首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The purpose of this study is to investigate the influence of tidal currents on sea ice in Spitsbergen fjords which may cause rapid decrease of the ice thickness due to erosion and melting of the ice. The effect was studied in-situ near the narrow channel connecting the Van Mijen Fjord and Lake Vallunden. The strong jet-like tidal currents in the strait driven by semidiurnal tide continue into the lake preventing ice freezing along a narrow strip during high tide and relatively warm weather. Understanding the formation of open water regions or regions with thin ice is important for the safe transportation on ice. We estimate conditions and representative time over which strong tidal current influences ice thickness along a narrow strip in solid ice. Changes of tidal phase and decrease in air temperature influence freezing of the strip in one-two days. While the tidal flow leaves the strait it overflows a shallow bar and generates internal lee waves propagating downslope and mixing the water. Tidal forcing of internal waves was measured using pressure gauges and by scanning of the ice surface during flood and ebb phases. Internal waves were measured using three types of CTD instruments and an ADCP current meter. The generation of wave packets occurs every tidal cycle when the current flows into the lake, but no generation occurs during the ebb phase of the tide because the currents over the bar slope are low. Parameters of internal waves are estimated. Model simulations confirm generation of internal wave train by the tidal current descending downslope.  相似文献   

2.
Internal tides and sediment movement on Horizon Guyot,Mid-Pacific Mountains   总被引:2,自引:0,他引:2  
Internal tidal currents are the likely cause of erosional features such as current ripples, sand waves, and truncated bedding horizons on the sediment cap of Horizon Guyot. Current meter data obtained over a 9 month period in 1983–1984 at about 213 m above the guyot show that the tidal currents are anomalously strong for mid-oceanic depths, probably the result of topographically induced generation of internal tidal waves. An analysis of the initiation of motion of the foraminiferal sand by the internal tidal currents indicates that these currents, particularly during the months of March–May, are likely to transport the surficial sediment and generate the observed bedforms.  相似文献   

3.
Vast bay-type tidal inlets can be found along the coastal zones of China. They are generally suitable for deep water channels and large harbors because of the presence of large water depth and good mooring conditions. The deep channel, in front of the head of Caofeidian Island in Bohai Bay, China, is a typical bay-type tidal inlet system. The tidal current, a type of reverse flow, makes the key contribution to maintain the deep water depth. The co-action of waves and tidal currents is the main dynamic force for sediment motion. Waves have significant influence on the sediment concentration. Based on the characteristics of waves, tidal currents, sediment and seabed evolution in Caofeidian sea area, a 2D mathematical model for sediment transport under influence of waves and tidal currents is developed to study the development schemes of the Caofeidian Harbor. The model has been verified for spring and neap tides, in winter as well as in summer of 2006. The calculated tidal stages, flow velocities, flow directions and sediment concentrations at 15 stations are in good agreement with the observations. Furthermore, the calculated data on pattern and magnitude of sedimentation and erosion in the related area agree well with the observations. This model has been used to study the effects of the reclamation scheme for Caofeidian Harbor on the hydrodynamic environment, sediment transport and morphological changes. Attentions are paid to the project inducing changes of flow velocities and morphology in the deep channel at the south side of Caofeidian foreland, in the Laolonggou channel and in various harbor basins. The conclusions can provide the important foundation for the protection and use of bay-type tidal inlets and the development of harbor industry.  相似文献   

4.
Based on the results of analyzing the characteristics of currents and temperature measured in the water space of the Mamala Bay (the Island of Oahu, Hawaii), we investigate the main properties of the field of short-period internal waves, which is very complex. We focus on analyzing the spectral characteristics and orbit parameters for waves with a period of 20 minutes. The results of investigations reveal two types of short-period internal waves for this area: intense and fast waves propagating predominantly toward the ocean and weaker and slower waves propagating mainly toward the coast. Suppositions are made on how these waves form: the strong and fast waves are likely to be caused by the decay of locally generated internal tides near the shelf edge, while the weak and slow and very short waves seem to result from the specific interaction between the pycnocline and strong tidal currents over a steep slope.  相似文献   

