首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrographic data collected during the cruise HIDROPRESTIGE were combined with meteorological and dynamic data provided by remote sensors and drifting/moored buoys, to describe the surface circulation of the Northern Iberian basin in March-April 2003. Sea surface winds transported the floating Prestige oil slicks from the sinking area to the continental slope off the Rías Baixas in 1/2 month: the surface current intensity was 2% of the wind intensity and it was rotated clockwise 5 degrees from the wind direction. Mesoscale cyclonic and anticyclonic structures west of 10 degrees W increased the residence time of oil patches in the Northern Iberian basin, as compared with the expected southwards flow of the Iberian current (IC). On the other hand, the Iberian poleward current (IPC) formed a marked surface front with coastal waters, preventing the entry of fuel oil into the rías. PAHs in the surface layer during the cruise were <0.5 microgL(-1), except in the Galicia bank (approximately 1 microg L(-1); where the Prestige tanker was still leaking) and the vicinity of Cape Fisterra (approximately 1.5 microg L(-1); where the convergence front between the IPC and coastal waters vanished).  相似文献   

2.
The effects of local and remote wind forcing of water level heights in the Virginia Coast Reserve (VCR) are examined in order to determine the significant forces governing estuarine motions over subtidal time scales. Recent (1996–2008) data from tide and wind stations in the lagoon, a tide station to the north at Sandy Hook, NJ, and one offshore wind station at the Chesapeake Light Tower are examined. Sea surface height spectrum calculations reveal significant diurnal and semidiurnal tidal effects along with subtidal variations, but a suppressed inertial signal. Sea-surface heights (SSH) with 2–5 day periods at Wachapreague, VA are coherent with those at Sandy Hook and lag them in time, suggesting that southward-propagating continental shelf waves provide subtidal variability within the lagoon. The coherence between lagoon winds and sea surface height, as well as between winds and cross-lagoon sea height gradient, were significant at a relatively small number of frequency and wind direction combinations. The frequencies at which this wind forcing occurs are the tidal and subtidal bands present to the north, so that lagoon winds selectively augment existing SSH signals, but do not generate them. The impact of the wind direction is closely related to the geometry of the lagoon and bounding landmasses. The effect of wind stress is also constrained by geometry in affecting the cross-lagoon water height gradient. Water levels at subtidal frequencies are likely forced by a combination of local wind forcing, remote wind forcing and oceanic forcing modified by the complex topography of the lagoon, shelf, and barrier islands.  相似文献   

3.
Records of wind, air temperature and air pressure from nine stations, situated along the shoreline of Lake Geneva, Switzerland, were analyzed for the summer period May to September. At all stations the consistent appearance of significant spectral peaks and changes in wind direction at the diurnal frequency indicates the importance of lake-land breezes. It is shown that the surrounding topography has a strong modifying effect (temporal and spatial) on the lake-land breeze. Superimposed on this cyclic wind pattern, short episodes of strong winds with long fetch over parts of Lake Geneva are regularly observed. Both of these winds exert a spatially variable wind stress over the lake surface on the same time scale. Typical examples of the expected lakes response are presented, among them the seasonally persistent gyre in the central part of the lake. Evidence is provided that this dominant circulation is part of a direct cyclonic circulation, generated by the curl of the diurnal wind field. It is concluded that the mean circulation is caused by these winds and affected by the topography of the surrounding land.Present address: Environmental Protection Agency, Perth 6009, Australia  相似文献   

4.
We characterize the response of diurnal-period ocean current variability to the sea breeze using measurements of current velocity taken off the mouth of the Itata River and wind stress collected at Hualpen Point (central Chile) in spring of 2007 and summer of 2006 and 2008. During these three periods, the winds are predominately towards the northeast, following the coastal topography, with the highest variability found in the near-diurnal and synoptic frequency bands. The sea breeze amplitude is intermittent in time and is associated with synoptic-scale variability on the order of three to 15 days, so that the diurnal-period winds (and currents) are enhanced when the alongshore wind (i.e. upwelling-favorable) is strong. The water current variability in the near-diurnal band is significant, explaining up to 40% (spring 2007) of the total current variance in the first 15 m depth.  相似文献   

