首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《大气与海洋》2013,51(4):251-265
Abstract

In this paper, 441 Conductivity Temperature Depth (CTD) casts from the North Water (NOW) Polynya study were used to calculate geostrophic currents between the 10 and 200 dbar surface during April, May and June 1998. Results for April and May indicated a surface intensified southward flow of 10 to 15 cm s–1 with a small return flow along the Greenland coast in agreement with inferred currents described by Melling et al. (2001) and surface ice drifts found by Wilson et al. (2001). Southward transports at this time were 0.4–0.55 Sv in April and May. In June, however, surface currents diminished markedly: southward transports declined to 0.1–0.35 Sv, coincident with a decrease in directly measured winds over the polynya and in the surface barometric pressure difference between Grise Fjord and the Carey Islands that was used as a surrogate for the local north wind speed. There was no evident decrease in air pressure difference between Resolute and Grise Fjord, indicative of the strength of the north wind over the eastern Arctic in general. The results are consistent with present thinking that the NOW Polynya is primarily a latent heat polynya, forced by dominant north winds. The idea, broached here, is that the polynya creates its own microclimate which sustains the polynya's ice‐free condition after its initial formation. The mechanism is identified by an anomalous low pressure region associated with surface buoyancy flux in the polynya and is pursued through the application of a simple geostrophic adjustment model that suggests two self‐sustaining mechanisms. Firstly, the frontal intrusion of the cold ambient terrestrial air mass drives a significant surface wind that transports frazil ice to the edge of the polynya before it can congeal. Secondly, rotation at these high latitudes restricts the penetration of the front into the polynya, essentially insulating the centre from freezing temperatures.  相似文献   

2.
Ocean convection in the Antarctic has been studied many times and has been revealed to be responsible for ice-cover reduction. In the Arctic, proof of that phenomenon has not been documented. It is believed that this phenomenon happens on a smaller scale in the Arctic when local circulation of deep warmer water melts and slows ice production. An example of this is the North Water (NOW) polynya in northern Baffin Bay. A polynya is an area of open water in an otherwise ice-covered area. As ice forms under the fast ice near the boundary of the polynya, ocean salts (brine) are ejected from the newly formed ice. This water, which has an increased concentration of salt, sinks and is replaced by warmer water from below, and this slows ice formation. In our study a coupled one-dimensional thermodynamic snow–fast ice model incorporating ocean heat flux input via a shallow convection model was used. Ice thickness was calculated using a thermodynamic model that included a current-induced entrainment model and a convection model to account for brine rejection during ice growth. Atmospheric observations from Grise Fiord and Thule and ocean profiles around the NOW polynya near these sites were used as input to the model. This purely thermodynamic study enables us to obtain ice thickness values that can be compared with qualitative observations. This modelling study compares two sites related to the NOW polynya. The results indicate that the shallow convection model simulates the reduction of fast ice near Thule but not near Grise Fiord.  相似文献   

3.
Although it is well known that sea-ice regions are important components of the Earth's climate system, the exchanges of energy between ocean, ice and atmosphere are not well understood. The majority of past observational and modelling studies of atmosphere-surface interactions over sea-ice regions were primarily concerned with airflow over a single, isolated area of open water. The more realistic situations of multiple polynyas within a sea-ice field and different areal concentrations of sea ice were studied here. Spatial structure of the atmospheric boundary layer in response to this surface was simulated using a high-resolution numerical model. A sea-ice concentration of 80%, typical of the Southern Ocean sea-ice zone, was maintained within a 100-km wide domain. The effects of three polynya characteristics were assessed: their horizontal extent; local concentration of sea ice (LCI); and their arrangement with ice floes. Over polynyas of all sizes distinct plumes of upward heat flux, their width and height closely linked to polynya width, resulted in mixed layers 600 to 1000 m deep over and downwind of the polynyas, their depth increasing with polynya width. Mean surface heat flux (MSHF) increased with size in polynyas less than 30 km wide. The air-to-ice MSHF over the first 10 km of sea-ice downwind of each polynya and the domain-average surface heat flux increased linearly with polynya width. Turbulent kinetic energy plumes occurred over all polynyas, their heights and widths increasing with polynya widths. Downward flux of high momentum air in the plumes caused increased wind speeds over polynyas in the layer from about 300–1000 m above the surface, the depth varying directly with polynya width. MSHFs decreased as LCIs increased. The arrangement of polynyas had relatively little effect on the overall depth of the modified layer but did influence the magnitude and spatial structure of vertical heat transfer. In the two-polynya case the MSHF over the polynyas was larger when they were closer together. Although the MSHF over the sea ice between the polynyas decreased in magnitude as their separation increased, the percentage of the polynya-to-air heat recaptured by this ice floe increased fivefold.  相似文献   

