首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eclogite boudins occur within an orthogneiss sheet enclosed in a Barrovian metapelite‐dominated volcano‐sedimentary sequence within the Velké Vrbno unit, NE Bohemian Massif. A metamorphic and lithological break defines the base of the eclogite‐bearing orthogneiss nappe, with a structurally lower sequence without eclogite exposed in a tectonic window. The typical assemblage of the structurally upper metapelites is garnet–staurolite–kyanite–biotite–plagioclase–muscovite–quartz–ilmenite ± rutile ± silli‐manite and prograde‐zoned garnet includes chloritoid–chlorite–paragonite–margarite, staurolite–chlorite–paragonite–margarite and kyanite–chlorite–rutile. In pseudosection modelling in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH) using THERMOCALC, the prograde path crosses the discontinuous reaction chloritoid + margarite = chlorite + garnet + staurolite + paragonite (with muscovite + quartz + H2O) at 9.5 kbar and 570 °C and the metamorphic peak is reached at 11 kbar and 640 °C. Decompression through about 7 kbar is indicated by sillimanite and biotite growing at the expense of garnet. In the tectonic window, the structurally lower metapelites (garnet–staurolite–biotite–muscovite–quartz ± plagioclase ± sillimanite ± kyanite) and amphibolites (garnet–amphibole–plagioclase ± epidote) indicate a metamorphic peak of 10 kbar at 620 °C and 11 kbar and 610–660 °C, respectively, that is consistent with the other metapelites. The eclogites are composed of garnet, omphacite relicts (jadeite = 33%) within plagioclase–clinopyroxene symplectites, epidote and late amphibole–plagioclase domains. Garnet commonly includes rutile–quartz–epidote ± clinopyroxene (jadeite = 43%) ± magnetite ± amphibole and its growth zoning is compatible in the pseudosection with burial under H2O‐undersaturated conditions to 18 kbar and 680 °C. Plagioclase + amphibole replaces garnet within foliated boudin margins and results in the assemblage epidote–amphibole–plagioclase indicating that decompression occurred under decreasing temperature into garnet‐free epidote–amphibolite facies conditions. The prograde path of eclogites and metapelites up to the metamorphic peak cannot be shared, being along different geothermal gradients, of about 11 and 17 °C km?1, respectively, to metamorphic pressure peaks that are 6–7 kbar apart. The eclogite–orthogneiss sheet docked with metapelites at about 11 kbar and 650 °C, and from this depth the exhumation of the pile is shared.  相似文献   

2.
In the Orlica–?nie?nik Dome (NE Bohemian massif), alternating belts of orthogneiss with high‐pressure rocks and belts of mid‐crustal metasedimentary–metavolcanic rocks commonly display a dominant subvertical fabric deformed into a subhorizontal foliation. The first macroscopic foliation is subvertical, strikes NE–SW and is heterogeneously folded by open to isoclinal folds with subhorizontal axial planes parallel to the heterogeneously developed flat‐lying foliation. The metamorphic evolution of the mid‐crustal metasedimentary rocks involved successive crystallization of chlorite–muscovite–ilmenite–plagioclase–garnet, followed by staurolite‐bearing and then kyanite‐bearing assemblages in the subvertical fabric. This was followed by garnet retrogression, with syntectonic crystallization of sillimanite and andalusite parallel to the shallow‐dipping foliation. Elsewhere, andalusite and cordierite statically overgrew the flat‐lying fabric. With reference to a P–T pseudosection for a representative sample, the prograde succession of mineral assemblages and the garnet zoning pattern with decreasing grossular, spessartine and XFe are compatible with a PT path from 3.5–5 kbar/490–520 °C to peak conditions of 6–7 kbar/~630 °C suggesting burial from 12 to 25 km with increasing temperature. Using the same pseudosection, the retrograde succession of minerals shows decompression to sillimanite stability at ~4 kbar/~630 °C and to andalusite–cordierite stability at 2–3 kbar indicating exhumation from 25 km to around 9–12 km. Subsequent exhumation to ~6 km occurred without apparent formation of a deformation fabric. The structure and petrology together with the spatial distribution of the metasedimentary–metavolcanic rocks, and gneissic and high‐pressure belts are compatible with a model of burial of limited parts of the upper and middle crust in narrow cusp‐like synclines, synchronous with the exhumation of orogenic lower crust represented by the gneissic and high‐pressure rocks in lobe‐shaped and volumetrically more important anticlines. Converging PTD paths for the metasedimentary rocks and the adjacent high‐pressure rocks are due to vertical exchanges between cold and hot vertically moving masses. Finally, the retrograde shallow‐dipping fabric affects both the metasedimentary–metavolcanic rocks and the gneissic and high‐pressure rocks, and indicates that the ~15‐km exhumation was mostly accommodated by heterogeneous ductile thinning associated with unroofing of a buoyant crustal root.  相似文献   

