首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four natural peridotite nodules ranging from chemically depletedto Fe-rich, alkaline and calcic (SiO2 = 43.7–45.7 wt.per cent, A12O3 = 1.6O–8.21 wt. per cent, CaO = 0.70–8.12wt. per cent, alk = 0.10–0.90 wt. per cent and Mg/(Mg+Fe2+)= 0.94–0.85) have been investigated in the hypersolidusregion from 800? to 1250?C with variable activities of H2O,CO2, and H2. The vapor-saturated peridotite solidi are 50–200?Cbelow those previously published. The temperature of the beginningof melting of peridotite decreases markedly with decreasingMg/(Mg+SFe) of the starting material at constant CaO/Al2O3.Conversely, lowering CaO/Al2O3 reduces the temperature at constantMg/(Mg+Fe) of the starting material. Temperature differencesbetween the solidi up to 200?C are observed. All solidi displaya temperature minimum reflecting the appearance of garnet. Thisminimum shifts to lower pressure with decreasing Mg/(Mg + Fe)of the starting material. The temperature of the beginning ofmelting decreases isobarically as approximately a linear functionof the mol fraction of H2O in the vapor (XH2Ov). The data alsoshow that some CO2 may dissolve in silicate melts formed bypartial melting of peridotite. Amphibole (pargasitic hornblende) is a hypersolidus mineralin all compositions, although its P/T stability field dependson bulk rock chemistry. The upper pressure stability of amphiboleis marked by the appearance of garnet. The vapor-saturated (H2O) liquidus curve for one peridotiteis between 1250? and 1300?C between 10 and 30 kb. Olivine, spinel,and orthopyroxene are either liquidus phases or co-exist immediatelybelow the temperature of the peridotite liquidus. The data suggest considerable mineralogical heterogeneity inthe oceanic upper mantle because the oceanic geotherm passesthrough the P/T band covering the appearance of garnet in variousperidotites. The variable depth to the low-velocity zone is explained byvariable aHjo conditions in the upper mantle and possibly alsoby variations in the composition of the peridotite itself. Itis suggested that komatiite in Precambrian terrane could formby direct melting of hydrous peridotite. Such melting requiresabout 1250?C compared with 1600?C which is required for drymelting. The genesis of kimberlite can be related to partial meltingof peridotite under conditions of XH2Ov = 0.5–0.25 (XCO2v= 0.5–0.75). Such activities of H2O result in meltingat depths ranging between 125 and 175 km in the mantle. Thisrange is within the minimum depth generally accepted for theformation of kimberlite.  相似文献   

2.
Four natural peridotite nodules ranging from chemically depletedto Fe-rich, alkaline and calcic (SiO2=43?7–45?7 wt. percent, Al2O3=1?6O–8?21 wt. per cent, CaO=0?70–8?12wt. per cent,alk=0?10–0?90 wt. per cent and Mg/(Mg+Fe2+)=0?94–0?85)have been investigated in the hypersolidus region from 800?to 1250?C with variable activities of H2O, CO2, and H2. Thevapor-saturated peridotite solidi are 50–200?C below thosepreviously published. The temperature of the beginning of meltingof peridotite decreases markedly with decreasing Mg/(Mg+Fe)of the starting material at constant CaO/Al2O3. Conversely,lowering CaO/Al2O3 reduces the temperature at constant Mg/(Mg+Fe)of the starting material. Temperature differences between thesolidi up to 200?C are observed. All solidi display a temperatureminimum reflecting the appearance of garnet. This minimum shiftsto lower pressure with decreasing Mg/(Mg+Fe) of the startingmaterial. The temperature of the beginning of melting decreasesisobarically as approximately a linear function of the mol fractionof H2O in the vapor (XH2O). The data also show that some CO2may dissolve in silicate melts formed by partial melting ofperidotite. Amphibole (pargasitic hornblende) is a hypersolidus mineralin all compositions, although its P/T stability field dependson bulk rock chemistry. The upper pressure stability of amphiboleis marked by the appearance of garnet. The vapor-saturated (H2O) liquidus curve for one peridotiteis between 1250? and 1300?C between 10 and 30 kb. Olivine, spinel,and orthopyroxene are either liquidus phases or coexist immediatelybelow the temperature of the peridotite liquidus. The data suggest considerable mineralogical heterogeneity inthe oceanic upper mantle because the oceanic geotherm passesthrough the P/T band covering the appearance of garnet in variousperidotites. The variable depth to the low-velocity zone is explained byvariable aH2O conditions in the upper mantle and possibly alsoby variations in the composition of the peridotite itself. It is suggested that komatiite in Precambrian terrane couldform by direct melting of hydrous peridotite. Such melting requiresabout 1250?C compared with 1600?C which is required for drymelting. The genesis of kimberlite can be related to partial meltingof peridotite under conditions of (). Such activities of H2Oresult in melting at depths ranging between 125 and 175 km inthe mantle. This range is within the minimum depth generallyaccepted for the formation of kimberlite.  相似文献   