4.
The adjustment of the boundary layer immediately downstream froma coastline is examined based on two levels of eddy correlation data collected on a mast at the shore and six levels of eddy correlation data and profiles of mean variables collected from a mast 2 km offshore during the Risø Air-Sea Experiment. The characteristics of offshore flow are studied in terms of case studies and inter-variable relationships for the entire one-month data set. A turbulent kinetic energy budget is constructed for each case study.The buoyancy generation of turbulence is small compared to shear generation and dissipation. However, weakly stable and weakly unstable cases exhibit completely different vertical structure. With flow of warm air from land over cooler water, modest buoyancy destruction of turbulence and reduced shear generation of turbulence over the less rough sea surface cause the turbulence to rapidly weaken downstream from the coast. The reduction of downward mixing of momentum by the stratification leads to smaller roughness lengths compared to the unstable case. Shear generation at higher levels and advection of stronger turbulence from land often lead to an increase of stress and turbulence energy with height and downward transport of turbulence energy toward the surface.With flow of cool air over a warmer sea surface, a convective internal boundary layer develops downstream from the coast. An overlying relatively thick layer of downward buoyancy flux (virtual temperature flux) is sometimes maintained by shear generation in the accelerating offshore flow.  相似文献   

5.
Summary The development of a cyclonic vortex over a polynya is investigated with the primitive equation mesoscale model METRAS. The impact of different atmospheric processes on vortex development is determined by calculating the terms of the vorticity tendency equation. Sensitivity studies are performed for different large-scale situations (geostrophic winds 1 ms−1, 3 ms−1, 20 ms−1, initial ice-water temperature difference of 35 K or 17.5 K) and for different polynya sizes and shapes. In general, the vortex develops within a few hours. It is intensified by buoyancy, mainly resulting from latent heat release. Advective and diffusive processes hinder the vortex development. The intensification depends on the actual situation and is faster over small polynyas and heterogeneous ice cover. These situations result in intensification periods of only 12 to 18 hours for the vortex, but create very strong vortices. Halved horizontal temperature gradients also about halve the vortex intensity. The lifetime and intensification of a vortex increases with the time the air mass spends over the water. Thus, weak winds show a slower development of the vortex but the vortex intensifies for more than 24 hours. Over big polynyas several vortices develop, a long polynya results in a longer and narrower vortex which intensifies over a longer period.  相似文献   

6.
A self-consistent two-equation closure treating buoyancy and plant drag effects has been developed, through consideration of the behaviour of the supplementary equation for the length-scale-determining variable in homogeneous turbulent flow. Being consistent with the canonical flow regimes of grid turbulence and wall-bounded flow, the closure is also valid for homogeneous shear flows commonly observed inside tall vegetative canopies and in non-neutral atmospheric conditions. Here we examine the most often used two-equation models, namely and Eω (where is the dissipation rate of turbulent kinetic energy, E, and is the specific dissipation), comparing the suggested buoyancy-modified closure against Monin–Obukhov similarity theory. Assessment of the closure implementing both buoyancy and plant drag together has been done, comparing the results of the two models against each other. It has been found that the Eω model gives a better reproduction of complex atmospheric boundary-layer flows, including less sensitivity to numerical artefacts, than does the model. Re-derivation of the equation from the ω equation, however, leads to the model implementation that produces results identical to the Eω model. Overall, numerical results show that the closure performs well, opening new possibilities for application of such models to tasks related to the atmospheric boundary layer—where it is important to adequately account for the influences of both vegetation and atmospheric stability.  相似文献   

