首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Greater Himalayan Sequence (GHS) has commonly been treated as a large coherently deforming high‐grade tectonic package, exhumed primarily by simultaneous thrust‐ and normal‐sense shearing on its bounding structures and erosion along its frontal exposure. A new paradigm, developed over the past decade, suggests that the GHS is not a single high‐grade lithotectonic unit, but consists of in‐sequence thrust sheets. In this study, we examine this concept in central Nepal by integrating temperaturetime (T–t) paths, based on coupled Zr‐in‐titanite thermometry and U–Pb geochronology for upper GHS calcsilicates, with traditional thermobarometry, textural relationships and field mapping. Peak Zr‐in‐titanite temperatures are 760–850°C at 10–13 kbar, and U–Pb ages of titanite range from c. 30 to c. 15 Ma. Sector zoning of Zr and distribution of U–Pb ages within titanite suggest that diffusion rates of Zr and Pb are slower than experimentally determined rates, and these systems remain unaffected into the lower granulite facies. Two types of T–t paths occur across the Chame Shear Zone (CSZ). Between c. 25 and 17–16 Ma, hangingwall rocks cool at rates of 1–10°C/Ma, while footwall rocks heat at rates of 1–10°C/Ma. Over the same interval, temperatures increase structurally upwards through the hangingwall, but by 17–16 Ma temperatures converge. In contrast, temperatures decrease upwards in footwall rocks at all times. While the footwall is interpreted as an intact, structurally upright section, the thermometric inversion within the hangingwall suggests thrusting of hotter rocks over colder from c. 25 to c. 17–16 Ma. Retrograde hydration that is restricted to the hangingwall, and a lithological repetition of orthogneiss are consistent with thrust‐sense shear on the CSZ. The CSZ is structurally higher than previously identified intra‐GHS thrusts in central Nepal, and thrusting duration was 3–6 Ma longer than proposed for other intra‐GHS thrusts in this region. Cooling rates for both the hangingwall and footwall of the CSZ are comparable to or faster than rates for other intra‐GHS thrust sheets in Nepal. The overlap in high‐T titanite U–Pb ages and previously published muscovite 40Ar/39Ar cooling ages imply cooling rates for the hangingwall of ≥200°C/Ma after thrusting. Causes of rapid cooling include passive exhumation driven by a combination of duplexing in the Lesser Himalayan Sequence, and juxtaposition of cooler rocks on top of the GHS by the STDS. Normal‐sense displacement does not appear to affect T–t paths for rocks immediately below the STDS prior to 17–16 Ma.  相似文献   

2.
In this paper, U‐Pb zircon, monazite and rutile data for crystalline rocks deposited as clasts in the Upper Viséan conglomerates at the eastern margin of the Bohemian Massif are reported. U‐Pb data of spherical zircon from three different granulite clasts yielded a mean age of 339.0 ± 0.7 Ma (±2σ), while oval and spherical grains of another granulite pebble define a slightly younger date of 337.1 ± 1.1 Ma. These ages are interpreted as dating granulite facies metamorphism. Thermochronology and the derived pressure–temperature (P–T) path of the granulite pebbles reflect two‐stage exhumation of the granulites. Near‐to‐isothermal decompression from at least 44 km to mid‐crustal depths of around 22 km was followed by a near‐isobaric cooling stage based on reaction textures and geothermobarometry. Minimum average exhumation rate corresponds to 2.8–4.3 mm year?1. The extensive medium‐pressure/high‐temperature overprint on granulite assemblages is dated by U‐Pb in monazite at c. 333 Ma. This thermal event probably has a close link to generation and emplacement of voluminous Moldanubian granites, including the cordierite granite present in clasts. This granite was emplaced at mid‐crustal levels at 331 ± 3 Ma (U‐Pb monazite), whereas the U‐Pb zircon ages record only a previous magmatic event at c. 378 Ma. Eclogites and garnet peridotites normally associated with high‐pressure granulites are absent in the clasts but exotic subvolcanic and volcanic members of the ultrapotassic igneous rock series (durbachites) of the Bohemian Massif have been found in the clasts. It is therefore assumed that the clasts deposited in the Upper Viséan conglomerates sampled a structurally higher tectonic unit than the one that corresponds to the present denudation level of the Moldanubicum of the Bohemian Massif. The strong medium‐temperature overprint on granulites dated at c. 333 Ma is attributed to the relatively small size of the entirely eroded bodies compared with the presently exposed granulites.  相似文献   