3.
Pelitic xenoliths derived from amphibolite grade basement rocksoccur within a Pleistocene, trachytic, pyroclastic unit of theWehr volcano, East Eifel, West Germany: With increasing temperatureand/or prolonged heating at high temperature, quartz-plagioclaseand micaceous layers of the xenoliths have undergone meltingto form buchites and thermal reconstitution by dehydration reactions,melting and crystallization to form restites respectively. Thexenoliths provide detailed evidence of melting, high temperaturedecomposition of minerals, nucleation and growth of new phasesand P-T-fo2 conditions of contact metamorphism of basement rocksby the Wehr magma. Melting begins at quartz-oligoclase (An17·3Ab82·3Or0·4-An20·0Ab78·1Or1·9)grain boundaries in quartz-plagioclase rich layers and the amountof melting is controlled by H2O and alkalis released duringdehydroxylation/oxidation of associated micas. Initially, glasscompositions are heterogeneous, but with increasing degreesof melting they become more homogeneous and are similar to S-typegranitic minimum melts with SiO2 between 71 and 77 wt. per cent;A/(CNK) ratios of 1·2–1·4; Na2O < 2·95and normative corundum contents of 1·9–4·0per cent. Near micas plagioclase melts by preferential dissolutionof the NaAlSi3O8 component accompanied by a simultaneous increasein CaAl2Si2O8 (up to 20 mol. per cent An higher than the bulkplagioclase composition) at the melting edge. With increasingtemperature the end product of fractional melting is the formationand persistence of refractory bytownite (An78–80) in thosexenoliths where extensive melting has taken place. Initial stage decomposition of muscovite involves dehydroxylation(H2O and alkali loss). At higher temperatures muscovite breaksdown to mullite, sillimanite, corundum, sanidine and a peraluminousmelt. Mullite (40–43 mol. per cent SiO2) and sillimanite(49 mol. per cent SiO2) are Fe2O3 and TiO2 rich (up to 6·1–0·84and 3·6–0·24 wt. per cent respectively).Al-rich mullite (up to 77 wt. per cent Al2O3) occurs with corundumwhich has high Fe2O3 and TiO2 (up to 6·9 and 2·1wt. per cent respectively). Annealing at high temperatures andreducing conditions results in the exsolution of mullite fromsillimanite and ilmenite from corundum. Glass resulting fromthe melting of muscovite in the presence of quartz is peraluminous(A/(CNK) = 1·3) with SiO2 contents of 66–69 percent and normative corundum of 4 per cent. Sanidine (An1·9Ab26·0Or72·1-An1·3Ab15·9Or82·9)crystallized from the melt. Dehydroxylation and oxidation of biotite results in a decreaseof K2O from 8·6 to less than 1 wt. per cent and oxidetotals (less H2O + contents) from 96·5 to 88·6,exsolution of Al-magnetite, and a decrease in the Fe/(Fe + Mg)ratio from 0·41 to 0·17. Partial melting of biotitein the presence of quartz/plagioclase to pleonaste, Al-Ti magnetite,sanidine(An2·0Ab34·9Or63·1) and melt takesplace at higher temperatures. Glass in the vicinity of meltedbiotite is pale brown and highly peraluminous (A/CNK = 2·1)with up to 6 wt. per cent MgO+FeO(total iroq) and up to 10 percent normative corundum. Near liquidus biotite with higher Al2O3and TiO2 than partially melted biotite crystallized from themelt. Ti-rich biotites (up to 6 wt. per cent TiO2) occur withinthe restite layers of thermally reconstituted xenoliths. Meltingof Ti-rich biotite and sillimanite in contact with the siliceousmelt of the buchite parts of xenoliths resulted in the formationof cordierite (100 Mg/(Mg+Fe+Mn) = 76·5–69·4),Al-Ti magnetite and sanidine, and development of cordierite/quartzintergrowths into the buchite melt. Growth of sanidine enclosedrelic Ca-plagioclase to form patchy intergrowths in the restitelayers. Cordierite (100 Mg/(Mg+Fe+Mn) = 64–69), quartz,sillimanite, mullite, magnetite and ilmenite, crystallized fromthe peraluminous buchite melt. Green-brown spinels of the pleonaste-magnetite series have awide compositional variation of (mol. per cent) FeAl2O4—66·6–45·0;MgAl2O4—53·0–18·7; Fe3O4—6·9–28·1;MnAl2O4—1·2–1·5; Fe2TiO4—0·6–6·2.Rims are generally enriched in the Fe3O4 component as a resultof oxidation. Compositions of ilmenite and magnetite (single,homogeneous and composite grains) are highly variable and resultfrom varying degrees of high temperature oxidation that is associatedwith dehydroxylation of micas and melting. Oxidation mainlyresults in increasing Fe3+, Al and decreasing Ti4+, Fe2+ inilmenite, and increasing Fe2+, Ti4+ and decreasing Fe3+ in associatedmagnetite. A higher degree of oxidation is reached with exsolutionof rutile from ilmenite and formation of titanhematite and withexsolution of pleonaste from magnetite. Ti-Al rich magnetite(5·1–7·5 and 8·5–13·5wt. per cent respectively) and ilmenite crystallized from meltsin buchitic parts of the xenoliths. Chemical and mineralogic evidence indicates that even with extensivemelting the primary compositions of individual layers in thexenoliths remained unmodified. Apparently the xenoliths didnot remain long enough at high temperatures for desilicationand enrichment in Al2O3, TiO2, FeO, Fe2O3, and MgO that resultsby removal of a ‘granitic’ melt, and/or by interactionwith the magma, to occur. T °C-fo2 values calculated from unoxidized magnetite/ilmenitegive temperatures ranging from 615–710°C for contactmetamorphism and the beginning of melting, and between 873 and1054°C for the crystallization of oxides and mullite/sillimanitefrom high temperature peraluminous melts. fo2 values of metamorphismand melting were between the Ni-NiO and Fe2O3-Fe3O4 buffer curves.The relative abundance of xenolith types, geophysical evidenceand contact metamorphic mineralogy indicates that the xenolithswere derived from depths corresponding to between 2–3kb Pload = Pfluid. The xenoliths were erupted during the latestphreatomagmatic eruption from the Wehr volcano which resultedin vesiculation of melts in partially molten xenoliths causingfragmentation and disorientation of solid restite layers.  相似文献   