7.
A study of the surface energy balance with turbulent fluxes obtained by the Monin-Obukhov similarity theory and a comparison with results for resistance laws are presented for the strong baroclinic conditions in the vicinity of the Filchner/Ronne Ice Shelf front. The data are taken from a field experiment in the Antarctic summer season 1983/84. For the first time in the coastal Antarctic region, this data set comprises synchronous energy balance measurements over the polynya and the ice shelf together with soundings of the boundary layer, yielding vertical profiles of the wind velocity and temperature over the ice shelf, at the ice shelf front and over the polynya.Over the ice shelf, the radiation balance is the largest component of the energy fluxes and is mainly compensated by the subsurface energy flux and the turbulent heat flux in the daily mean. Over the polynya, turbulent fluxes of sensible and latent heat lead to large energy losses of the water surface in the night-time and in situations of very low air temperatures.Different parameterizations for boundary-layer height are compared using tethered sonde and energy balance measurements. With the height of the inversion base over the polynya and the height of the critical bulk Richardson number over the ice shelf, external parameters for the application of resistance laws were determined. The comparison of turbulent surface fluxes obtained by the energy balance measurements and by the resistance laws shows good agreement for the convective conditions over the polynya. For the stably stratified boundary layer over the ice shelf with small amounts of the turbulent heat flux, the deviation is large for the case of a cold air outflow with a superposed inertial oscillation.  相似文献   

8.
Turbulence data collected with the gust probe system on the NOAA P-3 aircraft over the polynya downwind of St. Lawrence Island in the Bering Sea are used to study the fluxes of heat, momentum, and moisture from the polynya. The data also allow study of the effect of the topography of St. Lawrence Island on the atmospheric boundary-layer flow over the polynya and ultimately on ice production in the polynya. Two cases are studied: one (Feb. 15, 1982) where the topographic effects are minimal and the other (Feb. 18, 1983) where the topographic effects are dominant. Calculation of the surface drag coefficient, C D, for the Feb. 15, 1982 case over young grey/white ice gave a value of 1.2 × 10-3, which is in close agreement with previous results. The value of the drag coefficient for the grey/white ice regime on Feb. 18, 1983, where the upstream topography on St. Lawrence Island had an important influence on the flow over the polynya, was 3.2 × 10-3. It was determined that this higher value was related to the more efficient mixing of momentum downward by turbulent eddies generated by flow over and around the topography. The area-averaged heat transfer coefficient, C H, over the polynya was on the order of 1.1 × 10-3 for both days, but there were large variations in heat flux across the polynya due to variations in the flow caused by the topography. Conditional sampling techniques applied to the turbulence data showed that the fractional areas occupied by updrafts and downdrafts were 28% and 36%, respectively, and that these results were within the range of values found in previous studies for over-land and over-ocean conditions.  相似文献   

9.
Turbulence in the Stable Boundary Layer at Higher Richardson Numbers   总被引:1,自引:1,他引:0  
We present some algebraic and numerical simulations of the stable boundary layer. We also discuss the problem of the existence of a critical Richardson number (Ri), beyond which the turbulence is suppressed. We compare the results of a second-order algebraic model with those of a third-order numerical model and, to this purpose, numerical simulations of a wind-tunnel flow, which is characterized by various Richardson numbers, were performed. As far as the second-order model is concerned, solutions, for the Richardson number greater than any critical value, can be obtained by modifying the time scales of the second-order equation pressure correlation terms in order to account for a buoyancy damping factor. We show that using a third-order model allows the same results (no critical Richardson number) to be obtained without modifications to the time scales. It is suggested that the non-locality, accounted for by the third-order moments, could allow the turbulence to persist also for Ri > 1.  相似文献   

10.
An event of polynya at Terra Nova Bay (TNB), occurring from 15 July to 17 July 2006, is simulated by a recent version of the mesoscale Eta model. Simulation results and observational data describe the surface conditions during the period. The spatial and temporal structure of the atmospheric boundary layer in response to the warm area of the polynya is also investigated. Numerical experiments show that the latter influences significantly the wind intensity, the temperature and the specific humidity of the air over Terra Nova Bay. The significant heating of the low atmosphere results in a three-dimensional anomaly in the baric field, which extends far in the Ross Sea, embedded in the complex pressure field obtained by the Eta model also without taking into account the polynya. A turbulent kinetic energy plume, indicating turbulent mixing, and an increased vertical diffusion of horizontal momentum are also simulated over the polynya. The downward flux of high momentum air and the modified pressure gradient force change the wind speed at low level over TNB.  相似文献   