5.
6.
A study has been made of the interaction between the thermosphere and the ionosphere at high latitudes, with particular regard to the value of the O+-O collision parameter. The European incoherent scatter radar (EISCAT) was used to make tristatic measurements of plasma parameters at F-region altitudes while simultaneous measurements of the neutral wind were made by a Fabry-Perot interferometer (FPI). The radar data were used to derive the meridional neutral winds in a way similar to that used by previous authors. The accuracy of this technique at high latitudes is reduced by the dynamic nature of the auroral ionosphere and the presence of significant vertical winds. The derived winds were compared with the meridional winds measured by the FPI. For each night, the value of the O+-O collision parameter which produced the best agreement between the two data sets was found. The precision of the collision frequency found in this way depends on the accuracy of the data. The statistical method was critically examined in an attempt to account for the variability in the data sets. This study revealed that systematic errors in the data, if unaccounted for by the analysis, have a tendency to increase the value of the derived collision frequency. Previous analyses did not weight each data set in order to account for the quality of the data; an improved method of analysis is suggested.  相似文献   

7.
Diurnal sea breeze effects on inner-shelf cross-shore exchange   总被引:1,自引:0,他引:1  
Cross-shore exchange by strong (cross-shore wind stress, τsx>0.05 Pa) diurnal (7–25 h) sea breeze events are investigated using two years of continuous wind, wave, and ocean velocity profiles in 13 m water depth on the inner-shelf in Marina, Monterey bay, California. The diurnal surface wind stress, waves, and currents have spectral peaks at 1, 2, and 3 cpd and the diurnal variability represents about 50% of the total variability. During sea breeze relaxation (−0.05<τsx<0.05 Pa), a background wave-driven inner-shelf Eulerian undertow profile exists, which is equal and opposite to the Lagrangian Stokes drift profile, resulting in a net zero Lagrangian transport at depth. In the presence of a sea breeze (τsx>0.05 Pa), a uniform offshore profile develops that is different from the background undertow profile allowing cross-shore Lagrangian transport to develop, while including Lagrangian Stokes drift. The diurnal cross-shore current response is similar to subtidal (>25 h) cross-shore current response, as found by Fewings et al. (2008). The seasonality of waves and winds modify the diurnal sea breeze impact. It is suggested that material is not transported cross-shore except during sea breeze events owing to near zero transport during relaxation periods. During sea breeze events, cross-shore exchange of material appears to occur onshore near the surface and offshore near the sea bed. Since sea breeze events last for a few hours, the long-term cross-shore transport is incremental each day.  相似文献   

8.
The knowledge of offshore and coastal wave climate evolution towards the end of the twenty-first century is particularly important for human activities in a region such as the Bay of Biscay and the French Atlantic coast. Using dynamical downscaling, a high spatial resolution dataset of wave conditions in the Bay of Biscay is built for three future greenhouse gases emission scenarios. Projected wave heights, periods and directions are analysed at regional scale and more thoroughly at two buoys positions, offshore and along the coast. A general decrease of wave heights is identified (up to ?20?cm during summer within the Bay off Biscay), as well as a clockwise shift of summer waves and winter swell coming from direction. The relation between those changes and wind changes is investigated and highlights a complex association of processes at several spatial scales. For instance, the intensification and the northeastward shift of strong wind core in the North Atlantic Ocean explain the clockwise shift of winter swell directions. During summer, the decrease of the westerly winds in the Bay of Biscay explains the clockwise shift and the wave height decrease of wind sea and intermediate waves. Finally, the analysis reveals that the offshore changes in the wave height and the wave period as well as the clockwise shift in the wave direction continue toward the coast. This wave height decrease result is consistent with other regional projections and would impact the coastal dynamics by reducing the longshore sediment flux.  相似文献   

9.
10.
Climate models are increasingly being used to force dynamical wind wave models in order to assess the potential climate change-driven variations in wave climate. In this study, an ensemble of wave model simulations have been used to assess the ability of climate model winds to reproduce the present-day (1981–2000) mean wave climate and its seasonal variability for the southeast coast of Australia. Surface wind forcing was obtained from three dynamically downscaled Coupled Model Intercomparison Project (CMIP-3) global climate model (GCM) simulations (CSIRO Mk3.5, GFDLcm2.0 and GFDLcm2.1). The downscaling was performed using CSIRO’s cubic conformal atmospheric model (CCAM) over the Australian region at approximately 60-km resolution. The wind climates derived from the CCAM downscaled GCMs were assessed against observations (QuikSCAT and NCEP Re-analysis 2 (NRA-2) reanalyses) over the 1981–2000 period and were found to exhibit both bias in mean wind conditions (climate bias) as well as bias in the variance of wind conditions (variability bias). Comparison of the modelled wave climate with over 20 years of wave data from six wave buoys in the study area indicates that direct forcing of the wave models with uncorrected CCAM winds result in suboptimal wave hindcast. CCAM winds were subsequently adjusted for climate and variability bias using a bivariate quantile adjustment which corrects both directional wind components to align in distribution to the NRA-2 winds. Forcing of the wave models with bias-adjusted winds leads to a significant improvement of the hindcast mean annual wave climate and its seasonal variability. However, bias adjustment of the CCAM winds does not improve the ability of the model to reproduce the storm wave climate. This is likely due to a combination of storm systems tracking too quickly through the wave generation zone and the performance of the NRA-2 winds used as a benchmark in this study.  相似文献   