4.
Electron microprobe analyses are presented for new-formed mineralsfrom a small exposure of semi-schistose Taveyanne Formationof the pumpellyite-actinolite facies near Lo?che, Valais. Comparisonsare drawn with minerals of other low-grade metamorphic areas,especially in southern New Zealand. Sphene shows considerablesubstitution of Ca(Al,Fe)SiO4(OH) for CaTiSiO5. Epidotes aresharply divided into early pistacitic (Ps = 0.28–0.37)and later clinozoisitic varieties (Ps = 0.11–0.19). Pumpellyitesrange from pumpellyite-(Fe) to pumpellyite-(Al) and are generallyless Fe-rich than those of zeolite and prehnite-pumpellyitefacies. Pumpellyite inclusions in albitized plagioclase areparticularly low in Mg. Actinolites are low in A12O3, TiO2,and Na2O, essentially identical compositions being nucleatedon detrital augite, hornblende, and in the matrix. Phengitesare also extremely low in Na2O and TiO2. Chlorites are ripidolites.Albitized clastic plagioclase has the composition An0.7–1.6and albite in clinozoisite-calcite-albite-phengite-chloriteveins An2.1–2.3. Calcites carry minor Mn > Fe ? Mg.New-formed iron oxides are absent, whereas pyrrhotite and minorpyrite occur in one rock, buffering fs2 and indicating low fo2. Ratios Mg: Fe* (Fe* = total Fe) in coexisting chlorites andA1, Na-poor actinolites vary sympathetically both in the Lo?cheand southern New Zealand rocks here considered, giving KD =(Mg/Fe*) actlnolIte/(Mg/Fe*)chlorle = 1.72. Mg/Fe* ratios inpumpellyites tend to vary sympathetically with those of coexistingchlorites and actinolites but are more variable. Substitutionof (Fe, Mg)Si for A12 in phengitic micas and chlorites variessympathetically in the same suites between mafic volcanic andmore pelitic extremes. Various minor elements also behave ina consistent fashion, indicating an encouraging tendency towardsequilibrium. Variable (though small) A12O3 contents of actinolite,Fe: Al ratios in epidotes and pumpellyites, and Mg: Fe* ratiosin phengites, even within a single grain, are evidence of short-rangedisequilibrium; metamorphic equilibration is evidently easierbetween some crystal structures and structural sites than betweenothers. In phase rule analysis of assemblages in such rocks it is commonlynecessary to treat Fe2O3, FeO, and MgO as separate componentsand it may also be necessary to regard CO2 as an inert componentand/or to interpret observed assemblages as of low variance.The presence of the Ca-Al silicates and sphene indicates verylow Xco2 in the metamorphic fluids in all rocks examined exceptan albite-chlorite-calcite-quartz-anatase assemblage. But higherAn in albites than in isofacial and in greenschist facies rocksof southern New Zealand can be ascribed to significantly higherXco2 at Lo?che, especially in the veins, than in New Zealand. Pumpellyite and epidotes of the pumpellyite-actinolite faciestend to be lower in Fe and richer in Al than those of lowergrade facies. Important reactions include those of the formpumpellyite-(Fe3+)+chlorite+quartz+H2=pumpellyite-(Al)+actinolite,and pumpellyite+chlorite+quartz- ‘epidote’+actinolite+water.Careful selection of pumpellyite and chlorite compositions isrequired for experimental and chemographic analysis of pumpellyitestability. In the absence of critical data, temperatures ofabout 250–350? and pressures of several kilobars are provisionallysuggested for the Lo?che metamorphism.  相似文献   

5.
Crystallization of Chromite and Chromium Solubility in Basaltic Melts   总被引:6,自引:3,他引:6  
The equilibrium between chromite and melt has been determinedon four basalts at temperatures of 1200–1400?C over arange of oxygen fugacity (fo2) and pressures of 1 atm and 10kb. The Cr content of chromite-saturated melts at 1300?C and1 atm ranges from 0?05 wt.% Cr2O3 at a log fo2= –3 to1?4 wt.% at a log fo2=–12?8. The Cr2+/Cr3+ of melt increaseswith decreasing fo2 and is estimated by assuming a constantpartitioning of Cr3+ between chromite and melt at constant temperature.The estimated values of Cr2+/Cr3+ in the melt are at fo2 valuesof 4–5 orders of magnitude lower than the equivalent Fe2+/Fe3+values. The Cr/(Cr+Al) of chromite coexisting with melt at constanttemperature changes little with variation of fo2 below log fo2=–6.Five experiments at 10 kb indicate that Cr2O3 dissolved in themelt is slightly higher and the Cr/(Cr + Al) of coexisting chromiteis slightly lower than experiments at 1 atm pressure. Thus variationin total pressure cannot explain the large variations of Cr/(Cr+ Al) that are common to mid-ocean ridge basalt (MORB) chromite. Experiments on a MORB at 1 atm at fo2 values close to fayalite-magnetite-quartz(FMQ) buffer showed that the Al2O3 content of melt is highlysensitive to the crystallization or melting of plagioclase,and consequently coexisting chromite shows a large change inCr/(Cr + Al). It would appear, therefore, that mixing of a MORBmagma containing plagioclase with a hotter MORB magma undersaturatedin plagioclase may give rise to the large range of Cr/(Cr +Al) observed in some MORB chromite.  相似文献   

6.
The sapphirine (Sa)-spinel (Sp)-quartz (Qz)-bearing rocks fromPaderu occur as lenticular enclaves within the Precambrian khondalite-charnockiteterrane of southern India. In addition these rocks contain orthopyroxene(Opx), sillimanite (Sill), garnet (Gt), cordierite (Cd), biotite,potash feldspar (Kf), plagioclase, and symplectites of Cd-Kf-Qz-Opx.The symplectites may have formed from the breakdown of osumilite.Grain contacts of sapphirine and spinel with quartz are rarelyobserved and the incompatibility with quartz during later stagesis displayed by the development of several types of polymineralicreaction coronas. The coronas in the different rock types A,B, etc. are (minerals listed from core to rim of corona): (A-1) sapphirine-bearing rock type without spinel: Sa-Sill-Opx,Sa-Sill-Cd, Sa-Cd-Opx (A-2) sapphirine and spinel-bearing: Sp-Sa-Sill-Opx-Qz, Sp-Sa-Sill,Sp-Sa-Opx, Sp-Sill-Opx, Sp-Sa-Sill-Gt-Qz, Sa-Sill-Opx, Sp-Sa-Sill-Opx,Sa-Sill-Opx-Gt, Sp-Sa-Opx-Gt, Sp-Sa-Sill-Gt; and (B) spinel-bearingbut sapphirine free: Sp-Sill-Opx, Sp-Sill-Gt, Sp-Cd. Commonlythe coronas in the rock type A 2 and B also contain ilmeno-hematite?corundumin the core in association with spinel. These rock types alsoprovide textural evidence for later crystallization of Cd, Cd+ Sa, and Gt + Qz from Opx+Sill?Qz and Gt+Sill+Qz. Sapphirine is aluminous (near 7(Mg, Fe2+)O?9(Al, Fe3+)2O3?3SiO2)and contains up to 12?2 wt. per cent iron as FeO. Orthopyroxeneis also aluminous, containing up to 10?4 wt. per cent Al2O3.Sapphirine and spinel have relatively high contents of Fe2O3.XMg in the Fe-Mg minerals increases from rock type B to A2 toA1. A sequence of reactions has been deduced from coronas and otherreaction textures, and from the phase compatibility relationsin the FeO-MgO-Al2O3-SiO2-H2O system. The P-T-X relationshipsfrom geothermobarometry and petrogenetic grids, viz. µFe2O3vs. µFeO and µH2O vs. µFe2O3, suggest: (1)a retrograde, mildly decompressive trajectory from 900?60?C/65?0?7kb (core) to 760?50?C/5 ? 0?6 kb (rim); and (2) the observedmineralogy of the coronas and reactions deduced from them aredependent on the relative FeO, Fe2O3, and H2O contents of therocks (µFeO3, µFe2O3), and µH2O).  相似文献   