3.
Polymetamorphic metapelites and embedded eclogites share a complex, episodic interplay of dehydration and fluid infiltration at the eclogite type‐locality (Saualpe–Koralpe, Eastern Alps, Austria). The metapelites inherited a fluid content (i.e. mineral‐bound OH expressed in terms of mol.% H2O) of ~6–7 mol.% H2O from high‐T–low‐P metamorphism experienced during the Permian. At or near Pmax of the subsequent Eoalpine event (~20 kbar and 680°C), the breakdown of paragonite to Na‐rich clinopyroxene and kyanite in metapelites released a discrete pulse of hydrous fluid. Prior to the dehydration event, the rocks were largely fluid absent, allowing only limited re‐equilibration during the prograde Eoalpine evolution. Similarly, Permian‐aged gabbros have persisted metastably due to the absence of a catalyst prior to fluid‐induced re‐equilibration. The fluid triggered partial to complete eclogitization along a fluid infiltration front partially preserved in metagabbro. Near‐isothermal decompression to ~7.5–10 kbar and 670–690°C took place under fluid‐absent conditions. After decompression, a second breakdown of phengitic white mica and garnet produced muscovite, biotite, plagioclase and ~0.1–0.7 mol.% H2O that enhanced extensive fluid‐aided re‐equilibration of the metapelites. Potential relicts of high‐P assemblages were largely obliterated and replaced by the recurrent amphibolite facies assemblage garnet+biotite+staurolite+kyanite+muscovite+plagioclase+ilmenite+quartz. The hydrous fluid originating from the metapelites infiltrated the embedded eclogites at these P–T conditions and induced the local breakdown of the peak assemblage omphacite and garnet to fine‐grained symplectites of diopside and plagioclase. Further fluid infiltration led to the formation of hornblende–quartz poikiloblasts at the expense of the symplectites. The metapelites re‐equilibrated until the growth of retrograde staurolite consumed any remaining free fluid, thereby terminating the process. Further re‐equilibration is inhibited by both the lack of a catalytic fluid and H2O as a reactant essential for rehydration reactions. The interplay between fluid sources and fluid sinks describes a closed cycle for the rocks at the eclogite type‐locality. Final, near‐isobaric cooling is indicated by a slight increase of XFe in garnet rims. Post‐decompression dehydration and fluid‐aided re‐equilibration arrested by the introduction of staurolite might explain the apparently homogeneous retrogression conditions as well as the notorious absence of diagnostic high‐P assemblages in metapelites at the eclogite type‐locality.  相似文献   

4.
Kyanite and staurolite occur in the Tananao Metamorphic Complex as submicron inclusions in almandine‐rich garnet from a metamorphosed palaeosol weathering horizon, near Hoping, eastern Taiwan. Quartz, rutile/brookite and zircon are also found as associated submicron inclusions in garnet. Employing the reaction ilmenite+kyanite+quartz=almandine+rutile, and the breakdown of staurolite and quartz as thermobarometers, these submicron‐scale minerals formed at >8.3–8.8 kbar and < 660–690 °C. This P–T estimate is different from that (i.e. 5–7 kbar and 530–550 °C) derived from matrix minerals, which include almandine‐rich garnet, muscovite, chlorite, chloritoid, plagioclase, quartz and ilmenite. These results suggest that submicron inclusions in garnet‐like materials may record portions of the otherwise undocumented prograde path or provide information about previous metamorphic events and thus yield new insights into orogenic belts.  相似文献   

5.
The Palaeo‐Mesoproterozoic metapelite granulites from northern Garo Hills, western Shillong‐Meghalaya Gneissic Complex (SMGC), northeast India, consist of resorbed garnet, cordierite and K‐feldspar porphyroblasts in a matrix comprising shape‐preferred aggregates of biotite±sillimanite+quartz that define the penetrative gneissic fabric. An earlier assemblage including biotite and sillimanite occurs as inclusions within the garnet and cordierite porphyroblasts. Staurolite within cordierite in samples without matrix sillimanite is interpreted to have formed by a reaction between the sillimanite inclusion and the host cordierite during retrogression. Accessory monazite occurs as inclusions within garnet as well as in the matrix, whereas accessory xenotime occurs only in the matrix. The monazite inclusions in garnet contain higher Ca, and lower Y and Th/U than the matrix monazite outside resorbed garnet rims. On the other hand, matrix monazite away from garnet contains low Ca and Y, and shows very high Th/U ratios. The low Th/U ratios (<10) of the Y‐poor garnet‐hosted monazite indicate subsolidus formation during an early stage of prograde metamorphism. A calculated P–T pseudosection in the MnCKFMASH‐PYCe system indicates that the garnet‐hosted monazite formed at <3 kbar/600 °C (Stage A). These P–T estimates extend backward the previously inferred prograde P–T path from peak anatectic conditions of 7–8 kbar/850 °C based on major mineral equilibria. Furthermore, the calculated P–T pseudosections indicate that cordierite–staurolite equilibrated at ~5.5 kbar/630 °C during retrograde metamorphism. Thus, the P–T path was counterclockwise. The Y‐rich matrix monazite outside garnet rims formed between ~3.2 kbar/650 °C and ~5 kbar/775 °C (Stage B) during prograde metamorphism. If the effect of bulk composition change due to open system behaviour during anatexis is considered, the P–T conditions may be lower for Stage A (<2 kbar/525 °C) and Stage B (~3 kbar/600 °C to ~3.5 kbar/660 °C). Prograde garnet growth occurred over the entire temperature range (550–850 °C), and Stage‐B monazite was perhaps initially entrapped in garnet. During post‐peak cooling, the Stage‐B monazite grains were released in the matrix by garnet dissolution. Furthermore, new matrix monazite (low Y and very high Th/U ≤80, ~8 kbar/850–800 °C, Stage C), some monazite outside garnet rims (high Y and intermediate Th/U ≤30, ~8 kbar/800–785 °C, Stage D), and matrix xenotime (<785 °C) formed through post‐peak crystallization of melt. Regardless of textural setting, all monazite populations show identical chemical ages (1630–1578 Ma, ±43 Ma). The lithological association (metapelite and mafic granulites), and metamorphic age and P–T path of the northern Garo Hills metapelites and those from the southern domain of the Central Indian Tectonic Zone (CITZ) are similar. The SMGC was initially aligned with the southern parts of CITZ and Chotanagpur Gneissic Complex of central/eastern India in an ENE direction, but was displaced ~350 km northward by sinistral movement along the north‐trending Eastern Indian Tectonic Zone in Neoproterozoic. The southern CITZ metapelites supposedly originated in a back‐arc associated with subducting oceanic lithosphere below the Southern Indian Block at c. 1.6 Ga during the initial stage of Indian shield assembly. It is inferred that the SMGC metapelites may also have originated contemporaneously with the southern CITZ metapelites in a similar back‐arc setting.  相似文献   