11.
Hourly foF2 data from over 100 ionosonde stations during 1967–89 are examined to quantify F-region ionospheric variability, and to assess to what degree the observed variability may be attributed to various sources, i.e., solar ionizing flux, meteorological influences, and changing solar wind conditions. Our findings are as follows. Under quiet geomagnetic conditions (Kp<1), the 1-σ (σ is the standard deviation) variability of Nmax about the mean is approx. ±25–35% at ‘high frequencies’ (periods of a few hours to 1–2 days) and approx. ±15–20% at ‘low frequencies’ (periods approx. 2–30 days), at all latitudes. These values provide a reasonable average estimate of ionospheric variability mainly due to “meteorological influences” at these frequencies. Changes in Nmax due to variations in solar photon flux, are, on the average, small in comparison at these frequencies. Under quiet conditions for high-frequency oscillations, Nmax is most variable at anomaly peak latitudes. This may reflect the sensitivity of anomaly peak densities to day-to-day variations in F-region winds and electric fields driven by the E-region wind dynamo. Ionospheric variability increases with magnetic activity at all latitudes and for both low and high frequency ranges, and the slopes of all curves increase with latitude. Thus, the responsiveness of the ionosphere to increased magnetic activity increases as one progresses from lower to higher latitudes. For the 25% most disturbed conditions (Kp>4), the average 1-σ variability of Nmax about the mean ranges from approx. ±35% (equator) to approx. ±45% (anomaly peak) to approx. ±55% (high-latitudes) for high frequencies, and from approx. ±25% (equator) to approx. ±45% (high-latitudes) at low frequencies. Some estimates are also provided on Nmax variability connected with annual, semiannual and 11-year solar cycle variations.  相似文献   

12.
This paper examines a seemingly anomalous situation in southern Brazil where the dunefields on Santa Catarina Island (e.g. Joaquina Beach) migrate to the NNW, almost completely the opposite direction (c. 160) to the dunefields immediately to the south (e.g. Pinheira Beach), and some much further to the north (e.g. Cabo Frio) which migrate to the SSW. A variety of mechanisms are examined to explain the differences in dunefield migration including grain size variations, topographic effects on local winds, shoreline orientation, and regional wind field changes. The mean grain sizes of the two beaches, Pinheira and Joaquina, are not sufficiently different to restrict aeolian sediment transport in either place, nor to account for a lack of transport from the NNE to the SSW in the case of Joaquina. Some topographic steering of the wind is likely but could not account for the long‐term average difference in migration trends of the island dunefields compared to the mainland dunefields. While the orientation of the shoreline to prevailing winds is an important control on beach and dune sediment transport, it is not the dominant controlling mechanism. An analysis of the regional wind patterns demonstrates that there is a major shift in the regional wind field near the island such that the dominant island winds blow from the SW/SSW while those further south blow from the NE. It is concluded that this is the predominant reason for the divergence in the direction of migration of the dunefields. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
Two common volume experiments were conducted in August 1996 and July 1997 between the Durham meteor wind radar (43.1°N, 70.9°W) and the Millstone Hill incoherent scatter radar, (42.6°N, 71.5°W) to compare the techniques in measuring neutral winds at an altitude of 100 km. For this comparison the vertical winds are assumed to be zero and only the horizontal components of the radar line of sight velocities are used. Analysis of the data reveals overall general agreement, but some large deviations in the wind components are observed at specific times and these are examined closely. Error analysis of the radar measurements is presented here, and emphasis is placed on the careful delineation of the effect of spatial variations in the wind field observed by the two radars. Since the spatial resolution of both radars is<3 km both horizontally and vertically, some of the three dimensional properties of the horizontal wind component can be estimated. For the incoherent scatter radar with its narrow steerable beam, the spatial location of the sampling points could be chosen; however, finer sampling of the wind field results in more temporal smearing due to the fixed measurement time for each point. For the meteor radar the spatial sample points occur randomly within the system beam since they depend on the chance location of observed meteor trails. Both systems spatially undersample the wind field in most cases, but with careful consideration of the system errors for both radars, it is shown that small scale (∼10 km) wind variations must exist at these altitudes with rms velocity differences of ∼25 m/s.  相似文献   