7.
BARSDELL  M. 《Journal of Petrology》1988,29(5):927-964
The mineralogy, petrography and geochemistry of a suite of clinopyroxene-richolivine tholenite lavas from Merelava island, Vanuatu are described.Located at the southern end of the Northern Trough back-arcbasin, this suite displays all the characteristics of primitiveisland arc lavas: flat REE patterns, depleted HFSE, enrichmentin K-group elements relative to LREE, highly calcic plagioclase(to An9 3 and Cr-rich spinels (cr-number80) Analysis of groundmasscompositions demonstrates that the variation in MgO within thelava suite (from 13?7 to 4?3% MgO) represents only a small departurefrom a liquid line of descent. Some of the more primitive lavas contain low-Al2O3 clinopyroxenemegacrysts (mg-number = 100Mg/(Mg+Fe2 + and ultramafic xenoliths,the latter ranging from fine-grained, tectonite wehrlites andchnopyroxene-bearing harzburgites, to coarse-grained cumulatewehrlites. The cumulate nodules, megacrysts and phenocrysts are shown tobe co-magmatic, and an empirical compositional relationshipis demonstrated for equilibrium olivine-clinopyroxene pairs,covering the observed fractionation range (mg-numberCpx=0?6375mg-numberO1 + 35?3). On the basis that the most primitive olivine(mg-number 91 7) is close to the liquidus composition, thiscompositional relationship demonstrates that clinopyroxene (mg-number=94,and containing no Fe3+) was also a liquidus phase. Clinopyroxeneswith mg-number>94 are the product of local oxidation duringmixing of primitive, relatively reduced magmas, and more evolved,oxidized magmas. This mixing also gave rise to relatively narrow,reversely zoned, internal rims on many clinopyroxene and olivinephenocrysts, cumulus crystals, and clinopyroxene megacrysts. Fractionation modelling demonstrates that the most differentiatedsample with 19 wt.% Al2O3 can be derived from the most primitivesample with 10?3% Al2O3 by removal of 48% crystals of clinopyroxeneand olivine in the proportions 73:27 Plagioclase is a late crystallizingphase and has an insignificant role in the fractionation process. The parent melt composition (mg-number=77) is deduced from themost primitive olivine composition and the liquid line of descent,and is shown to contain equal amounts of MgO and CaO (137 wt.%),a high CaO/Al2O3 ratio of 1?3 and an unusually low Ni contentof 137 ppm. Data from published high pressure (8–20 kb)experiments on melting of peridotite and pyrolite do not providean explanati in for the large normative diopside component inthis parent melt (38 mol.%), and a hypothesis is proposed wherebyhigh degrees of melting of refractory Iherzolite or harzburgite+acomponent of lower crustal pyroxenite and/or wehrlite takesplace at the base of the crust (5–55 kb). At this depth,and initially under hydrous conditions, high degrees of meltingwould progressively eliminate orthopyroxene and then clinopyroxeneto produce a dunite residue. The liquid produced near the pointof clinopyroxene elimination would be compatible with the highCaO and Sc contents, and high Sc/Ni, Cr/Ni and D1/Hy ratiosof the lavas, and the refractory nature of the phenocrysts.  相似文献   

8.
We have determined the Fe-Mg fractionation between coexistinggarnet and orthopyroxene at 20–45 kb, 975–1400?C,and the effect of iron on alumina solubility in orthopyroxeneat 25 kb, 1200?C, and 20 kb, 975?C in the FMAS system. The equilibriumcompositions were constrained by experiments with crystallinestarting mixtures of garnet and orthopyroxene of known initialcompositions in graphite capsules. All iron was assumed to beFe2+. A mixture of PbO with about 55 mol per cent PbF2 provedvery effective as a flux. The experimental results do not suggest any significant dependenceof KD on Fe/Mg ratio at T 1000?C. The lnKD vs. l/T data havebeen treated in terms of both linear and non-linear thermodynamicfunctional forms, and combined with the garnet mixing modelof Ganguly & Saxena (1984) to develop geothermometric expressionsrelating temperature to KD and Ca and Mn concentrations in garnet. The effect of Fe is similar to that of Ca and Cr3+ in reducingthe alumina solubility in orthopyroxene in equilibrium withgarnet relative to that in the MAS system. Thus, the directapplication of the alumina solubility data in the MAS systemto natural assemblages could lead to significant overestimationof pressure, probably by about 5 kb for the relatively commongarnetlherzolites with about 25 mol per cent Ca+Fe2+ in garnetand about 1 wt. per cent Al2O3 in orthopyroxene.  相似文献   

9.
Volcán Popocatépetl has been the site of voluminousdegassing accompanied by minor eruptive activity from late 1994until the time of writing (August 2002). This contribution presentspetrological investigations of magma erupted in 1997 and 1998,including major-element and volatile (S, Cl, F, and H2O) datafrom glass inclusions and matrix glasses. Magma erupted fromPopocatépetl is a mixture of dacite (65 wt % SiO2, two-pyroxenes+ plagioclase + Fe–Ti oxides + apatite, 3 wt % H2O, P= 1·5 kbar, fO2 = NNO + 0·5 log units) and basalticandesite (53 wt % SiO2, olivine + two-pyroxenes, 3 wt % H2O,P = 1–4 kbar). Magma mixed at 4–6 km depth in proportionsbetween 45:55 and 85:15 wt % silicic:mafic magma. The pre-eruptivevolatile content of the basaltic andesite is 1980 ppm S, 1060ppm Cl, 950 ppm F, and 3·3 wt % H2O. The pre-eruptivevolatile content of the dacite is 130 ± 50 ppm S, 880± 70 ppm Cl, 570 ± 100 ppm F, and 2·9 ±0·2 wt % H2O. Degassing from 0·031 km3 of eruptedmagma accounts for only 0·7 wt % of the observed SO2emission. Circulation of magma in the volcanic conduit in thepresence of a modest bubble phase is a possible mechanism toexplain the high rates of degassing and limited magma productionat Popocatépetl. KEY WORDS: glass inclusions; igneous petrology; Mexico; Popocatépetl; volatiles  相似文献   