6.
In a Barrovian metamorphic sequence, garnetiferous mica schists document a heterogeneously developed superposition of sub‐orthogonal fabrics and multiple garnet growth episodes. In the variably deformed domains, four types of garnet porphyroblasts have been defined based on inclusion trail patterns. Modelled garnet zoning in the MnNCKFMASHTO system indicates a prograde evolution from 4–4.5 kbar and 490–510 °C to 5–6 kbar and 520–550 °C in the earliest subhorizontal fabric progressing towards 6.5–7.5 kbar and 560–590 °C in the subsequent subvertical foliation. This fabric is heterogeneously deformed into a shallow‐dipping retrograde foliation associated with garnet resorption. In situ electron backscatter diffraction measurements of ilmenite inclusions in individual garnet grains yield precise data on included planar and linear elements. Consistent orientations of internal foliations, lineations and foliation intersection axis sets indicate a superposition of three sub‐orthogonal foliation systems. Weak variations of internal records with increasing intensity of deformation suggest that a moderate buckling stage occurred, but apparent lack of porphyroblast rotation is interpreted as a result of dominant passive flow. Coupling the orientation of internal fabric sets with P–T estimates is used to complement the tectono‐metamorphic evolution of the thickened crust. We demonstrate that garnet porphyroblasts preserve features which reflect large‐scale tectonic processes in orogens.  相似文献   

7.
ABSTRACT The high-grade rocks (metapelite, quartzite, metagabbro) of the Hisøy-Torungen area represent the south-westernmost exposures of granulites in the Proterozoic Bamble sector, south Norway. The area is isoclinally folded and a metamorphic P–T–t path through four successive stages (M1-M4) is recognized. Petrological evidence for a prograde metamorphic event (M1) is obtained from relict staurolite + chlorite + albite, staurolite + hercynite + ilmenite, cordierite + sillimanite, fine-grained felsic material + quartz and hercynite + biotite ± sillimanite within metapelitic garnet. The phase relations are consistent with a pressure of 3.6 ± 0.5 kbar and temperatures up to 750–850°C. M1 is connected to the thermal effect of the gabbroic intrusions prior to the main (M2) Sveconorwegian granulite facies metamorphism. The main M2 granulite facies mineral assemblages (quartz+ plagioclase + K-feldspar + garnet + biotite ± sillimanite) are best preserved in the several-metre-wide Al-rich metapelites, which represent conditions of 5.9–9.1 kbar and 790–884°C. These P–T conditions are consistent with a temperature increase of 80–100°C relative to the adjacent amphibolite facies terranes. No accompanying pressure variations are recorded. Up to 1-mm-wide fine-grained felsic veinlets appear in several units and represent remnants of a former melt formed by the reaction: Bt + Sil + Qtz→Grt + lq. This dehydration reaction, together with the absence of large-scale migmatites in the area, suggests a very reduced water activity in the rocks and XH2O = 0.25 in the C–O–H fluid system was calculated for a metapelitic unit. A low but variable water activity can best explain the presence or absence of fine-grained felsic material representing a former melt in the different granulitic metapelites. The strongly peraluminous composition of the felsic veinlets is due to the reaction: Grt +former melt ± Sil→Crd + Bt ± Qtz + H2O, which has given poorly crystalline cordierite aggregates intergrown with well-crystalline biotite. The cordierite- and biotite-producing reaction constrains a steep first-stage retrograde (relative to M2) uplift path. Decimetre- to metre-wide, strongly banded metapelites (quartz + plagioclase + biotite + garnet ± sillimanite) inter-layered with quartzites are retrograded to (M3) amphibolite facies assemblages. A P–T estimate of 1.7–5.6 kbar, 516–581°C is obtained from geothermobarometry based on rim-rim analyses of garnet–biotite–plagioclase–sillimanite–quartz assemblages, and can be related to the isoclinal folding of the rocks. M4 greenschist facies conditions are most extensively developed in millimetre-wide chlorite-rich, calcite-bearing veins cutting the foliation.  相似文献   