3.
Exposed cross‐sections of the continental crust are a unique geological situation for crustal evolution studies, providing the possibility of deciphering the time relationships between magmatic and metamorphic events at all levels of the crust. In the cross‐section of southern and northern Calabria, U–Pb, Rb–Sr and K–Ar mineral ages of granulite facies metapelitic migmatites, peraluminous granites and amphibolite facies upper crustal gneisses provide constraints on the late‐Hercynian peak metamorphism and granitoid magmatism as well as on the post‐metamorphic cooling. Monazite from upper crustal amphibolite facies paragneisses from southern Calabria yields similar U–Pb ages (295–293±4 Ma) to those of granulite facies metamorphism in the lower crust and of intrusions of calcalkaline and metaluminous granitoids in the middle crust (300±10 Ma). Monazite and xenotime from peraluminous granites in the middle to upper crust of the same crustal section provide slightly older intrusion ages of 303–302±0.6 Ma. Zircon from a mafic to intermediate sill in the lower crust yields a lower concordia intercept age of 290±2 Ma, which may be interpreted as the minimum age for metamorphism or intrusion. U–Pb monazite ages from granulite facies migmatites and peraluminous granites of the lower and middle crust from northern Calabria (Sila) also point to a near‐synchronism of peak metamorphism and intrusion at 304–300±0.4 Ma. At the end of the granulite facies metamorphism, the lower crustal rocks were uplifted into mid‐crustal levels (10–15 km) followed by nearly isobaric slow cooling (c. 3 °C Ma?1) as indicated by muscovite and biotite K–Ar and Rb–Sr data between 210±4 and 123±1 Ma. The thermal history is therefore similar to that of the lower crust of southern Calabria. In combination with previous petrological studies addressing metamorphic textures and P–T conditions of rocks from all crustal levels, the new geochronological results are used to suggest that the thermal evolution and heat distribution in the Calabrian crust were mainly controlled by advective heat input through magmatic intrusions into all crustal levels during the late‐Hercynian orogeny.  相似文献   

4.
As is common in suture zones, widespread high‐pressure rocks in the Caribbean region reached eclogite facies conditions close to ultrahigh‐pressure metamorphism. Besides eclogite lenses, abundant metapelitic rocks in the Chuacús complex (Guatemala Suture Zone) also preserve evidence for high‐pressure metamorphism. A comprehensive petrological and geochronological study was undertaken to constrain the tectonometamorphic evolution of eclogite and associated metapelite from this area in central Guatemala. The integration of field and petrological data allows the reconstruction of a previously unknown segment of the prograde P–T path and shows that these contrasting rock types share a common high‐pressure evolution. An early stage of high‐pressure/low‐temperature metamorphism at 18–20 kbar and 530–580°C is indicated by garnet core compositions as well as the nature and composition of mineral inclusions in garnet, including kyanite–jadeite–paragonite in an eclogite, and chloritoid–paragonite–rutile in a pelitic schist. Peak high‐pressure conditions are constrained at 23–25 kbar and 620–690°C by combining mineral assemblages, isopleth thermobarometry and Zr‐in‐rutile thermometry. A garnet/whole‐rock Lu‐Hf date of 101.8 ± 3.1 Ma in the kyanite‐bearing eclogite indicates the timing of final garnet growth at eclogite facies conditions, while a Lu‐Hf date of 95.5 ± 2.1 Ma in the pelitic schist reflects the average age of garnet growth spanning from an early eclogite facies evolution to a final amphibolite facies stage. Concordant U‐Pb LA‐ICP‐MS zircon data from the pelitic schist, in contrast, yield a mean age of 74.0 ± 0.5 Ma, which is equivalent to a U‐Pb monazite lower‐intercept age of 73.6 ± 2.0 Ma in the same sample, and comparable within errors with a less precise U‐Pb lower‐intercept age of 80 ± 13 Ma obtained in post‐eclogitic titanite from the kyanite‐bearing eclogite. These U‐Pb metamorphic ages are interpreted as dating an amphibolite facies overprint. Protolith U‐Pb zircon ages of 167.1 ± 4.2 Ma and 424.6 ± 5.0 Ma from two eclogite samples reveal that mafic precursors in the Chuacús complex originated in multiple tectonotemporal settings from the Silurian to Jurassic. The integration of petrological and geochronological data suggests that subduction of the continental margin of the North American plate (Chuacús complex) beneath the Greater Antilles arc occurred during an Albian‐Cenomanian pre‐collisional stage, and that a subsequent Campanian collisional stage is probably responsible of the amphibolite facies overprint and late syncollisional exhumation.  相似文献   