10.
Blue Mountain is a central-type alkali ultrabasic-gabbro ringcomplex (1?1?5 km) introducing Upper Jurassic sediments, Marlborough,New Zealand. The ultrabasic-gabbroic rocks contain lenses ofkaersutite pegmatite and sodic syenite pegmatite and are intrudedby ring dykes of titanaugite-ilmenite gabbro and lamprophyre.The margin of the intrusion is defined by a ring dyke of alkaligabbro. The plutonic rocks are cut by a swarm of hornblende-biotite-richlamprophyre dykes. Thermal metamorphism has converted the sedimentsto a hornfels ranging in grade from the albite-epidote hornfelsfacies to the upper limit of the hornblende hornfels facies. The rocks are nepheline normative and consist of olivine (Fo82-74),endiopside (Ca45Mg48Fe7-Ca36Mg55Fe9), titanaugite (Ca40Mg50Fe10-Ca44Mg39Fe17),plagioclase (An73-18), and ilmenitetitaniferous magnetite, withvarious amounts of titaniferous hornblende and titanbiotite.There is a complete gradation between end-iopside and titanaugitewith the coupled substitution Ry+z+Si(Ti+4+Fe+3)+Al+3 and asympathetic increase in CaAl2SiO6 (0?2-10?2 percent) and CaTiAl2O6(2?1-8?1 per cent) with fractionation. Endiopside shows a small,progressive Mg enrichment along a trend subparallel to the CaMgSi2O6-Mg2Si2O6boundary, and titanaugite is enriched in Ca and Fe+2+Fe+3 withdifferentiation. Oscillatory zoning between endiopside and titanaugiteis common. Exsolved ilmenite needles occur in the most Fe-richtitanaugites. The amphiboles show the trend: titaniferous hornblende(1?0–5?7 per cent TiO2)kaersutite (6?4 per cent TiO2)Fe-richhastingsite (18?0–19?1 per cent FeO as total Fe). Biotiteis high in TiO2 (6?6–7?8 per cent). Ilmenite and titaniferousmagnetite (3?5–10?6 per cent TiO2) are typically homogeneousgrains; their composition can be expressed in terms of R+2RO3:R+2O:R2+3O4. The intrusion of igneous rocks was probably controlled by subterraneanring fracturing. Subsidence of the country rock within the ringfracture provided space for periodic injections of magma froma lower reservoir up the initial ring fracture to form the BlueMountain rocks at a higher level. Downward movement of the floorof the intrusion during crystallization caused inward slumpingof the cumulates which affected the textural, mineralogical,and chemical evolution of the rocks in different parts of theintrusion. The order of mineral fractionation is reflected by the chemicalvariation in the in situ ultrabasic-gabbroic rocks and the successiveintrusions of titanaugite-ilmenite gabbro and lamprophyre ringdykes, marginal alkali gabbro and lamprophyre dyke swarm. Aninitial decrease, then increase in SiO2; a steady decrease inMgO, CaO, Ni, and Cr: an initial increase, then decrease inFeO+Fe2O3, TiO2, MnO, and V; almost linear increase in Al2O3and late stage increase in alkalis and P2O3, implies fractionationof olivine and endiopside, followed by titanaugite and Fe-Tioxides, followed by plagioclase, hornblende, biotite, and apatite.Reversals in the composition of cumulus olivine and endiopsideand Solidification Index, indicate that the ultrabasic-gabbroicsequence is composed of four main injections of magma. The ultrabasic rocks crystallized under conditions of high PH2Oand fairly high, constant PO2; PH2 and PO2 increased duringthe formation of the gabbroic rocks until fracturing of thechamber roof occurred. The abundance of euhedral amphibole inthe latter injection phases suggests that amphibole accumulatedfrom a hydrous SiO2 undersaturated magma when an increase inPO2, stabilized its crystallization. Plutonic complexes similar to Blue Mountain are found withinand beneath the volcanic piles of many oceanic islands, e.g.Canaries, Reunion, and Tahiti, and those intruding thick sedimentarysequences, as at Blue Mountain, e.g. the pipe-like intrusionsof the Monteregian Hills, Quebec.  相似文献   

11.
Sapphirine occurs with humite-group minerals and forsteritein Precambrian amphibole-facies rocks at Kuhi-lal, SW PamirMountains, Tajikistan, a locality also for talc+kyanite magnesiohornblendewhiteschist. Most of these sapphirine-bearing rocks are graphiticand sulfidic (pyrite and pyrrhotite) and contain enstatite,clinohumite or chondrodite, spinel, rutile, gedrite, and phlogopite.A phlogopite schist has the assemblage with XFe = Fe/(Fe+Mg)increasing as follows: chlorite (0-003)<phlogopite (0.004–0.005)sapphirine (0.004–0.006) enstatite (0-006)forsterite (0-006–0-007)<spinel (0-014). This assemblage includes the incompatiblepair sapphirine+forsterite, but there is no textural evidencefor reaction. In one rock with clinohumite, XFe increases asfollows: clinohumite (0-002) <sapphirine (0-003) <enstatite(0-004–0-006) <spinel (0-010). Ion microprobe and wet-chemicalanalyses give 0-57–0-73 wt.% F in phlogopite and 0-27wt.% F in chlorite in the phlogopite schist; 0-04, 1.5–1.9,and 4.4 wt.% F in forsterite, clinohumite, and chondrodite,respectively; and 0-0-09 wt.% BeO and 0-05–0-21 wt.% B2O3in sapphirine. Stabilization of sapphirine+clinohumite or sapphirine+chondroditeinstead of sapphirine+phlogopite is possible at high F contentsin K-poor rocks, but minor element contents appear to be toolow to stabilize sapphirine as an additional phase with forsterite+enstatite+spinel.Although sapphirine+forsterite is metastable relative to spinel+enstatitein experiments conducted at aH2O=1 in the MgO-Al2O3-SiO2-H2Osystem, it might be stabilized at aH2O0.5, P4 kbar, T650–700C.Textures in the Kuhi-lal whiteschists suggest a polymetamorphicevolution in which the rocks were originally metamorphosed atT650C, P 7 kbar, conditions under which sapphirine+clinohumiteand sapphirine+chondrodite are inferred to have formed, andsubsequently affected by a later event at lower P, similar T,and lower aH2O. The latter conditions were favorable for sapphirine+forsteriteto form in a rock originally containing chlorite+forsterite+spinel+enstatite.  相似文献   