8.
Migmatites with sub‐horizontal fabrics at the eastern margin of the Variscan orogenic root in the Bohemian Massif host lenses of eclogite, kyanite‐K‐feldspar granulite and marble within a matrix of migmatitic paragneiss and amphibolite. Petrological study and pseudosection modelling have been used to establish whether the whole area experienced terrane‐wide exhumation of lower orogenic crust, or whether smaller portions of higher‐pressure lower crust were combined with a lower‐pressure matrix. Kyanite‐K‐feldspar granulite shows peak conditions of 16.5 kbar and 850 °C with no clear indications of prograde path, whereas in the eclogite the prograde path indicates burial from 10 kbar and 700 °C to a peak of 18 kbar and 800 °C. Two contrasting prograde paths are identified within the host migmatitic paragneiss. The first path is inferred from the presence of staurolite and kyanite inclusions in garnet that contains preserved prograde zoning that indicates burial with simultaneous heating to 11 kbar and 800 °C. The second path is inferred from garnet overgrowths of a flat foliation defined by sillimanite and biotite. Garnet growth in such an assemblage is possible only if the sample is heated at 7–8 kbar to around 700–840 °C. Decompression is associated with strong structural reworking in the flat fabric that involves growth of sillimanite in paragneiss and kyanite‐K‐feldspar granulite at 7–10 kbar and 750–850 °C. The contrasting prograde metamorphic histories indicate that kilometre‐scale portions of high‐pressure lower orogenic crust were exhumed to middle crustal levels, dismembered and mixed with a middle crustal migmatite matrix, with the simultaneous development of a flat foliation. The contrasting PT paths with different pressure peaks show that tectonic models explaining high‐pressure boudins in such a fabric cannot be the result of heterogeneous retrogression during ductile rebound of the whole orogenic root. The PT paths are compatible with a model of heterogeneous vertical extrusion of lower crust into middle crust, followed by sub‐horizontal flow.  相似文献   

9.
The sequential growth of biotite, garnet, staurolite, kyanite, andalusite, cordierite and fibrolitic sillimanite, their microstructural relationships, foliation intersection axes preserved in porphyroblasts (FIAs), geochronology, P–T pseudosection (MnNCKFMASH system) modelling and geothermobarometry provide evidence for a P–T–t–D path that changes from clockwise to anticlockwise with time for the Balcooma Metamorphic Group. Growth of garnet at ~530 °C and 4.6 kbar during the N–S‐shortening event that formed FIA 1 was followed by staurolite, plagioclase and kyanite growth. The inclusions of garnet in staurolite porphyroblasts that formed during the development of FIAs 2 and 3 plus kyanite growth during FIA 3 reflect continuous crustal thickening from c. 443 to 425 Ma during an Early Silurian Benambran Orogenic event. The temperature and pressure increased during this time from ~530 °C and 4.6 kbar to ~630 °C and 6.2 kbar. The overprinting of garnet‐, staurolite‐ and kyanite‐bearing mineral assemblages by low‐pressure andalusite and cordierite assemblages implies ~4‐kbar decompression during Early Devonian exhumation of the Greenvale Province.  相似文献   

10.
The Chandman massif, a typical structure of the Mongolian Altai, consists of a migmatite–magmatite core rimmed by a lower grade metamorphic envelope of andalusite and cordierite‐bearing schists. The oldest structure in the migmatite–magmatite core is a subhorizontal migmatitic foliation S1 parallel to rare granitoid sills. This fabric is folded by upright folds F2 and transposed into a vertical migmatitic foliation S2 that is syn‐tectonic, with up to several tens of metres thick granitoid sills. Sillimanite–ilmenite–magnetite S1 inclusion trails in garnet constrain the depth of equilibration during the S1 fabric to 6–7 kbar at 710–780 °C. Reorientation of sillimanite into the S2 fabric indicates that the S1–S2 fabric transition occurred in the sillimanite stability field. The presence of cordierite, and garnet rim chemistry point to decompression to 3–4 kbar and 680–750 °C during development of the S2 steep fabric, and post‐tectonic andalusite indicates further decompression to 2–3 kbar and 600–650 °C. Widespread crystallization of post‐tectonic muscovite is explained by the release of H2O from crystallizing partial melt. In the metamorphic envelope the subhorizontal metamorphic schistosity S1 is heterogeneously affected by upright F2 folds and axial planar subvertical cleavage S2. In the north, the inclusion trails in garnet are parallel to the S1 foliation, and the garnet zoning indicates nearly isobaric heating from 2.5 to 3 kbar and 500–530 °C. Cordierite contains crenulated S1 inclusion trails and has pressure shadows related to the formation of the S2 fabric. The switch from the S1 to the S2 foliation occurred near 2.5–3 kbar and 530–570 °C; replacement of cordierite by fine‐grained muscovite and chlorite indicates further retrogression and cooling. In the south, andalusite containing crenulated inclusion trails of ilmenite and magnetite indicates heating during the D2 deformation at 3–4 kbar and 540–620 °C. Monazite from a migmatite analysed by LASS yielded elevated HREE concentrations. The grain with the best‐developed oscillatory zoning is 356 ± 1.0 [±7] Ma (207Pb‐corrected 238U/206Pb), considered to date the crystallization from melt in the cordierite stability ~680 °C and 3.5 kbar, whereas the patchy BSE‐dark domains give a date of 347 ± 4.2 [±7] Ma interpreted as recrystallization at subsolidus conditions. The earliest sub‐horizontal fabric is associated with the onset of magmatism and peak of P–T conditions in the deep crust, indicating important heat input associated with lower crustal horizontal flow. The paroxysmal metamorphic conditions are connected with collapse of the metamorphic structure, an extrusion of the hot lower crustal rocks associated with vertical magma transfer and a juxtaposition of the hot magmatite–migmatite core with supracrustal rocks. This study provides information about tectono‐thermal history and time‐scales of horizontal flow and vertical mass and heat transfer in the Altai orogen. It is shown that, similar to collisional orogens, doming of partially molten rocks assisted by syn‐orogenic magmatism can be responsible for the exhumation of orogenic lower crust in accretionary orogenic systems.  相似文献   