5.
Analysis of a comprehensive dataset of Synthetic Aperture Radar (SAR) images acquired over the sea area around the Mascarene Plateau in the western Indian Ocean reveals, for the first time, the full two-dimensional spatial structure of internal solitary waves in this region of the ocean. The satellite SAR images show that powerful internal waves radiate both to the west and east from a central sill near 12.5°S, 61°E between the Saya de Malha and Nazareth Banks. To first order, the waves appear in tidally generated packets on both sides of the sill, and those on the western side have crest lengths in excess of 350 km, amongst the longest yet recorded anywhere in the world's oceans. The propagation characteristics of these internal waves are well described by first mode linear waves interacting with background shear taken from the westward-flowing South Equatorial Current (SEC), a large part of which flows through the sill in question. Analysis of the timings and locations of the packets indicates that both the westward- and eastward-traveling waves are generated from the western side of the sill at the predicted time of maximum tidal flow to the west. The linear generation mechanism is therefore proposed as the splitting of a large lee wave that forms on the western side of the sill, in a similar manner to that already identified for the shelf break generation of internal waves in the northern Bay of Biscay. While lee waves should form on either side of the sill in an oscillatory tidal flow, that on the western side would be expected to be much larger than that on the eastern side because of a superposition of the tidal flow and the steady westward flow of SEC. The existence of a large lee wave at the right time in the tidal cycle is then finally confirmed by direct observations. Our study also confirms the existence of second mode internal waves that form on the western side of the sill and travel across the sill towards the east.  相似文献   

6.
The generation mechanism of internal waves by a relatively strong tidal flow over a sill is clarified analytically. Special attention is directed to the role of the tidal advection effect, which is examined by use of characteristics. An internal wave which propagates upstream is gradually formed through interference of infinitesimal amplitude internal waves (elementary waves) emanating from the sill at each instant of time. In the accelerating (or decelerating) stage of the tidal flow, the effective amplification of the internal wave takes place as the internal Froude number exceeds (or falls below) unity because during this period the internal wave slowly travels downstream (or upstream) while crossing over the sill where elementary waves are efficiently superimposed. In fact, the variability in the internal wave field actually observed in a realistic situation (Stellwagen Bank in Massachusetts Bay) is shown to be satisfactorily interpreted in terms of this mechanism. Furthermore, by using this analytical model, the relation between the strength of the tidal advection effect and the resulting internal waveform is clarified. This theory is easily extended to include a vertically sheared steady flow. In this case, although the fundamental generation mechanism is the same as above, the amplitude of the elementary wave varies with time depending on the relative direction of the tidal flow and steady shear flow, so that the internal wave field over the sill differs markedly between the ebb and flood tidal phases. As an example, the internal wave generation process over the sill in the Strait of Gibraltar is qualitatively discussed on the basis of this analytical model. The effect of vertical mixing caused by breaking of these large-amplitude internal waves on the coastal environment is also pointed out. In particular, a brief discussion is made on the control of water exchange by the fortnightly modulation of tidal mixing processes at the sills and constrictions in channels connecting freshwater sources with the ocean.  相似文献   

7.
Based on the characteristics of waves, tidal currents, sediment and seabed evolution in the Caofeidian sea area in the Bohai Bay, a 2D sediment mathematical model of waves and tidal currents is employed to study the development schemes of the harbor. Verification of spring and neap tidal currents and sediment in the winter and summer of 2006 shows that the calculated values of tidal stages as well as flow velocities, flow directions and sediment concentration of 15 synchronous vertical lines are in good agreement with the measured data. Also, deposition and erosion of the sea area in front of Caofeidian ore terminal induced by suspended load under tidal currents and waves are verified; it shows that the calculated values of depth of deposition and erosion as well as their distribution are close to the measured data. Furthermore, effects of reclamation scheme of island in front of the land behind Caofeidian harbor on the hydrodynamic environment are studied, including changes of flow velocities in the deep channels at the south side of Caofeidian foreland and Laolonggou and in various harbor basins, as well as changes of deposition and erosion of seabed induced by the project.  相似文献   