12.
The system peridotite-H2O–CO2 serves as a simplified modelfor the phase relations of mantle peridotite involving morethan one volatile component. Run products obtained in a studyof phase relations of four mantle peridotites in the presenceof H2O- and (H2O+CO2)- bearing vapors and with controlled hydrogenfugacity (fH2) at high pressures and temperatures have beensubjected to a detailed chemical investigation, principallyby the electron microprobe. Mg/(Mg+Fe) of all phases generally increases with increasingtemperature and with increasing Mg/(Mg+Fe) of the starting material.This ratio appears to decrease with increasing pressure forolivine, and for amphibole coexisting with garnet. DecreasingfH2 from that of IW buffer to that of MH buffer decreases Mg/(Mg+Fe)of the partial melt from approximately 0-85 to approximately0.50, whereas the Fo content of coexisting olivine increasesslightly less than 3 per cent and the Mg/(Mg+Fe) of clinopyroxeneincreases about 4 per cent. However, the variations in Fo contentof olivines are within those observed in olivines from naturalmantle peridotite. The chemistry of other silicate mineralsdoes not significantly reflect variations of fH2. Consequently,the peridotite mineralogy and/or chemistry is not a good indicatorfor the fH2 conditions during crystallization. All crystalline phases, except amphibole, and to some extentgarnet, show increasing Cr content with increasing temperatureand increasing Cr content of the starting material, resultingin a positive correlation with Mg/(Mg+Fe). Partial melts aredepleted in Cr2O3 relative to the crystalline phases. High Mg/Mg+Fe)and Cr2O3 are thus expected in crystal residues after partialmelting. The absolute values depend on degree of melting andthe composition of the parent peridotite. Liquids formed by anatexis of mantle peridotite are andesiticunder conditions of XH2Ov > 0.6 to at least 25 kb total pressureand to more than 200?C above the peridotite solidus. This observationsupports numerous suggestions that andesite genesis in islandarcs may result from partial melting of underlying peridotitemantle. In contrast to basaltic rocks, the absence of amphibole(paragasitic hornblende) does not affect the silica-saturatednature of the liquids. Increasing K2O content of the startingmaterial (up to 1 wt. per cent K2O) results in increasing potassiumcontent of the amphibole (1 wt. per cent K2O) as well as theappearance of phlogopite. The liquid under these conditionsis relatively K20-poor (less than 1 wt. per cent K2O). Partial melts are olivine normative with XH2O 0.5, and initialliquids contain normative ol and ne at XH2O 0.4. The alkalinityof these liquids increases with decreasing XH2O below valuesof 0.5. The (ol+opx)-normative liquids resemble oceanic basaltswhereas (ol+ne)-normative liquids resemble olivine nepheliniteand melilite basalt. Low aHlo and high aCo2 conditions may bethose under which kimberlites and related rocks are formed inthe mantle.  相似文献   

13.
Three kornerupine occurrences are reported in distinctive SiO2-poor, MgO- and Al2O3-rich paragneisses from the Namaqualand Metamorphic Complex in South Africa. Kornerupine coexists stably with phlogopite, cordierite, orthopyroxene, gedrite, sapphirine, sillimanite and plagioclase and, in sapphirine-free rocks, with spinel and corundum. Tourmaline of a texturally older generation than kornerupine is commonly present in the same samples.Ten analysed kornerupines show a variation in total Fe as FeO from 1.8 to 10.9 weight per cent. B2O3 contents are estimated from x-ray data and a few spectrochemical analyses to range from 0.9 to 3.5 weight per cent. There is a strong inverse correlation between B3+ and Al3+. Total iron content has a strong and systematic effect on refractive index, colour and dispersion. Fe and Mg are systematically partitioned with the other minerals, and Mg/(Mg+Fe) ratios increase as follows: spinel 相似文献   

14.
Boron-bearing kornerupine was synthesized in the simplest possible model system at fluid pressures and temperatures both within and outside the stability field of boron-free kornerupine. Best conditions for synthesis of single-phase products are 7 kb and 830 °C. Microprobe and wet chemical analyses as well as X-ray studies indicate compositional variations of kornerupines regarding all five constituent components: Increasing B-contents (from 0.37 to 3.32 wt% B2O3) are correlated with decreasing OH? values largely according to the Eq. B3+?3 H+; the ratio MgO∶Al2O3SiO2 varies from 4∶3∶4 in the direction towards 1∶1∶1. Thus kornerupine exhibits an at least ternary range of solid solution in the system studied. Crystallochemically speaking it is significant that, although the Mg∶Al∶Si ratio of kornerupine may remain constant with increasing boron contents, the total number of cations per formula unit increases beyond the ideal number of 14.0 as given by Moore and Bennett (1968). Considering the presence of an additional structural site at (000) it is suggested that the introduction of boron initiates a sequence of substitutions such as $$B^{[4]} \to Si^{[4] } \to A1^{[4]} \to Mg^{[6]} \to \square$$ . The filling of this site, empty in boron-free kornerupine, by Mg is connected with a loss of hydrogen located near this site. Petrologically speaking an exchange reaction relation exists between kornerupine and its coexisting fluid according to the equation Boron-free kornerupine+B2O3=boron-kornerupine+H2O. The molar fractions $$X_{B_2 O_3 } = B_2 O_3 /\left( {B_2 O_3 + H_2 O} \right)$$ of kornerupines exceed those of their coexisting fluids by about one order of magnitude. Fluids with relatively low XB 2 O 3 lead to the coexistence of kornerupine with boron-free minerals such as enstatite and sapphirine, fluids with relatively high XB 2 O 3 produce the boron-minerals grandidierite, sinhalite, and tourmaline (in the present system without Na!) in addition to kornerupine.  相似文献   

15.
Thermodynamic calculations based on addition of mass balanceequations to the Gibbs Method (Spear, 1986) are used to modelthe cordierite-producing reaction in pelitic gneiss from theMcCullough Range, southern Nevada. Calculations which treatthe model paragenesis as a system open to transfer of H2O areconsistent with textural relations. Results indicate that cordieritegrew by the continuous net-transfer reaction: 0?76 BIO+1?72 SILL+3? 55 QTZ+0?27 PLG+0?005 GRT +0?06Al2R2+–1Si–1[BIO]1?02 KSP+0?76 H2O +0?30 FeMg–1[CRD]+0?15FeMg–1[BIO]+0?0005 FeMg–1[GRT] +0?005 CaNaAl–1Si–1[PLG] with decreasing P, decreasing T, and increasing aH2O The steepretrograde dP/dT path for these low-pressure granulites contrastswith isobaric cooling paths typical of higher pressure granulites,and suggests uplift and erosion were active during Proterozoicgranulite-grade metamorphism in this area.  相似文献   

