is held as solution gas in liptinite-rich coals and by physical sorption in micropores in liptinite-poor coals. These contrasting processes illustrate that liptinite-rich samples need to be independently assessed. The positive relationship between reactive inertinite content and methane sorption capacity occurs within the subbituminous to medium volatile bituminous coals because the reactive inertinite is structurally similar to vitrinite and have a higher microporosity than non-reactive inertinite. Reactivity of inertinite should be assessed in CBM studies of dull coals to provide a better understanding of petrographic composition effects on methane capacity.  相似文献   

18.
Because of the short supply of high-quality coking coals in certain areas of the world, many methods of improving the coking characteristics of poorly coking or noncoking coals have been examined as alternatives to importing more expensive, better quality coals. Co-carbonization, or the addition of coal-derived or petroleum-derived materials to the coal charge prior to carbonization, has been used on a commercial basis in the Japanese coking industry. These additives have been used in both solid and liquid form as binders in coal briquettes or as direct additions to the coal blend.In this study three different coal lithotypes were sampled from each of three United States bituminous coal seams: (1) a marginally coking high-volatile B-rank Illinois No. 6 Seam; (2) a highly fluid, good coking quality, high-volatile A-rank Pittsburgh Seam; and (3) a strongly coking low-volatile Blue Creek Seam. Each lithotype sample was carbonized in small-scale (50 g) charges with each of three additives at 0, 2, 5, and 10% additive by weight. The additives included ASP, an asphalt pitch; KRP, a petroleum residue pitch; and SRC, a solvent-refined coal product. The different lithotypes were sampled to examine the effects of coal type as well as rank. A micro-tumbler test was used to give at least a relative coke-strength value for the cokes produced. In addition, all the cokes produced were examined microscopically to determine the effects of co-carbonization on the coke structure.The Illinois No. 6, Pittsburgh, and Blue Creek Seam coals all showed substantial strength increases when co-carbonized with 2, 5, and 10% of each of the three additives, particularly at the 5 and 10% levels. The SRC appears to be the best additive overall for the three ranks of coal, as judged by its ability to combine with the coal to make a higher strength coke. There appear to be no conclusive coke-strength differences among lithotype samples for any of the three coals, probably because of the small scale of the tests and the relatively small differences in inert maceral content among the lithotypes. Five percent by weight of additive appears to be sufficient, if properly blended with the coal charge, to produce higher strength cokes. This is also probably the maximum economically viable level, particularly in the United States coking industry. Two percent is probably the minimum additive level for adequate mixing on a commercial scale.  相似文献   

19.
Sorption and desorption behaviour of methane, carbon dioxide, and mixtures of the two gases has been studied on a set of well-characterised coals from the Argonne Premium Coal Programme. The coal samples cover a maturity range from 0.25% to 1.68% vitrinite reflectance. The maceral compositions were dominated by vitrinite (85% to 91%). Inertinite contents ranged from 8% to 11% and liptinite contents around 1% with one exception (Illinois coal, 5%). All sorption experiments were performed on powdered (−100 mesh), dry coal samples.Single component sorption/desorption measurements were carried out at 22 °C up to final pressures around 51 bar (5.1 MPa) for CO2 (subcritical state) and 110 bar (11 MPa) for methane.The ratios of the final sorption capacities for pure CO2 and methane (in molar units) on the five coal samples vary between 1.15 and 3.16. The lowest ratio (1.15) was found for the North Dakota Beulah-Zap lignite (VRr=0.25%) and the highest ratios (2.7 and 3.16) were encountered for the low-rank coals (VRr 0.32% and 0.48%) while the ratio decreases to 1.6–1.7 for the highest rank coals in this series.Desorption isotherms for CH4 and CO2 were measured immediately after the corresponding sorption isotherms. They generally lie above the sorption isotherms. The degree of hysteresis, i.e. deviation of sorption and desorption isotherms, varies and shows no dependence on coal rank.Adsorption tests with CH4/CO2 mixtures were conducted to study the degree of preferential sorption of these two gases on coals of different rank. These experiments were performed on dry coals at 45 °C and pressures up to 180 bar (18 MPa). For the highest rank samples of this sequence preferential sorption behaviour was “as expected”, i.e. preferential adsorption of CO2 and preferential desorption of CH4 were observed. For the low rank samples, however, preferential adsorption of CH4 was found in the low pressure range and preferential desorption of CO2 over the entire pressure range.Follow-up tests for single gas CO2 sorption measurements consistently showed a significant increase in sorption capacity for re-runs on the same sample. This phenomenon could be due to extraction of volatile coal components by CO2 in the first experiment. Reproducibility tests with methane and CO2 using fresh sample material in each experiment did not show this effect.  相似文献   

20.
Chars produced by the combustion of a set of three coals from Alberta, Canada, were classified morphologically using reflected light microscopy. Produced chars are different in morphological features, pore thickness, anisotropy and degree of reactivity, because of differences in the vitrinite and inertinite contents.The subbituminous A coal produced the highest percentage of unreactive or slightly reactive components due to its high inertinite content (20.0%), followed by isotropic cenospheres. Isotropic cenospheres, both thin- and thick-walled, and exploded cenospheres are the characteristic chars produced by the high-voltile bituminous B coal, whereas the low-volatile bituminous coking coal produced cenospheres with granular anisotropy (mosaic) on the walls and abundant coke fragmentsOptical microscopy is useful in differentiating the performance of a series of coals during combustion based on petrographic composition and rank and can aid in understanding the relationship between ‘reactive’ and ‘non-reactive’ coal macerals to burnout performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号