5.
An integrated study of U–Pb ages and trace elements was carried out for titanite and zircon from ultrahigh‐pressure (UHP) metagranites in the Sulu orogen, east‐central China. The results provide constraints on the composition of metamorphic fluids during the exhumation of deeply subducted continental crust. Titanite has two domain types based on REE patterns and trace element variations, Ttn‐I and Ttn‐II respectively. These two domains show indistinguishable U–Pb ages of 232 ± 14 to 220 ± 8 Ma, in general agreement with anatectic zircon U–Pb ages of 223 ± 4 to 219 ± 2 Ma for the partial melting event during early exhumation. The Ttn‐I domains have significantly higher REE, Th, Ta and Sr, and higher Th/U ratios than the Ttn‐II domains, indicating that the two domains have grown from metamorphic fluids with different compositions. For the Ttn‐I domains, Zr‐in‐titanite thermometry yields high temperatures of 773–851 °C at 2.5 GPa, and petrographic observations reveal the presence of melt pseudomorphs. Thus, they are interpreted to have grown from hydrous melts in the early exhumation stage. In contrast, the Ttn‐II domains were texturally equilibrated with amphibolite facies minerals such as biotite and plagioclase and contain inclusions of plagioclase and quartz. The Zr‐in‐titanite thermometry yields lower temperatures of 627–685 °C at 1.0 GPa. In combination with their REE patterns, they are interpreted to have grown from aqueous solutions at amphibolite facies metamorphic conditions during further exhumation. The differences in Th and Sr contents are prominent between the Ttn‐I and Ttn‐II domains, signifying the compositional difference between the hydrous melts and aqueous solutions. Therefore, the polygenetic titanite in the UHP metamorphic rocks provides insights into the geochemical property of metamorphic fluids during the continental subduction‐zone processes.  相似文献   

6.
Progressive Early Silurian low‐pressure greenschist to granulite facies regional metamorphism of Ordovician flysch at Cooma, southeastern Australia, had different effects on detrital zircon and monazite and their U–Pb isotopic systems. Monazite began to dissolve at lower amphibolite facies, virtually disappearing by upper amphibolite facies, above which it began to regrow, becoming most coarsely grained in migmatite leucosome and the anatectic Cooma Granodiorite. Detrital monazite U–Pb ages survived through mid‐amphibolite facies, but not to higher grade. Monazite in the migmatite and granodiorite records only metamorphism and granite genesis at 432.8 ± 3.5 Ma. Detrital zircon was unaffected by metamorphism until the inception of partial melting, when platelets of new zircon precipitated in preferred orientations on the surface of the grains. These amalgamated to wholly enclose the grains in new growth, characterised by the development of {211} crystal faces, in the migmatite and granodiorite. New growth, although maximum in the leucosome, was best dated in the granodiorite at 435.2 ± 6.3 Ma. The combined best estimate for the age of metamorphism and granite genesis is 433.4 ± 3.1 Ma. Detrital zircon U–Pb ages were preserved unmodified throughout metamorphism and magma genesis and indicate derivation of the Cooma Granodiorite from Lower Palaeozoic source rocks with the same protolith as the Ordovician sediments, not Precambrian basement. Cooling of the metamorphic complex was relatively slow (average ~12°C/106y from ~730 to ~170°C), more consistent with the unroofing of a regional thermal high than cooling of an igneous intrusion. The ages of detrital zircon and monazite from the Ordovician flysch (dominantly composite populations 600–500 Ma and 1.2–0.9 Ga old) indicate its derivation from a source remote from the Australian craton.  相似文献   