16.
The major mineral assemblages of the metabasites of the Omoiji-Nagasawaarea in central Shikoku are hematite+epidote+chlorite+actinolite,riebeckitic actinolite+epidote+chlorite, epidote+chlorite+actinolite,and pumpellyite+epidote+chlorite+actinolite. The constituentminerals are often heterogeneous and assemblages in the fieldof a thin section sometimes do not obey the phase rule, butif grains apparently in non-equilibrium with others are excludedand domains of chemical equilibrium are appropriately chosenthe assemblages approximately obey the phase rule. The stability of hematite, pumpellyite, and epidote associatedwith chlorite and actinolite can be dealt with in terms of aternary system with appropriate excess phases. By fixing theFe2+/(Fe2+ +Mg) ratio of chlorite, it is dealt with in termsof stability relations in the system Ca2Al3Si3O12(OH)–Ca2AlFe2Si3O12(OH)with excess chlorite, actinolite, quartz, and controlled PH2O.The maximum and minimum Fe3+ contents of epidote in this modelsystem are determined by hematite+epidote+chlorite+actinoliteand pumpellyite+epidote+chlorite+actinolite assemblages. Themaximum Fe3+ of the three phase assemblage epidote+chlorite+actinoliteis insensitive to temperature, but the minimum Fe3+ contentof epidote is sensitive to temperature and can be used to definethe metamorphic grade by a continuous quantity related to temperature.The phase relations expected for the model system are in goodagreement with the parageneses of the Sanbagawa terrain in centralShikoku and offer an explanation to the rule of Miyashiro &Seki (1958a) that the compositional range of epidote enlargeswith increasing temperature. The model also makes it possibleto estimate semi-quantitatively the temperature range in whichthe assemblage pumpellyite+epidote+chlorite+actinolite is stable.The possible maximum range is about 120 ?C, but the assemblageis stable in metabasite only for about 90 ?C. The higher temperaturelimit of the pumpellyite-actinolite facies defined by the disappearanceof pumpellyite in metabasite corresponds to the temperatureat which epidote with Fe3+/(Fe3+ +Al) = 0.10 0.15 coexistswith pumpellyite, actinolite, and chlorite. The compositions of epidotes in the metabasites of the Omoiji-Nagasawaarea cluster around Fe3+/(Fe3+ +Al) = 0.33. The grade of thisarea is close to the lower temperature stability limit of thepumpellyite+epidote+chlorite+actinolite assemblage.  相似文献   

17.
The Younger Andesites and Dacites of Iztacc?huatl volcano, Mexico,constitute a medium-K calcalkaline rock suite (58–66 wt.per cent SiO2) characterized by high Mg-numbers (100Mg/(Mg+0?85Fe2+=55–66) and relatively high abundances of MgO (2?5–6?6wt. per cent), Ni(17–158 p.p.m.), and Cr (42–224p.p.m.). Chemical stratigraphy plots of eruptive sequences indicatethe existence of a plexus of long-lived dacite magma chambersperiodically replenished by influxes of basaltic magma ascendingfrom depth. Short-term geochemical evolution after batch influxwas dictated by magma mixing and eventual dilution of the basalticcomponent by ‘quasi-steady state’ hornblende dacitemagma. The chemical data support textural and mineralogicalevidence for rapid homogenization of originally diverse magmasby convective blending of residual liquids accompanied by dynamicfractional crystallization (Nixon, 1988). Internally-consistent mixing calculations used to derive thecomposition of basaltic magma influx incorporate analyticaluncertainties and the observed range of salic end-member compositions.Mafic end-members are basalts to basaltic andesites (52–54wt. per cent SiO2) with Mg-numbers (73–76), MgO (9–11wt. per cent), Ni (250 p.p.m.), and Cr (340–510 p.p.m.)concentrations, and liquidus olivine compositions (Fo90–88),appropriate for unfractionated partial melts of mantle peridotite.The majority of model compositions are Ol-Hy-normative, similarto those of primitive basaltic lavas on the flanks of Iztacc?huatland in the Valley of Mexico. However, calculated magma batchesrange from weakly Qz-normative to strongly Ne-normative. Bothcalculated and analyzed basaltic compositions are distinguishedby highly variable abundances of alkalies and incompatible traceelements, notably Rb, Ba, Sr, P, Zr, and Y. Initial 87Sr/86Sr ratios for Iztacc?huatl lavas (0?7040–0?7046;n=24) are comparable to those for primitive basaltic rocks (0?7037–0?7045;?=4) and indicate that (1) mantle source regions are isotopicallyheterogeneous; and (2) contamination of iztacc?huatl magma chambersby radiogenic crustal rocks was not a significant factor inthe evolution of calc-alkaline andesites and dacites. The replenishment of Iztacc?huatl dacite reservoirs by Ne-normativemagmas late in the history of cone growth precludes exhaustionof mantle source regions by progressive partial melting. Thewaning stages of volcanic activity at Iztacc?huatl appear toreflect the inability of dense basaltic influxes to successfullypenetrate a large high-level chamber of low density hornblendedacite magma.  相似文献   

18.
The upper Triassic Karmutsen metabasites from northeast VancouverIsland, B.C., are thermally metamorphosed by the intrusion ofthe Coast Range Batholith. The amygdaloidal metabasites developedin the outer portion of the contact aureole show a progressivemetamorphism from zeolite to prehnite-pumpellyite facies. Thesize of an equilibrium domain is extremely small for these metabasites,and the individual amygdule assemblages are assumed to be inequilibrium. Two major calcite-free assemblages (+chlorite+quartz)are characteristic: (i) laumontite+pumpellyite+epidote in thezeolite facies and (ii) prehnite+pumpellyite+epidote in theprehnite-pumpellyite facies. The assemblages and compositionsof Ca-Al silicates are chemographically and theoretically interpretedon the basis of the predicted P-T grid for the model basalticsystem, CaO-MgO-A12O3-Fe2O3-SiO2-H2O. The results indicate:(1) local equilibrium has been approached in mineral assemblagesand compositions; (2) the XFe3+ values in the coexisting Ca-Alsilicates decrease from epidote, through pumpellyite to prehnite;(3) with increasing metamorphic grade, the Fe3+ contents ofepidotes in reaction assemblages decrease in the zeolite facies,then increase in the prehnite-pumpellyite facies rocks. Suchvariations in the assemblages and mineral compositions are controlledby a sequence of continuous and discontinuous reactions, andallow delineation of T-XFe3+ relations at constant pressure.The transition from the zeolite to prehnite-pumpellyite faciesof the Karmutsen metabasites is defined by a discontinuous reaction:0·18 laumontite+pumpellyite+0·15 quartz = 1·31prehnite+ 0·78 epidote+0·2 chlorite+ 1·72H2O, where the XFe3+ values of prehnite, pumpellyite and epidoteare 0·03, 0·10 and 0·18, respectively.These values together with available thermodynamic data andour preliminary experimental data are used to calculate theP-T condition for the discontinuous reaction as P = 1·1±0·5 kb and T = 190±30°C. The effectsof pressure on the upper stability of the zeolite facies assemblagesare discussed utilizing T-XFe3+ diagrams. The stability of thelaumontite-bearing assemblages for the zeolite facies metamorphismof basaltic rocks may be defined by either continuous or discontinuousreactions depending on the imposed metamorphic field gradient.Hence, the zeolite and prehnite-pumpellyite facies transitionboundary is multivariant.  相似文献   