11.
Phase equilibrium modelling and monazite microprobe dating were used to characterize the polymetamorphic evolution of metapelites from the northern part of the Vepor Unit, West Carpathians. Three generations of garnet and associated metamorphic assemblages found in these rocks correspond to three distinct metamorphic events related to the Variscan orogeny, a Permian phase of crustal extension and the Alpine orogeny. Variscan staurolite‐bearing and Alpine chloritoid‐bearing assemblages record medium‐temperature and medium‐pressure regional metamorphisms reaching 540–570 °C/5–7.5 kbar and 530–550 °C/5–6.5 kbar respectively. The Permian metamorphic assemblage involves garnet, andalusite, sillimanite, biotite, muscovite, plagioclase and corundum and locally forms silica‐undersaturated andalusite‐biotite‐spinel coronas around older staurolite. The transition from andalusite to sillimanite indicates a prograde low‐pressure and medium‐temperature metamorphism characterized by temperature increase from 500 to 650 °C at ~3 kbar. As accessory monazite is abundant in the rocks, an attempt was made to derive its age of formation by means of electron microprobe‐based Th‐U‐Pb chemical dating. Despite the polymetamorphic nature of the metapelites, the monazite yielded uniform Permian ages. Microstructures confirm that monazite was formed in relation to the low‐pressure and medium‐temperature paragenesis, and the weighted average ages obtained for two different samples are 278 ± 5 and 275 ± 12 Ma respectively. The virtual lack of Variscan and Alpine monazite populations points to interesting aspects concerning the growth systematics of monazite in metamorphic rocks.  相似文献   

12.
Eclogites and related high‐P metamorphic rocks occur in the Zaili Range of the Northern Kyrgyz Tien‐Shan (Tianshan) Mountains, which are located in the south‐western segment of the Central Asian Orogenic Belt. Eclogites are preserved in the cores of garnet amphibolites and amphibolites that occur in the Aktyuz area as boudins and layers (up to 2000 m in length) within country rock gneisses. The textures and mineral chemistry of the Aktyuz eclogites, garnet amphibolites and country rock gneisses record three distinct metamorphic events (M1–M3). In the eclogites, the first MP–HT metamorphic event (M1) of amphibolite/epidote‐amphibolite facies conditions (560–650 °C, 4–10 kbar) is established from relict mineral assemblages of polyphase inclusions in the cores and mantles of garnet, i.e. Mg‐taramite + Fe‐staurolite + paragonite ± oligoclase (An<16) ± hematite. The eclogites also record the second HP‐LT metamorphism (M2) with a prograde stage passing through epidote‐blueschist facies conditions (330–570 °C, 8–16 kbar) to peak metamorphism in the eclogite facies (550–660 °C, 21–23 kbar) and subsequent retrograde metamorphism to epidote‐amphibolite facies conditions (545–565 °C and 10–11 kbar) that defines a clockwise P–T path. thermocalc (average P–T mode) calculations and other geothermobarometers have been applied for the estimation of P–T conditions. M3 is inferred from the garnet amphibolites and country rock gneisses. Garnet amphibolites that underwent this pervasive HP–HT metamorphism after the eclogite facies equilibrium have a peak metamorphic assemblage of garnet and pargasite. The prograde and peak metamorphic conditions of the garnet amphibolites are estimated to be 600–640 °C; 11–12 kbar and 675–735 °C and 14–15 kbar, respectively. Inclusion phases in porphyroblastic plagioclase in the country rock gneisses suggest a prograde stage of the epidote‐amphibolite facies (477 °C and 10 kbar). The peak mineral assemblage of the country rock gneisses of garnet, plagioclase (An11–16), phengite, biotite, quartz and rutile indicate 635–745 °C and 13–15 kbar. The P–T conditions estimated for the prograde, peak and retrograde stages in garnet amphibolite and country rock are similar, implying that the third metamorphic event in the garnet amphibolites was correlated with the metamorphism in the country rock gneisses. The eclogites also show evidence of the third metamorphic event with development of the prograde mineral assemblage pargasite, oligoclase and biotite after the retrograde epidote‐amphibolite facies metamorphism. The three metamorphic events occurred in distinct tectonic settings: (i) metamorphism along the hot hangingwall at the inception of subduction, (ii) subsequent subduction zone metamorphism of the oceanic plate and exhumation, and (iii) continent–continent collision and exhumation of the entire metamorphic sequences. These tectonic processes document the initial stage of closure of a palaeo‐ocean subduction to its completion by continent–continent collision.  相似文献   