8.
Numerical experiments with two-dimensional nonhydrostatic model have been performed to investigate tidally generated internal waves at the Dewakang sill at the southern Makassar Strait where two large-amplitude “bumps” of relatively shallow water exist. We investigate the effect of these features on vertical mixing, with emphasis on the transformation of the Indonesian throughflow (ITF) water properties. The result shows that large-amplitude internal waves are generated at both bumps by the predominant M2 tidal flow, even though the condition of the critical Froude number and the critical slope are not satisfied. The internal waves induce such vigorous vertical mixing in the sill region that the vertical diffusivity attains a maximum value of 6 × 10−3 m2s−1 and the salinity maximum and minimum core layers characterizing the ITF thermocline water are considerably weakened. Close examination reveals that bottom-intensified currents produced mainly by the joint effect of barotropic M2 flow and internal tides generated in the concave region surrounding both bumps can excite unsteady lee waves (Nakamura et al., 2000) on the inside slopes of the bumps, which tend to be trapped at the generation region and grow into large-amplitude waves. Such generation of unsteady lee waves does not occur in case of one bump alone. Trapping and amplification of the waves in the sill region induce large vertical displacements (∼60 m) of water parcels during one tidal period, leading to strong vertical mixing there. Since the K1 tidal currents are relatively weak, large-amplitude internal waves causing intense vertical mixing are not generated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
江苏大丰地区潮滩由于水深较浅,潮流、波浪等动力较强,整个水层可视为边界层,其主体部分是对数层,即水流流速在垂向上呈对数分布。在潮流的加减速阶段,流速剖面将可能偏离对数分布,从而使对数剖面法计算出来的边界层参数造成误差。使用MIDAS-400用户化数据采集系统,在大丰潮滩获得了多层流速、浊度等同步高频观测数据,基于修正后的von Karman-Prandtl模型对u-lnz进行回归分析、数据内部一致性分析来定义流速对数剖面并与未修正前经典理论得到的边界层参数进行比较。分析结果表明,修正后的流速剖面更符合实际情况,边界层参数除了受水流加速度的影响外,还和沙纹等因素有关。另外,边界层参数的变化量与特征加速度负相关。  相似文献   

10.
The continental slope to the south of the Celtic Sea is an area of extremely rough topography and tidal currents of the order of 50cm/s (with components both along and across the slope). This is a region of intense and complicated internal wave and internal tide activity. Historical current meter data from moorings close to the shelf-break show bursts of high frequency, large amplitude internal waves occurring, on average, at either once or twice per M2 tidal cycle. Wave packets at 9 moorings along the shelf-break and further on-shelf are identified using conditional sampling. The paths travelled by these wave packets are calculated using their fluctuation orientation, linear wave theory and the low frequency current. The records are up to 60 days long, allowing the ensemble statistics of propagation direction and wave characteristics to be calculated for a large number of wave packets. This analysis shows that only a fraction of the observed wave packets have orientations consistent with generation by the across-slope barotropic tide. This mechanism accounts for 20% of the wave packets in the north-west Celtic Sea and 29% in the southeast Celtic sea. A similar fraction of the wave packets (23% in the north west and 27% in the south east) have orientations clearly consistent with generation by an along-slope flow over the rough topography on the slope. The remaining wave packets are attributed to generation by tidal flow over topography close to the moorings and possibly internal wave resonance within canyons.  相似文献   

11.
A three-dimensional nonhydrostatic numerical model is used to study the generation of internal waves by the barotropic tidal flow over a steep two-dimensional ridge in an ocean with strong upper-ocean stratification. The process is examined by varying topographic width, amplitude of the barotropic tide, and stratification at three ridge heights. The results show that a large amount of energy is converted from the barotropic tide to the baroclinic wave when the slope parameter, defined as the ratio of the maximum ridge slope to the maximum wave slope, is greater than 1. The energy flux of internal waves can be normalized by the vertical integral of the buoyancy frequency over the ridge depths and the kinetic energy of the barotropic tides in the water column. A relationship between the normalized energy flux and the slope parameter is derived. The normalized energy flux reaches a constant value independent of the slope parameter when the slope parameter is greater than 1.5. It is inferred that internal wave generation is most efficient at the presence of strong upper-ocean stratification over a steep, tall ridge. In the Luzon Strait, the strength of the shallow thermocline and the location of the Kuroshio front could affect generation of internal solitary waves in the northern South China Sea.  相似文献   