19.
The Range of Spinel Compositions in Terrestrial Mafic and Ultramafic Rocks   总被引:33,自引:10,他引:33  
Compositional fields for spinels from a wide variety of mafic–ultramaficigneous rock types and tectonic environments have been determinedfrom a global database of over 26 000 analyses. These fieldsare defined using contoured data density plots based on thespinel prism, and plots of T iO2 vs ferric iron, for mantlexenoliths, ophiolitic rocks, continental layered intrusions,alkalic and lamprophyric rocks, tholeiitic basalts, Alaskanultramafic complexes and komatiites. Several trends appear regularlyin the various environments: a trend of widely variable Cr/(Cr+ Al) at low Fe2+/(Mg + Fe2+) (the Cr–Al trend); increasingFe3+, Fe2+/(Mg + Fe2+) and T iO2 at constant Cr/(Cr + Al) (Fe–Ti trend); a trend found primarily in kimberlites, similar toFe–T i but at constant Fe2+/(Mg + Fe2+); and an unusualtrend of increasing Al found only in layered intrusions. TheCr–Al and Fe–T i trends are both found to varyingdegrees in tholeiitic basalts. The Cr–Al trend is prevalentin rocks that have equilibrated over a range of pressures, whereasthe Fe–T i trend is dominantly due to low-pressure fractionation.The most Cr-rich chromites found in nature occur in boninites,diamond-bearing kimberlites, some komatiites and ophioliticchromitites. Exceptionally reduced chromites are found in somekomatiites and in ophiolitic chromitites. Detrital chromitesfrom the Witwatersrand conglomerates are of komatiitic provenance. KEY WORDS: basalt; chromite; kimberlite; ophiolite; spinel  相似文献   

20.
Modal mantle metasomatism, involving the re-enrichment of depletedmantle by the introduction or production of new hydrous phases,apatite and other minerals, has been proposed as a criticalprecursor to alkaline volcanism. The merits of the modal metasomatismmodel are evaluated by examining whole-rock 100 Mg/(Mg+Fe2+)ratios and the abundances of TiO2, K2O and P2O5 in mafic volcanicsspanning the mafic alkaline-subalkaline compositional spectrum.Upper mantle amphiboles and micas are also discussed becausethey would be major donors of Ti, Fe, and K to melts duringanatexis of either modally metasomatized depleted mantle orundepleted mantle. Compared with tholeiitic and calc-alkaline basalts and andesites,basanites and alkali basalts and alkali andesites are neitherdistinctive nor unique by virtue of persistant or well-definedhigher abundances of TiO2, K2O, and P2O5 or lower 100 Mg/(Mg+Fe2+)ratios, features which might reflect precursor modal metasomatismof the alkaline sources. Some basanites and alkali basalts dohave higher abundances of TiO2, K2O, and P2O5 than some tholeiitesbut these abundances may be the result of lower degrees of meltingof similar undepleted mantle sources for both magma types. The most widespread mantle phases of inferred metasomatic originare interstitial amphiboles and micas in Group I spinel peridotitexenoliths. These have high 100 Mg/(Mg+Fe) ratios ({small tilde}90) and high Cr2O3 and low TiO2 abundances, and the K2O/Na2Oratios of the amphiboles (chromian pargasites) are low, generallyless than 0?3. Interstitial amphiboles and micas developed asa result of near-isochemical hydration reactions which largelyinvolved Cr-spinel and Cr-diopside. Their formation was probablyinduced in many instances by fluids derived from crystallizingmafic magmas. Metasomatized Group I xenoliths with interstitialhydrous phases remain depleted in TiO2, K2O, and P2O5, and theyretain the high 100 Mg/(Mg+Fe) ratios characterizing depletedGroup I xenoliths. Together with the low K2O/Na2O ratios, thesefeatures preclude such peridotites as suitable sources of mostalkaline (and subalkaline) volcanics. It is suggested that modalmetasomatism plays an insignificant role in the genesis of mostmantle-derived mafic volcanics. Compared with the interstitial phases, kaersutitic amphibolesand titaniferous micas from vein, Group II inclusion and megacrystupper mantle parageneses have lower 100 Mg/(Mg+Fe) ratios andCr2O3 contents, and much higher TiO2 abundances. K2O/Na2O ratiosof the Ti-amphiboles are also much more wide-ranging (0?3 togreater than 1?0). These Fe, Ti-rich amphiboles and micas areneither widespread nor pervasive phases in metasomatized mantle.They are directly related to alkaline magmatism in the uppermantle where they may be associated with incompatible elementenrichment of peridotite wallrocks in the immediate vicinityof frozen conduits of alkaline mafic magmas. The varying K2O/Na2O ratios of mafic volcanics (MORB constitutea major exception) indicate that the principal K-bearing phasesin undepleted mantle are kaersutitic amphibole and titaniferousmica, in varying proportions. The former is probably the majorsource of Ti and K for low K/Na volcanics (K2O/Na2O < 0?5)and also many medium K/Na types (0?5 < K2O/Na2O < 1?0),whereas mica is more likely to be the major K-bearing phasein the source regions of high K/Na extrusives (K2O/Na2 >1?0). Experimental data indicate that kaersutitic amphibole,mica and apatite probably coexist in undepleted spinel- andgarnet lherzolites at pressures up to 25 kb, with mica persistingto pressures as high as 50 kb. It is proposed that undepleted asthenospheric mantle is heterogeneouswith respect to its amphibole, mica, and apatite contents (andhence TiO2, K2O, and P2O5 abundances and K2O/Na2O ratios), andalso with respect to 100 Mg/(Mg+Fe2+ ) ratios which may be significantlyless than the ratios generally assigned to undepleted mantle,namely 88–90.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号