7.
Rb–Sr multimineral isochron data for metamorphic veins allow to date separate increments of the mineral reaction history of polymetamorphic terranes. Granulite facies rocks of the Lindås nappe, Bergen Arcs, Norway, were subducted and exhumed during the Caledonian orogeny. The rocks show petrographic evidence for two distinct events of local fluid infiltration and vein formation, along fractures and shear zones. The first occurred at eclogite facies (15–21 kbar, 650–750°C) and a later one at amphibolite facies conditions (8–10 kbar, 600°C). The presence of fluids enabled local metamorphic equilibration only near fluid pathways. In fluid-absent domains, preexisting assemblages were metastably preserved. This resulted in a heterogeneity of metamorphic signatures on meter to μm-scales. Well-preserved granulite facies rocks preserve their Proterozoic Rb–Sr mineral ages, as does the U–Pb system of zircon in most lithologies. Six Rb/Sr multimineral isochron ages for eclogite facies veins and their immediate wallrocks date the fluid-induced eclogitization at 429.9 ± 3.5 Ma (2σ, weighted average, MSWD = 0.39). An eclogite facies vein has yielded metamorphic zircon with concordant U–Pb ages of 429 ± 3 Ma, identical to the U–Pb age of 427.4 ± 0.9 Ma for zircon xenocrysts in an amphibolite facies vein. Seven Rb/Sr mineral isochron ages date amphibolite-facies fluid infiltration at 414.2 ± 2.8 Ma (MSWD = 1.5), an age value testifying to residence of the rocks in the deep orogenic crust at temperatures >600°C for nearly 15 Ma. The new data show that Rb–Sr mineral isochron ages effectively date fluid-induced (re)crystallization events rather than stages of cooling. The direct link between isotopic ages and distinct petrographic equilibrium assemblages aids to constrain the evolution of rocks in the P–T-reaction-time space, which is essential for understanding exhumation histories and the internal dynamics of orogens in general.  相似文献   

8.
《International Geology Review》2012,54(10):1184-1202
Based on metamorphic studies of the Yadong high-pressure (HP) granulite and multiple thermochronological investigations of granitoids from both upper and lower parts, the Yadong section in the eastern Himalaya constrains the Cenozoic tectonic evolution of the Greater Himalayan Sequence (GHS). The Yadong HP granulite, located at the top of the GHS, underwent a peak-stage HP granulite facies metamorphism and two stages of retrograde metamorphism. Granulite and hornblende facies retrograde metamorphism took place at 48.5 and 31.8 Ma, respectively, marking the time of exhumation of the subducted Indian slab to lower and middle crustal levels. Subsequently, an average young zircon U–Pb age obtained from the Yadong HP granulite indicated that this unit was captured by its surroundings in a partially molten condition at 16.9 Ma. In addition, three granitoids from both the lower and the upper parts of the GHS yielded biotite 40Ar/39Ar ages of 11.0, 11.3, and 11.5 million years. These consistent ages suggest that the GHS along the Yadong section was laterally extruded and synchronously cooled to ~300°C at ~11.3 Ma. Furthermore, the granitic gneisses yield apatite fission track ages of ~7 million years, documenting the cooling of the GHS to ~110°C. A two-stage model describes the Cenozoic tectonic evolution of the GHS: (1) the Indian slab had subducted under Tibet before ~55 Ma, and was exhumed to the lower crust (50-40 km) at 48.5 Ma, and to the middle crust (22-15 km) at 31.8 Ma; and (2) the partial melting occurred at middle crustal levels during the period 31.8 to 16.9 Ma, causing channel flow. In the late stage, the GHS was laterally extruded by ductile mid-crustal flow during the period 16.9 to ~7 Ma, characterized by a fast cooling rate of ~2 mm per year.  相似文献   