12.
《Oceanologica Acta》2002,25(2):51-60
A new composite model, which consists of a generation model of the internal tides and a regularized long wave propagation model, is presented to study the generation and evolution of internal solitary waves in the sill strait. Internal bores in the sill strait are first simulated by the generation model, and then the internal tidal field outside of the sill region is given as input for the propagation model. Numerical experiments are carried out to study the imposing tide, depth profile, channel width and shoaling effect, etc., on the generation and evolution of internal solitary waves. It is shown that only when the amplitude of internal tide at the forcing boundary of the propagation model is large enough that a train of internal solitary waves would be induced. The amplitude of the imposing tide in the generation model, shoaling effect, asymmetry of the depth profile and channel width have some effects on the amplitude of the induced internal solitary wave. The imposing tidal flow superimposed on a constant mean background flow has a great damping effect on the induced internal waves, especially on those propagate against the background flow direction. The generation and propagation of internal solitary waves in three possible straits among the Luzon Strait are simulated, and the reasons for the asymmetry of their propagation are also explained.  相似文献   

13.
The main sill of the Strait of Gibraltar (Camarinal Sill) is an area of very energetic internal wave activity. The highest amplitude internal wave is the well-known internal bore, generated at critical conditions over Camarinal Sill. A very energetic lee wave has recently been found and reported. This occurs in neap tides when favorable combination of the stratification, vertical profile of horizontal background velocity, and bottom topography determines its generation. When the lee wave is developed the manifestation of high-amplitude internal waves is observed at the sea surface as high-frequency chaotic oscillations, named boiling waters. We analyze the generation of the lee wave over the main sill of Gibraltar Strait on the basis of the data from a ship mounted ADCP, multi-probe CTD data taken during a survey carried out in November 1998, and the numerical solution of the Taylor–Goldstein equation for the prevailing hydraulic conditions previous to its generation. Stratification is computed from CTD data, and the tidal current prediction is made from the 2 years of ADCP hourly data at Camarinal Sill gathered during the Gibraltar Experiment 94-96. The main characteristic is that they happen during neap tides, and their magnitude is comparable to the internal bore generated during spring tides. The classical internal bore and the lee waves are different phenomena, and the presence of the latter is an indicator of minimum flow over Camarinal Sill. A prediction model for lee waves based on the tidal hydrodynamic conditions is also developed.  相似文献   

14.
Ephemeral sand waves in the hurricane surf zone   总被引:2,自引:0,他引:2  
Airborne bathymetric LIDAR observations along the Florida panhandle after Hurricane Dennis (2005) show the first unequivocal observations of surf-zone sand wave trains.

These are found in depths of 5m along the trough of the hurricane bar, where hindcasts show strong longshore currents only during severe storms. The waves extend over tens of kilometers of coast after Dennis but are absent from the same area in four other datasets. Observed wavelength to water depth ratios are comparable to river dunes and tidal sand waves but height to depth ratios are smaller, with the largest wave heights around 0.1 times the water depth. The sand wave generation mechanism is hypothesized to be from wind-and-wave-induced longshore currents, which were hindcast to be large during Dennis, with destruction from water wave orbital velocities.  相似文献   


15.
Continuous observation in late April 2005 on the northwestern shelf of the South China Sea reveals vigorous strong currents, the maximum velocity of which exceeds 3.8 m/s. The strong currents occurred around spring tide period, when the internal tide waves were also expected to be vigorous. Analysis shows that the major peaks of the current power spectrum are in low frequency band. Using a numerical method applied to the actual ocean stratification, we find that the amplitude profiles of the strong current are similar to that of the currents induced by some low-mode internal waves (at diurnal or semi-diurnal frequency). It indicates that the temporal and spatial features of strong currents were possibly induced by low frequency internal waves.  相似文献   