13.
Interpretations based on quantitative phase diagrams in the system CaO–Na2O–K2O–TiO2–MnO–FeO–MgO–Al2O3–SiO2–H2O indicate that mineral assemblages, zonations and microstructures observed in migmatitic rocks from the Beit Bridge Complex (Messina area, Limpopo Belt) formed along a clockwise P–T path. That path displays a prograde P–T increase from 600 °C/7.0 kbar to 780 °C/9–10 kbar (pressure peak) and 820 °C/8 kbar (thermal peak), followed by a P–T decrease to 600 °C/4 kbar. The data used to construct the P–T path were derived from three samples of migmatitic gneiss from a restricted area, each of which has a distinct bulk composition: (1) a K, Al‐rich garnet–biotite–cordierite–sillimanite–K‐feldspar–plagioclase–quartz–graphite gneiss (2) a K‐poor, Al‐rich garnet–biotite–staurolite–cordierite–kyanite–sillimanite–plagioclase–quartz–rutile gneiss, and (3) a K, Al‐poor, Fe‐rich garnet–orthopyroxene–biotite–chlorite–plagioclase–quartz–rutile–ilmenite gneiss. Preservation of continuous prograde garnet growth zonation demonstrates that the pro‐ and retrograde P–T evolution of the gneisses must have been rapid, occurring during a single orogenic cycle. These petrological findings in combination with existing geochronological and structural data show that granulite facies metamorphism of the Beit Bridge metasedimentary rocks resulted from an orogenic event during the Palaeoproterozoic (c. 2.0 Ga), caused by oblique collision between the Kaapvaal and Zimbabwe Cratons. Abbreviations follow Kretz (1983 ).  相似文献   

14.
The distribution of REE minerals in metasedimentary rocks was investigated to gain insight into the stability of allanite, monazite and xenotime in metapelites. Samples were collected in the central Swiss Alps, along a well‐established metamorphic field gradient that record conditions from very low grade metamorphism (250 °C) to the lower amphibolite facies (~600 °C). In the Alpine metapelites investigated, mass balance calculations show that LREE are mainly transferred between monazite and allanite during the course of prograde metamorphism. At very low grade metamorphism, detrital monazite grains (mostly Variscan in age) have two distinct populations in terms of LREE and MREE compositions. Newly formed monazite crystallized during low‐grade metamorphism (<440 °C); these are enriched in La, but depleted in Th and Y, compared with inherited grains. Upon the appearance of chloritoid (~440–450 °C, thermometry based on chlorite–choritoid and carbonaceous material), monazite is consumed, and MREE and LREE are taken up preferentially in two distinct zones of allanite distinguishable by EMPA and X‐ray mapping. Prior to garnet growth, allanite acquires two growth zones of clinozoisite: a first one rich in HREE + Y and a second one containing low REE contents. Following garnet growth, close to the chloritoid–out zone boundary (~556–580 °C, based on phase equilibrium calculations), allanite and its rims are partially to totally replaced by monazite and xenotime, both associated with plagioclase (± biotite ± staurolite ± kyanite ± quartz). In these samples, epidote relics are located in the matrix or as inclusions in garnet, and these preserve their characteristic chemical and textural growth zoning, indicating that they did not experience re‐equilibration following their prograde formation. Hence, the partial breakdown of allanite to monazite offers the attractive possibility to obtain in situ ages, representing two distinct crystallization stages. In addition, the complex REE + Y and Th zoning pattern of allanite and monazite are essential monitors of crystallization conditions at relatively low metamorphic grade.  相似文献   

15.
Thermodynamic modelling of metamorphic rocks increases the possibilities of deciphering prograde paths that provide important insights into early orogenic evolution. It is shown that the chloritoid–staurolite transition is not only an indicator of temperature on prograde P–T paths, but also a useful indicator of pressure. The approach is applied to the Moravo‐Silesian eastern external belt of the Bohemian Massif, where metamorphic zones range from biotite to staurolite‐sillimanite. In the staurolite zone, inclusions of chloritoid occur in garnet cores, while staurolite is included at garnet rims and is widespread in the matrix. Chloritoid XFe = 0.91 indicates transition to staurolite at 5 kbar and 550 °C and consequently, an early transient prograde geothermal gradient of 29 °C km?1. The overall elevated thermal evolution is then reflected in the prograde transition of staurolite to sillimanite and in the achievement of peak temperature of 660 °C at a relatively low pressure of 6.5 kbar. To the south and to the west of the studied area, high‐grade metamorphic zones record a prograde path evolution from staurolite to kyanite and development of sillimanite on decompression. Transition of chloritoid to staurolite was reported in two places, with chloritoid XFe = 0.75–0.80, occurring at 8–10 kbar and 560–580 °C, and indicating a transient prograde geothermal gradient of 16–18 °C km?1. These data show variable barric evolutions along strike and across the Moravo‐Silesian domain. Elevated prograde geothermal gradient coincides with areas of Devonian sedimentation and volcanism, and syn‐ to late Carboniferous intrusions. Therefore, we interpret it as a result of heat inherited from Devonian rifting, further fuelled by syntectonic Carboniferous intrusions.  相似文献   