14.
Large canyons incise the shelf break of the eastern Bering Sea to be preferred sites of the cross-shelf exchange. The mesoscale eddy activity is particularly strong near the shelf-break canyons. To study the mesoscale dynamics in the Navarin Canyon area of the Bering Sea, the time series of velocities derived from AVISO satellite altimetry between 1993 and 2015, drifters, Argo buoys, and ship-borne data are analyzed. We demonstrate that the strength of anticyclonic eddies along the shelf edge in spring and summer is determined by the wind stress in March–April. The increased southward wind stress in the central Bering Sea forced a supply of low-temperature and low-salinity outer shelf water to the deep basin and formation of the anticyclonic mesoscale circulation seaward of the Navarin Canyon. Enhanced northwestward advection of the Bering Slope Current water leads to increase in an ice-free area in March and April and increased bottom-layer temperature at the outer shelf. The strong (weak) northwestward advection of the eastern Bering Sea waters, determined by eastern winds in spring, creates favorable (unfavorable) conditions for the pollock abundance in the western Navarin Canyon area in summer.  相似文献   

15.
A limited domain, coastal ocean forecast system consisting of an unstructured grid model, a meteorological model, a regional ocean model, and a global tidal database is designed to be globally relocatable. For such a system to be viable, the predictability of coastal currents must be well understood with error sources clearly identified. To this end, the coastal forecast system is applied at the mouth of Chesapeake Bay in response to a Navy exercise. Two-day forecasts are produced for a 10-day period from 4 to 14 June 2010 and compared to real-time observations. Interplay between the temporal frequency of the regional model boundary forcing and the application of external tides to the coastal model impacts the tidal characteristics of the coastal current, even contributing a small phase error. Frequencies of at least 3 h are needed to resolve the tidal signal within the regional model; otherwise, externally applied tides from a database are needed to capture the tidal variability. Spatial resolution of the regional model (3 vs 1 km) does not impact skill of the current prediction. Tidal response of the system indicates excellent representation of the dominant M 2 tide for water level and currents. Diurnal tides, especially K 1, are amplified unrealistically with the application of coarse 27-km winds. Higher-resolution winds reduce current forecast error with the exception of wind originating from the SSW, SSE, and E. These winds run shore parallel and are subject to strong interaction with the shoreline that is poorly represented even by the 3-km wind fields. The vertical distribution of currents is also well predicted by the coastal model. Spatial and temporal resolution of the wind forcing including areas close to the shoreline is the most critical component for accurate current forecasts. Additionally, it is demonstrated that wind resolution plays a large role in establishing realistic thermal and density structures in upwelling prone regions.  相似文献   

16.
Stormwater river plumes are important vectors of marine contaminants and pathogens in the Southern California Bight. Here we report the results of a multi-institution investigation of the river plumes across eight major river systems of southern California. We use in situ water samples from multi-day cruises in combination with MODIS satellite remote sensing, buoy meteorological observations, drifters, and HF radar current measurements to evaluate the dispersal patterns and dynamics of the freshwater plumes. River discharge was exceptionally episodic, and the majority of storm discharge occurred in a few hours. The combined plume observing techniques revealed that plumes commonly detach from the coast and turn to the left, which is the opposite direction of Coriolis influence. Although initial offshore velocity of the buoyant plumes was ∼50 cm/s and was influenced by river discharge inertia (i.e., the direct momentum of the river flux) and buoyancy, subsequent advection of the plumes was largely observed in an alongshore direction and dominated by local winds. Due to the multiple day upwelling wind conditions that commonly follow discharge events, plumes were observed to flow from their respective river mouths to down-coast waters at rates of 20–40 km/d. Lastly, we note that suspended-sediment concentration and beam-attenuation were poorly correlated with plume salinity across and within the sampled plumes (mean r2=0.12 and 0.25, respectively), while colored dissolved organic matter (CDOM) fluorescence was well correlated (mean r2=0.56), suggesting that CDOM may serve as a good tracer of the discharged freshwater in subsequent remote sensing and monitoring efforts of plumes.  相似文献   