16.
Two very high-frequency radars (VHFRs), operating in the southern Channel Isles region (English Channel) in February–March 2003, provided a continuous 27-day long dataset of surface currents at 2 km resolution over an area extending approximately 20 km offshore. The tidal range in the region of study is one of the highest in the world and the coastal circulation is completely dominated by tides. The radar data resolve two modes which account for 97% of the variability of the surface current velocities, with the major contribution of the first mode. This mode accounts for oscillating tidal currents whereas the second mode represents motions emerging from the interaction of tidal currents with capes and islands (eddy in the vicinity of the Point of Grouin and jet south of Chausey). A fortnightly modulation of the modal amplitudes causes the exceptional (more than 600%) variability of currents which is well captured by the VHFR observations. The radar data revealed that tidal circulation in the region is flood-dominated with a strong asymmetry of current velocity curve. Wind events and fortnightly variability affect the course of tidal cycle by modifying the magnitude and duration of ebb and flood. In addition to expected features of coastal circulation (tidally dominated flow, eddies) and high wind-current coupling, the residual currents revealed a strong cross-shore structure in the mean and a significant variability which has the same order of magnitude.  相似文献   

17.
Barotropic tide in the northeast South China Sea   总被引:2,自引:0,他引:2  
A moored array deployed across the shelf break in the northeast South China Sea during April-May 2001 collected sufficient current and pressure data to allow estimation of the barotropic tidal currents and energy fluxes at five sites ranging in depth from 350 to 71 m. The tidal currents in this area were mixed, with the diurnal O1 and K1 currents dominant over the upper slope and the semidiurnal M2 current dominant over the shelf. The semidiurnal S2 current also increased onshelf (northward), but was always weaker than O1 and K1. The tidal currents were elliptical at all sites, with clockwise turning with time. The O1 and K1 transports decreased monotonically northward by a factor of 2 onto the shelf, with energy fluxes directed roughly westward over the slope and eastward over the shelf. The M2 and S2 current ellipses turned clockwise and increased in amplitude northward onto the shelf. The M2 and S2 transport ellipses also exhibited clockwise veering but little change in amplitude, suggesting roughly nondivergent flow in the direction of major axis orientation. The M2 energy flux was generally aligned with the transport major axis with little phase lag between high water and maximum transport. These barotropic energy fluxes are compared with the locally generated diurnal internal tide and high-frequency internal solitary-type waves generated by the M2 flow through the Luzon Strait.  相似文献   

18.
We observed strong internal tidal waves in the Kara Gates Strait. Internal tides are superimposed over a system of mean currents from the Barents to the Kara Sea. Field studies of internal tides in the Kara Gates were performed in 1997, 2007, and 2015. In 2015, we analyzed data from towed CTD measurements, numerical model calculations, and satellite images in the region. An internal tidal wave with a period of 12.4 h is generated due to the interaction between the currents of the barotropic tide and the bottom relief on the slopes of a ridge that crosses the strait from Novaya Zemlya to the continent. The depths of the ridge crest are 30–40 m. A constant current of relatively warm water flows from the Barents to the Kara Sea. An internal wave propagates in both directions from the ridge. In the Barents Sea, internal waves are intensified by the current from the Barents to the Kara Sea. Internal bores followed by a packet of short-period internal waves are found in both directions from the strait. Satellite images show that short-period internal waves are generated after the internal bore. A hydraulic jump was found on the eastern side of the strait. Numerical modeling agrees with the experimental results.  相似文献   

19.
The generation process of internal waves by strong tidal flow over a continental shelf slope is reproduced using a multi-level numerical model. On the basis of the numerical results, the crucial role of the tidal advection effect in the generation process of internal waves is demonstrated. The close relation between the resulting internal waveform and the strength of the tidal advection effect is also examined. The barotropic forcing on the internal wave actually works within a relatively small horizontal scale over the top of the continental shelf slope. When the maximum internal Froude number at the shelf break (Frm) is less than about 0.6, the amplitude of the resulting internal wave is almost proportional to Frm. When Frm is more than about 0.6, however, the amplitude of the resulting internal wave becomes larger than predicted by linear theory. In particular, when Frm is more than unity, the time period during which the shoreward propagating internal wave stays in the barotropic forcing region becomes much longer. Consequently, the internal wave is significantly amplified with the horizontal scale approaching that of the barotropic forcing, which concentrates in a relatively small region over the top of the continental shelf slope. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Transformation of internal tidal waves over the Guinean shelf is studied on the basis of theoretical and field research. This area is characterized by the presence of a narrow high-frequency waveguide. Internal tides propagating over the shelf are similar to shock waves. Short-period oscillations with an amplitude of 15 m develop at the wave's fore front. A shock wave is generated at the phase of a syzygial tide.Translated by V. Puchkin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号