16.
U(–Th)–Pb geochronology, geothermobarometric estimates and macro‐ and micro‐structural analysis, quantify the pressure–temperature–time–deformation (PTtD) history of Everest Series schist and calcsilicate preserved in the highest structural levels of the Everest region. Pristine staurolite schist from the Everest Series contains garnet with prograde compositional zoning and yields a P–T estimate of 649 ± 21 ° C, 6.2 ± 0.7 kbar. Other samples of the Everest Series contain garnet with prograde zoning and staurolite with cordierite overgrowths that yield a P–T estimate of 607 ± 25 ° C, 2.9 ± 0.6 kbar. The Lhotse detachment (LD) marks the base of the Everest Series. Structurally beneath the LD, within the Greater Himalayan Sequence (GHS), garnet zoning is homogenized, contains resorption rinds and yields peak temperature estimates of ~650 ± 50 ° C. P–T estimates record a decrease in pressure from ~6 to 3 kbar and equivalent temperatures from structurally higher positions in the overlying Everest Series, through the LD and into GHS. This transition is interpreted to result from the juxtaposition of the Everest Series in the hangingwall with the GHS footwall rocks during southward extrusion and decompression along the LD system. An age constraint for movement on the LD is provided by the crystallization age of the Nuptse granite (23.6 ± 0.7 Ma), a body that was emplaced syn‐ to post‐solid‐state fabric development. Microstructural evidence suggests that deformation in the LD progressed from a distributed ductile shear zone into the structurally higher Qomolangma detachment during the final stages of exhumation. When combined with existing geochronological, thermobarometric and structural data from the GHS and Main Central thrust zone, these results form the basis for a more complete model for the P–T–t–D evolution of rocks exposed in the Mount Everest region.  相似文献   

17.
Lawsonite eclogite (metabasalt and metadolerite) and associated metasedimentary rocks in a serpentinite mélange from an area just south of the Motagua fault zone (SMFZ), Guatemala, represent excellent natural records of the forearc slab–mantle interface. Pseudosection modelling of pristine lawsonite eclogite reproduces the observed predominant mineral assemblages, and garnet compositional isopleths intersect within the phase fields, yielding a prograde PT path that evolves from 20 kbar, 470 °C (M1) to 25 kbar, 520 °C (M2). The dominant penetrative foliation within the eclogite blocks is defined by minerals developed during the prograde evolution, and the associated deformation, therefore, took place during subduction. Thermometry using Raman spectra of carbonaceous material in metasedimentary rocks associated with the SMFZ eclogites gives estimates of peak‐T of ~520 °C. Barometry using Raman spectroscopy shows unfractured quartz inclusions in garnet rims retain overpressures of up to ~10 kbar, implying these inclusions were trapped at conditions just below the quartz/coesite transition, in agreement with the results of phase equilibrium analysis. Additional growth of Ca‐rich garnet indicates initial isothermal decompression to 20 kbar (M3) followed by hydration and substantial cooling to the lawsonite–blueschist facies (M4). Further decompression of the hydrated eclogite blocks to the pumpellyite–actinolite facies (3–5 kbar, 230–250 °C) is associated with dehydration and veining (M5). The presence of eclogite as m‐ to 10 m‐sized blocks in a serpentinite matrix, lack of widespread deformation developed during exhumation and derived prograde PT path associated with substantial dehydration of metabasites within the antigorite stability field suggest that the SMFZ eclogites represent the uppermost part of the forearc slab crust sampled by an ascending serpentinite diapir in an active, moderate‐T subduction zone.  相似文献   

18.
The metamorphic evolution of a granulitized eclogite from the Phung Chu Valley (Eastern Himalaya) was reconstructed combining microstructural observations, conventional thermobarometry and quantitative pseudosection analysis. The granulitized eclogite consists of clinopyroxene, plagioclase, garnet, brown amphibole, and minor orthopyroxene, biotite, ilmenite and quartz. On the basis of microstructural observations and mineral relationships, four metamorphic stages and related mineral assemblages have been recognized: (i) M1 eclogite‐facies assemblage, consisting of garnet, omphacite (now replaced by a clinopyroxene + plagioclase symplectite) and phengite (replaced by biotite +plagioclase symplectite); (ii) M2 granulite‐facies assemblage, represented by clinopyroxene, orthopyroxene, garnet, plagioclase and accessory ilmenite; (iii) M3 plagioclase + orthopyroxene corona developed around garnet, and (iv) M4 brown amphibole + plagioclase assemblage in the rock matrix. Because of the nearly complete lack of eclogitic mineral relics, M1 conditions can be only loosely constrained at >1.5 GPa and >580 °C. In contrast, assemblage M2 tightly constrains the peak granulitic stage at 0.8–1.0 GPa and >750 °C. The second granulitic assemblage M3, represented by the plagioclase + orthopyroxene corona, formed at lower pressures (~0.4 GPa and ~750 °C). During the subsequent exhumation, the granulitized eclogite experienced significant cooling to nearly 700 °C, marked by the appearance of brown amphibole and plagioclase (M4) in the rock matrix. U‐Pb SHRIMP analyses on low‐U rims of zircon from an eclogite of the same locality suggest an age of 13–14 Ma for the M3 stage. The resulting decompressional clockwise P–T path of the Ama Drime eclogite is characterized by nearly isothermal decompression from >1.5 GPa to ~0.4 GPa, followed by nearly isobaric cooling from ~775 °C to ~710 °C. Modelling of phase equilibria by a calculated petrogenetic grid and conventional thermobarometry on a biotite‐garnet‐sillimanite metapelite hosted in the country rock granitic orthogneiss extends the inferred P–T trajectory down to ~630 °C and ~0.3 GPa.  相似文献   