11.
The Arctic as a trigger for glacial terminations   总被引:1,自引:0,他引:1  
We propose a hypothesis to explain the very abrupt terminations that end most of the glacial episodes. During the last glaciation, the buildup and southerly expansion of large continental ice-sheets in the Northern Hemisphere and extensive cover of sea ice in the N. Pacific and the N. Atlantic imposed a much more zonal climatic circulation system than exists today. We hypothesize that this, in combination with the frigid (dry) polar air led to a significant decrease in freshwater runoff into the Arctic Ocean. In addition the freshwater contribution of the fresher Pacific water was completely eliminated by the emergence of the Bering Strait (sill depth 50 m). As the Arctic freshwater input was depleted, regions of the Arctic Ocean lost surface stability and eventually overturned, bringing warmer deep water to the surface where it melted the overlying sea ice. This upwelled water was quickly cooled and sank as newly formed deep water. For sustained overturn events, such as might have occurred during the peak of very large glacial periods (i.e. the last glacial maximum), the voluminous deep water formed would eventually overflow into the Nordic Seas and North Atlantic necessitating an equally voluminous rate of return flow of warmer surface waters from the North Atlantic thus breaking down the Arctic's zonal isolation, melting the expansive NA sea ice cover and initiating oceanic heating of the atmosphere over the ice-sheets bordering the NA. We suggest that the combined effect of these overturn-induced events in concert with a Milankovitch warming cycle, was sufficient to drive the system to a termination. We elaborate on this proposed sequence of events, using the model for the formation of the Weddell Sea polynya as proposed by Martinson et al. (1981) and various, albeit sparse, data sets from the circum-Arctic region to apply and evaluate this hypothesis to the problem of glacial terminations.  相似文献   

12.
Observations made on 8 and 9 May 1988 by aircraft and two ships in and around the marginal ice zone of the Fram Strait during on-ice air flow under cloudy and cloud-free conditions are presented.The thermodynamic modification of the air mass moving from the open water to the ice over horizontal distances of 100–300 km is only a few tenth of a degree for temperature and a few tenth of a gram per kilogram for specific humidity. This is due to the small temperature differences between sea and ice surfaces. During the day, the ice surface is even warmer than the sea surface. The stably stratified 200–400 m deep boundary layer is often topped by a moisture inversion leading to downward fluxes of sensible as well as latent heat.The radiation and energy balance at the surface are measured as functions of ice cover, cloud cover and sun elevation angle. The net radiationR Nis the dominating term of the energy budget. During the day, the difference ofR Nbetween clear and overcast sky is only a few W/m2 over ice, but 100–200 W/m2 over water. During the night,R Nover ice is more sensitive to cloud cover.The kinematic structure is characterized by strong shears of the longitudinal and the transversal wind component. The profile of the latter one shows an inflection point near the top of the boundary layer. Dynamically-driven roll circulations are numerically separated from the mean flow. The secondary flow patterns have wavelengths of about 1 km and contribute substantially to the total variances and covariances.  相似文献   

13.
The atmospheric conditions during an observed case of open cellular convection over the North Sea were simulated using the Weather Research and Forecasting (WRF) numerical model. Wind, temperature and water vapour mixing ratio profiles from the WRF simulation were used to initialize an idealized version of the model, which excluded the effects of topography, surface inhomogeneities and large-scale weather forcing. Cells with an average diameter of 17.4 km developed. Simulations both with and without a capping inversion were made, and the cell-scale kinetic energy budget was calculated for each case. By considering all sources of explicit diffusion in the model, the budgets were balanced. In comparison with previous work based on observational studies, the use of three-dimensional, gridded model data afforded the possibility of calculating all terms in the budgets, which showed that the important terms in the budgets were buoyancy, pressure balance and inter-scale transfer to subgrid scales. Cells were also composited to calculate the average cell-scale flow and each of the budget terms on two-dimensional cross-sections through the cells, parallel and perpendicular to the mean wind direction.  相似文献   