9.
Abstract Concordant U–Pb ages of c. 530–510 Ma and c. 470–420 Ma on titanite from calcsilicate, orthogneiss and amphibolite rocks constrain the age of high‐T metamorphism in the Early Palaeozoic mobile belt at the western margin of Proterozoic Gondwana (Argentina, 26–29°S). The U–Pb ages document the time of titanite formation at high‐T conditions according to the stable mineral paragenesis and occurrence of titanite in the metamorphic fabric. The presence of migmatite at all sample sites indicates temperatures were > c. 650 °C. Titanite formed at similar metamorphic conditions at different times on the regional and on the outcrop scale. The titanite crystals preserved their U–Pb isotopic signatures and chemical composition under ongoing upper amphibolite to granulite facies temperatures. Different thermal peaks or deformations are only detected by the different U–Pb ages and not by changes in the mineral paragenesis or metamorphic fabric of the samples. The range of U–Pb ages, e.g. in the Ordovician and Silurian (c. 470, 460, 440, 430, 420 Ma), is interpreted as the effect polyphase deformation with deformation‐enhanced recrystallization of titanite and/or different thermal peaks during a long‐standing, geographically fixed, high‐T regime in the mid‐crust of a continental magmatic arc. A clear correlation of the different ages with distinct tectonic events, e.g. collision of terranes, is not possible based on the present knowledge of the region.  相似文献   

10.
U–Pb and Rb–Sr dating was undertaken in combination with P–T estimates to (1) constrain the time of ultrahigh-pressure (UHP) eclogite formation in the Stadlandet UHP province of Norway, (2) date later crustal melting–migmatization of the eclogite country gneisses, and (3) temporally trace post-migmatite cooling and retrogression under amphibolite facies metamorphic conditions. In contrast to earlier U–Pb studies which used accessory minerals from the gneisses, we focused on the direct dating of minerals defining the HP assemblage. For the eclogite, rutile and omphacite fractions were analyzed for U–Pb, and from an adjacent migmatite leucosome titanites and K-feldspar. For Rb–Sr dating, phengite was measured for the eclogite, and biotite for two leucosome layers of the migmatite–eclogite complex. A U–Pb age of 389±7 (2σ) Ma is obtained if the full set of 12 rutile and five omphacite analyses is regressed (MSWD: 16), and 389±2 Ma for those nine data which strictly satisfy isochron conditions (MSWD: 0.78). The 389-Ma age is interpreted to date equilibration and freezing of the eclogite paragenesis at maximum temperatures of 770 °C, reached during decompression to 1.8 GPa. Decompression from 2.8 to 1.8 GPa occurred in the partial melting domain of granitic crust, with the migmatites being dated at 375±6 Ma by titanite and K-feldspar from an eclogite-adjacent granitic leucosome. This titanite age also shows that the U–Pb chronometer in rutile is very robust to high temperatures—it remained a closed system for at least 14 million years, at temperatures in excess to 650 °C. After decompression and migmatization, exhumation is accompanied by rapid cooling to reach the 300 °C isograde by 357± 9 Ma, determined by a biotite isochron for a leucosome in a slightly shallower structural level. In considering that the time of maximum pressure is bracketed by early zircon crystallization during subduction and later omphacite–rutile equilibration in the eclogites, an exhumation rate of 5 mm/year is deduced for initial exhumation, occurring between 394 and 389 Ma. For subsequent cooling from 770 to 600 °C, we obtain a rate of 2.3±1.3 mm/year. First stages of exhumation most likely occurred under an overall compressional regime, whereas Devonian basin formation is associated to detachment movements during 389–375 Ma exhumation. This period of extension is followed by a much younger, decoupled thermal phase at 327±5 Ma, occurring under static conditions within very restricted zones, most likely in association with the circulation of fluid phases along old discontinuities. Initial isotopic signatures of Sr and Pb substantiate Paleo- to Meso-Proterozoic crust formation times of the Stadlandet UHP province precursor lithologies.  相似文献   