19.
High-pressure (HP) granulites form either in the domain of the subducted plate during continental collision or in supra-subduction systems where the thermally softened upper plate is shortened and thickened. Such a discrepancy in tectonic setting can be evaluated by metamorphic pressure–temperature–time-deformation (P–T–t–D) paths. In the current study, P–T–t–D paths of Early Palaeozoic HP granulite facies rocks, in the form of metabasic lenses enclosed in migmatitic metapelite, from the Dunhuang block, NW China, are investigated in order to constrain the nature of the HP rocks and shed light on the geodynamic evolution of a modern hot orogenic system in an active margin setting. The rocks show a polyphase evolution characterized by (1) relics of horizontal or gently dipping fabric (S1) preserved in cores of granulite lenses and in garnet porphyroblasts, (2) a N-S trending sub-vertical fabric (S2) preserved in low-strain domains and (3) upright folds (F3) associated with a ubiquitous steep E-W striking axial planar foliation (S3). Garnet in the granulites preserves relics of a prograde mineral assemblage M1a equilibrated at ~11.5 kbar and ~770–780°C, whereas the matrix granulite assemblage (M1b) from the S1 fabric attained peak pressure at ~13.5 kbar and ~850°C. The granulites were overprinted at ~8–11 kbar and ~850–900°C during crustal melting (M2) followed by partial re-equilibration (M3) at ~8 kbar and ~625°C. A garnet Lu–Hf age of 421.6 ± 1.2 Ma dates metamorphism M1, while a garnet Sm–Nd age of 385.3 ± 4.0 Ma reflects M3 cooling of the granulites. The mineral assemblage, M1, of the host migmatitic metapelite formed at ~9–12.5 kbar and ~760–810°C, partial melting and migmatization (M2) occurred at ~7 kbar and ~760°C and re-equilibration (M3) at ~5–6 kbar and ~675°C. A garnet Lu–Hf age of 409.7 ± 2.3 Ma dates thermal climax (M2) and a garnet Sm–Nd age of 356 ± 11 Ma constrains M3 for the migmatitic metapelites. The timing of this late phase is also bracketed by an emplacement age of syntectonic granite dated at c. 360 Ma. Decoupling of M1 and M2 P–T evolutions between the mafic granulites and migmatitic metapelites indicates their different positions in the crustal column, while the shared pressure–temperature (P–T) evolution M3 suggests formation of a mélange-like association during the late stages of orogeny. The high-pressure event D1-M1 is interpreted as a result of Late Silurian–Early Devonian moderate crustal thickening of a thermally softened and thinned pre-orogenic crust. The high-temperature (HT) re-equilibration D2-M2 is interpreted as a result of Mid-Devonian shortening of the previously thickened crust, possibly due to ‘Andean-type’ underthrusting. The D3-M3 event reflects Late Devonian supra-subduction shortening and continuous erosion of the sub-crustal lithosphere. This tectono-metamorphic sequence of events is explained by polyphased Andean-type deformation of a ‘Cascadia-type’ active margin, which corresponds to a supra-subduction tectonic switching paradigm.  相似文献   

20.
The Malpica–Tui Unit (Galicia, NW Spain) records eclogite‐ and blueschist‐facies metamorphism during the onset of the Variscan orogeny in Europe. Petrological analysis involving pseudosections calculated using thermocalc shows that the Upper Sheet of this unit, the Ceán Schists, recorded a three‐stage metamorphic evolution involving (i) Early subduction‐related medium‐pressure/low‐temperature metamorphism (M1) constrained at ~350–380 °C, 12–14 kbar, which is only recorded in the basal part (lower metapelites, LM) of the Ceán Schists. (ii) Subduction‐related blueschist facies prograde metamorphism (M2) going from ~19 kbar, 420 °C to 21 kbar, 460 °C in the LM, and from 16 kbar 430 °C to 21–22 kbar, 520 °C in the structurally upper metapelites (UM). (iii) Exhumation‐related metamorphism (M3) is characterized by a decompression to 8–10 kbar, 470–490 °C in the LM. This decompression is also recorded in the UM, but it was not possible to estimate precise P–T conditions. The calculations indicate that (i) the prograde evolution in subduction zones may occur in fluid‐undersaturated conditions due to the crystallization of lawsonite, even in metapelitic rocks. This significantly influences phase equilibria and hence the P–T estimates. (ii) The proportion of ferric iron also has a strong influence on phase equilibria, even in metapelites. However, the analysed values of Fe2O3 may not reflect the oxidation state during the main metamorphic evolution and are probably easily modified by superficial alteration even in apparently fresh samples. The use of PTX(Fe2O3) pseudosections together with petrographic observations is then necessary to estimate the real oxidation state of the rocks and correctly evaluate the P–T conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号