14.
Shelf areas in the region of the Severnaya Zemlya Archipelago in the Laptev Sea are characterized by existing quasi-stationary flaw polynya that periodically opens throughout the entire wintertime under the action of strong offshore winds, which occur during the passage of cyclones. In periods of the open water surface, a near-surface turbulent layer or forced convection layer is formed in the flaw polynya; the water in the layer formed undergoes intense salinization and its dense increases due to active volumetric frazil ice production. As a result of the gravity force action, intense three-dimensional convective circulation develops in the underlying layers. It leads to a fast convective adjustment of the entire water column, especially, in the late winter, when residual stratification in the area of polynya is weakened with the total action of salinization due to the background static ΣMs back and periodical local frazil ice formation ΣMs f . On the whole for the entire winter period ΣMs f is 3.4 times greater than ΣMs back, although, during one month, probable lifetime of polynya with open water surface is several days. However, in these periods, salt fluxes with frazil ice production exceed background salt fluxes in the congelation polynya and background salt fluxes under heavy ice (limiting the polynya) 10–80 times. Spreading outside the polynia, dense shelf waters form in the area of polynya mesoscale baroclinic circulation, first generating intense shelf cascading, then intense slope cascading, which is of a local and random character. Some estimates of elements of baroclinic circulation of a convective origin in the area of polynia were obtained from the laboratory modeling results and are confirmed by field observation data.  相似文献   

15.
The concepts involved in the interpretation of energy budgets in subregions of a turbulent flow are examined in order to determine the processes responsible for the production, transport, and dissipation of energy throughout a dynamically inhomogeneous circulation. An interpretation of the effects of Reynolds stress—mean flow interaction work for open regions is presented in terms of the change in the total mean kinetic energy. In an arbitrary volume of fluid the changes in kinetic energy of the mean flow and the mean kinetic energy of the eddy flow are not generally equal and opposite, so this process is not generally responsible for a conversion of energy between the two forms. These ideas are then applied to a regional kinetic energy analysis of the mesoscale resolution general ocean circulation numerical experiment of Robinson et al. (1977). The spatial structure of the various terms in the equation for the mean eddy kinetic energy is examined. The issues involved in selection of a set of analysis regions are discussed and explored via examination of budgets over different subregions of this flow. Thereby a relatively simple picture of the regional energetics emerges. Mean eddy kinetic energy is produced by conversion of kinetic energy of the mean flow in the net over the recirculation and near field of the northern boundary current system and roughly half of this energy is lost to each of mean eddy pressure work transport and diffusion work. Budgets over subregions of this net source region are much more complex. The interior eddy field is driven by pressure work influx, while the southwestern region has eddy buoyancy work conversion of mean potential energy as its energy source. At every depth level the eddy field draws its kinetic energy from the mean flow, when averaged over the horizontal extent of the basin or over the recirculation and near field.  相似文献   

16.
An atmospheric surface-layer model is used to investigate the interactionbetween suspended snow particles and the near-surface flow. Themodel incorporates the effects of upward diffusion, gravitational settling and sublimation of snow particles in 48 size classes, the effects of snowdrift sublimation on the heat and moisture budget of the surface layer, and the buoyancy destruction of turbulent kinetic energy (TKE) caused by the presence of suspended particles. A new term in the E- closure model representing the buoyancy destruction due to suspended particles is included in the prognostic equation for TKE. Generally, model results indicate that the presence of suspended particles causes significant decreases in TKE, the dissipation rate, turbulent length scales and eddy exchange coefficients (up to 40%). It is found that the reduction in the eddy exchangecoefficients is due mainly to reductions in turbulent length scales. Theassociated particle Richardson number peaks near the saltation-suspensioninterface, but at higher levels in the surface layer the particle-induced buoyancy can also significantly affect the flow. A detailed analysis of the various snowdrift quantities, the TKE budget and the particle buoyancy effects on the flow is presented.  相似文献   

17.
赤道西太平洋-印度洋海温异常对亚洲夏季风的影响   总被引:8,自引:0,他引:8  
本文采用了p-σ五层原始方程模式模拟并研究了赤道西太平洋-印度洋海温距平场对亚洲夏季风的影响,计算了四种不同的海温距平试验方案。试验结果表明赤道西太平洋海温正距平使对流层下层的印度低压明显加强,副高北挺,季风槽加深,同时加强了对流层上层的反气旋环流。赤道西印度洋暖海温的模拟结果与赤道西太平洋暖海温对上述系统的影响相反,而赤道西印度洋冷海温对季风环流的影响与赤道西太平洋暧海温的影响一致。试验进一步表明赤道西太平洋-印度洋海温距平的纬向梯度方向对亚洲夏季风的影响是主要的,这一结论与实际观测结果一致。本文进一步讨论了赤道海温距平对越赤道气流、印度洋赤道东-西纬向环流和非绝热加热场的影响,结果都表明赤道西太平洋海温正距平和赤道西印度洋海温负距平的模拟特征与反El Nino年亚洲夏季环流特征类似,而赤道西印度洋海员正距平的模拟特征与El Nino年亚洲夏季坏流特征类似。  相似文献   