11.
Garnet granulite facies mid‐to lower crust in Fiordland, New Zealand, provides evidence for pulsed intrusion and deformation occurring in the mid‐to lower crust of magmatic arcs. 238U‐206Pb zircon ages constrain emplacement of the ~595 km2 Malaspina Pluton to 116–114 Ma. Nine Sm‐Nd garnet ages (multi‐point garnet‐rock isochrons) ranging from 115.6 ± 2.6 to 110.6 ± 2.0 Ma indicate that garnet granulite facies metamorphism was synchronous or near synchronous throughout the pluton. Hence, partial melting and garnet granulite facies metamorphism lasted <5 Ma and began within 5 Ma of pluton emplacement. Garnet granulite facies L‐S tectonites in the eastern part of the Malaspina Pluton record the onset of extensional strain and arc collapse. An Sm‐Nd garnet age and thermobarometric results for these rocks directly below the amphibolite facies Doubtful Sound shear zone provide the oldest known age for extension in Fiordland at ≥112.8 ± 2.2 Ma at ~920 °C and 14–15 kbar. Narrow high Ca rims in garnet from some of these suprasolidus rocks could reflect a ≤ 1.5 kbar pressure increase, but may be largely a result of temperature decrease based on the Ca content of garnet predicted from pseudosections. At peak metamorphic conditions >900 °C, garnet contained ~4000 ppm Ti; subsequently, rutile inclusions grew during declining temperature with limited pressure change. Garnet granulite metamorphism of the Malaspina Pluton is c. 10 Ma younger than similar metamorphism of the Pembroke Granulite in northern Fiordland; therefore, high‐P metamorphism and partial melting must have been diachronous for this >3000 km² area of mid‐to‐lower crust. Thus, two or more pulses of intrusion shortly followed by garnet granulite metamorphism and extensional strain occurred from north to south along the axis of the lower crustal root of the Cretaceous Gondwana arc.  相似文献   

12.
Laser ablation inductively coupled plasma mass spectrometry analyses of U–Pb isotopes and trace elements in zircon and titanite were carried out on epoxy mounts and thin sections for ultrahigh‐pressure (UHP) eclogite in association with paragneiss in the Dabie orogen. The results provide a direct link between metamorphic ages and temperatures during continental subduction‐zone metamorphism. Zircon U–Pb dating gives two groups of concordant ages at 242 ± 2 to 239 ± 5 Ma and 226 ± 2 to 224 ± 6 Ma, respectively. The Triassic zircon U–Pb ages are characterized by flat heavy rare earth element (HREE) patterns typical of metamorphic growth. Ti‐in‐zircon thermometry for the two generations of metamorphic zircon yields temperatures of 697 ± 27 to 721 ± 8 °C and 742 ± 19 to 778 ± 34 °C, respectively. We interpret that the first episode of zircon growth took place during subduction prior to the onset of UHP metamorphism, whereas the second episode in the stage of exhumation from UHP to HP eclogite facies regime. Thus, the continental subduction‐zone metamorphism of sedimentary protolith is temporally associated with two episodes of fluid activity, respectively, predating and postdating the UHP metamorphic phase. The significantly high Ti‐in‐zircon temperatures for the younger zircon at lower pressures indicate the initial ‘hot’ exhumation after the peak UHP metamorphism. There are two types of titanite. One exhibits light rare earth element (LREE) enrichment, steep MREE–HREE patterns and no Eu anomalies, and yields Zr‐in‐titanite temperatures of 551 to 605 °C at 0.5 GPa, and the other shows LREE depletion and flat MREE–HREE patterns, and gives Zr‐in‐titanite temperatures of 782–788 °C at 2.0 GPa. The former is amenable for U–Pb dating, yielding a discordia lower intercept age of 252 ± 3 Ma. Thus, the first type of titanite is interpreted to have grown in the absence of garnet and plagioclase and thus in the early stage of subduction. In contrast, the second one occurs as rims surrounding rutile cores and thus grew in the presence of garnet during the ‘hot’ exhumation. Therefore, there is multistage growth of zircon and titanite during the continental subduction‐zone metamorphism. The combined studies of chronometry and thermobarometry provide tight constraints on the P–T–t path of eclogites during the continental collision. It appears that the mid‐T/UHP eclogite facies zone would not only form by subduction of the continental crust in a P–T path slightly below the wet granite solidus, but also experience decompression heating during the initial exhumation.  相似文献   