17.
Summary This paper discusses the need for a global network of meteor wind stations for determining the general circulation of the upper mesosphere and lower thermosphere. Continuous observations of horizontal motions from such a network would permit resolution of planetary scale eddy winds, tides, and gravity waves, and hypotheses that such motions propagate vertically from the lower atmosphere or are generated in situ by solar activity could be examined critically with observational data. The observed mean winds from the lower stratosphere to the meteor wind level are summarized to support the hypothesis that a standing wave pattern in the winds extends into the lower thermosphere. Data on tidal meridional momentum transports from meteor wind stations suggest that tides in the lower thermosphere are important for the maintenance of mean winds. Some of the geomagnetic and photochemical processes in the lower thermosphere that could be investigated with meteor wind data are briefly reviewed.This paper is adapted from our presentation at the 1966 Fall URSI meeting at Palo Alto, California  相似文献   

18.
Several previous attempts have been made to explain the apparent poor development of coastal dunes in the humid tropics in terms of lack of wind energy, failure of sand supply to the shoreline, excessive climatic wetness, salt crust formation on beaches, and the character of tropical back-beach vegetation. However, recent published reports indicate that coastal dune occurrences are more common in the humid tropics than was formerly thought, throwing suspicion on the idea that environmental conditions militate against dune formation in these areas as a whole. Evidence from the humid tropical sector of the North Queensland coast suggests that the poor development of dunes in this area primarily reflects poor sediment sorting in the beach and nearshore zone and low wind energy at the shoreline due to the nature of the coastal orientation and physiography in relation to the prevailing southeasterly winds. These limiting factors are not unique to humid tropical climates.  相似文献   

19.
The sea level and the barotropic, frictional circulation response for the New York Bight are used to demonstrate the effects of external sea-level forcing, bathymetry, and variable friction. The governing equation is the steady, integrated vorticity equation and is computed by finite differencing over a curvilinear grid conforming to the 10- and 100-m isobaths and extending for 250 km alongshore. The boundary conditions are based on the hypothesis that the dynamics of the shelf are driven by the external sea-level gradient and the coastal no-flux condition; and consequently the conditions at the lateral boundaries are dependent thereon. Therefore, the external sea-level slope must be independently specified, and the lateral boundary conditions must be dependently generated. The diabathic component of the external sea slope forces the calm wind circulation by its effect on the transport through the upstream boundary; and the parabathic component has also an important modifying effect by forcing a shelf convergent transport. The parabathic sea slope at the coast is independent of its offshore value, being instead a direct product of the coastal boundary condition.The bottom friction is expressed as related to the sea level through a bottom length parameter and a veer angle, both of which are taken to increase shoreward. An additional bottom stress component, related to the surface stress, is determined for bottom depths less than the Ekman depth. Such bottom stress variability produces significant alterations in the nearshore flow field, over the constant bottom stress formulation, by reducing it and causing it to veer downgradient and downwind in the nearshore.The model is forced by different wind directions and the results are discussed. The circulations generally conform to the observed mean flow patterns, but with several smaller-scale features. The strong bathymetric feature of the Hudson Shelf Valley causes a polarized up- and downvalley flow for winds with an eastward or westward component, respectively. Under mean westerly winds, there is a divergence in the shelf valley flow at about the 60-m isobath. The Apex gyre existing off the western tip of Long Island becomes more extensive for winds changing from northeast to southwest. Mean flow reversals (to the northeast) occur off both Long Island and New Jersey for wind directions changing counterclockwise from northwest to southeast and from west to east, respectively. Southeastward transport over the outer New Jersey shelf tends to be enhanced by wind and external sea-level conditions; and the transport over the New Jersey midshelf, particularly in the lee of the shelf valley, tends to be weak and variable also under these mean conditions.  相似文献   

20.
Wave data collected off Goa along the west coast of India during February 1996-May 1997 has been subjected to spectral analysis, and swell and wind sea parameters have been estimated by separation frequency method. Dominance of swells and wind seas on monthly and seasonal basis has been estimated, and the analysis shows that swells dominate Goa coastal region not only during southwest monsoon (93%), but also during the post-monsoon (67%) season. Wind seas are dominant during the pre-monsoon season (51%). The mean wave periods (Tm) during southwest monsoon are generally above 5 s, whereas Tm is below 5 s during other seasons. Co-existence of multiple peaks (from NW and NE) was observed in the locally generated part of the wave spectrum, especially during the post-monsoon season. NCEP reanalysis winds have been used to analyse active fetch available in the Indian Ocean, from where the predominant swells propagate to the west coast of India. A numerical model was set up to simulate waves in the Indian Ocean using flexible mesh bathymetry. The correlation coefficients between measured and modelled significant wave heights and mean wave periods are 0.96 and 0.85, respectively. Numerical simulations reproduced the swell characteristics in the Indian Ocean, and from the model results potential swell generation areas are identified. The characteristics of swells associated with tropical storms that prevail off Goa during 1996 have also been analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号