18.
A large-eddy simulation model with rotated coordinates and an open boundary is used to simulate the characteristics of katabatic flows over simple terrain. Experiments examine the effects of cross winds on the development of the slope-flow boundary layer for a steep (20°) slope and the role of drainage winds in preventing turbulence collapse on a gentle slope (1°). For the steep flow cases, comparisons between model average boundary-layer velocity, temperature deficit, and turbulence kinetic energy budget terms and tower observations show reasonable agreement. Results for different cross slope winds show that as the cross slope winds increase, the slope flow deepens faster and behaves more like a weakly stratified, sheared boundary layer. Analysis of the momentum budget shows that near the surface the flow is maintained by a balance between downslope buoyancy forcing and vertical turbulence flux from surface drag. Above the downslope jet, the turbulence vertical momentum flux reverses sign and acceleration of the flow by buoyancy is controlled by horizontal advection of slower moving ambient air. The turbulence budget is dominated by a balance between shear production and eddy dissipation, however, buoyancy and pressure transport both are significant in reducing the strength of turbulence above the jet. Results from the gentle slope case show that even a slight terrain variation can lead to significant drainage winds. Comparison of the gentle slope case with a flat terrain simulation indicates that drainage winds can effectively prevent the formation of very stable boundary layers, at least near the top of sloping terrain.  相似文献   

19.
利用1981—2016年的中国160站降水资料、OISST海温资料和NCEP/NCAR大气环流资料,对比分析了中等强度El Nio和2015/2016超强El Nio对中国东南部、江淮流域和西南地区冬春季降水影响的异同。结果表明:在中等强度El Nio的冬季,偏暖的赤道中东太平洋海表面温度(Sea Surface Temperature,SST)所激发的西北太平洋和日本附近的异常反气旋环流,其异常的西南风会加强南海—西北太平洋的水汽向中国东部输送,造成中国东南部和江淮流域的降水一致偏多。2015/2016超强El Nio的冬季,赤道中东太平洋SST的强度异常偏强,中国东部异常偏冷的表面气温和对流层低层温度加强大陆冷高压,长江流域及其以北地区受异常强的北风控制,从而造成中国东南部降水增多、江淮流域降水减少。在2015/2016超强El Nio事件衰减位相的春季,中国东南部和西南部降水的增加主要归因于异常偏暖的西北印度洋和东南印度洋SST的作用。经CAM5模式试验证明,西北印度洋异常偏暖的SST引起了北印度洋的异常西南风,激发了孟加拉湾—西北太平洋的异常反气旋,加强了印度洋和南海—西北太平洋的水汽向中国西南和东南部输送。此外,东南印度洋异常偏暖的SST还会激发局地异常上升运动,通过经向垂直环流加强南海—西北太平洋异常下沉运动,诱使中国东南部的上升运动加强,导致降水增多。  相似文献   

20.
A long-standing problem in large-eddy simulations (LES) of the planetary boundary layer (PBL) is that the mean wind and temperature profiles differ from the Monin-Obukhov similarity forms in the surface layer. This shortcoming of LES has been attributed to poor grid resolution and inadequate sub-grid-scale (SGS) modeling. We study this deficiency in PBL LES solutions calculated over a range of shear and buoyancy forcing conditions. The discrepancy from similarity forms becomes larger with increasing shear and smaller buoyancy forcing, and persists even with substantial horizontal grid refinement. With strong buoyancy forcing, however, the error is negligible.In order to achieve better agreement between LES and similarity forms in the surface layer, a two-part SGS eddy-viscosity model is proposed. The model preserves the usual SGS turbulent kinetic energy formulation for the SGS eddy viscosity, but it explicitly includes a contribution from the mean flow and a reduction of the contributions from the turbulent fluctuations near the surface. Solutions with the new model yield increased fluctuation amplitudes near the surface and better correspondence with similarity forms out to a distance of 0.1–0.2 times the PBL depth, i.e., a typical surface-layer depth. These results are also found to be independent of grid anisotropy. The new model is simple to implement and computationally inexpensive.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号