13.
The Twelve Mile Bay assemblage (TMBa) forms the high-strain interior of the Twelve Mile Bay shear zone (TMBsz), a major ductile decollement zone within the western Canadian Grenville orogen. Metasupracrustal gneiss within the TMBa preserves evidence for an early granulite facies (?10–11 kbar and ?840°C) metamorphism overprinted by amphibolite facies (?5–7 kbar and ?650°C) assemblages that define the high-strain shear zone fabric. U–Pb zircon ages for TMBa samples were determined by LA-ICP-MS. A low-strain amphibolite pod with partially preserved granulite facies assemblage and textures yielded an anchored discordia intercept of 1157 ± 11 Ma and 207Pb/206Pb weighted average of 1146 ± 10 Ma. Three higher strain samples with recrystallized amphibolite facies assemblages all yield younger ages, with 207Pb/206Pb weighted averages of 1125 ± 16, 1110 ± 8, and 1095 ± 17 Ma. Phase equilibrium modelling shows that up to 40 vol.% anatectic melt could have been produced in TMBa pelitic rocks during peak metamorphic conditions, and thus, much of the package likely would have been substantially weakened during the early stages of TMBsz development. Strain apparently continued to accumulate within the TMBa until ca. 1100 Ma, concurrent with pegmatite dike emplacement and hydration along the base of the overlying interior Parry Sound domain (iPSD), perpetuating TMBsz activity during cooling and exhumation to shallower crustal levels. Similarities between the TMBa and the upper parts of the basal PSD (bPSD), in terms of timing and conditions of metamorphism and shearing, as well as structural position relative to the overlying iPSD allochthon, indicate that these units are likely correlative. The composite bPSD–TMBa system appears to have contemporaneously localized strain within the middle orogenic crust during early to middle stages of Grenvillian collision, providing a petrologically constrained mechanism for the long distance transport of mid-crustal nappes predicted in thermal-mechanical models of continental collision for this area.  相似文献   

14.
This study investigates the behaviour of the Zr-in-rutile and Ti-in-zircon thermometers in granulite facies metapelites from the Ivrea-Verbano Zone lower crustal section. U–Pb ages of zircon constrain the timing of regional amphibolite–granulite facies metamorphism to 316 ± 3 Ma and record zircon recrystallisation and resetting of U–Pb ages at 276 ± 4 Ma and 258 ± 3 Ma. Zr-in-rutile thermometry records peak contact metamorphic temperatures related to intrusion of mafic magmatic rocks and gives peak temperatures between 900–930 °C and 1,000–1,020 °C that are consistent with the geological settings of the samples. Ti-in-zircon temperatures of 700–800 °C and 810–870 °C record growth or re-equilibration of zircon after cooling from peak temperatures. Ti-in-quartz thermometry for one sample records both peak and retrograde temperatures. Some rutiles in all samples record resetting of Zr-in-rutile temperatures at ~750–800 °C. Electron microprobe profiles across individual rutiles demonstrate that Zr expulsion occurred by recrystallisation rather than by diffusive exchange. Exsolution of small needles of baddelyite or zircon from rutile is an important method of Zr redistribution, but results in no net Zr loss from the grain. The demonstration that Zr-in-rutile thermometry can robustly record peak temperatures that are not recorded by any other thermometer emphasises the relevance of this technique to investigating the evolution of high-grade metamorphic terranes, such as those that characterise the lower crust.  相似文献   

15.
High‐pressure kyanite‐bearing felsic granulites in the Bashiwake area of the south Altyn Tagh (SAT) subduction–collision complex enclose mafic granulites and garnet peridotite‐hosted sapphirine‐bearing metabasites. The predominant felsic granulites are garnet + quartz + ternary feldspar (now perthite) rocks containing kyanite, plagioclase, biotite, rutile, spinel, corundum, and minor zircon and apatite. The quartz‐bearing mafic granulites contain a peak pressure assemblage of garnet + clinopyroxene + ternary feldspar (now mesoperthite) + quartz + rutile. The sapphirine‐bearing metabasites occur as mafic layers in garnet peridotite. Petrographical data suggest a peak assemblage of garnet + clinopyroxene + kyanite + rutile. Early kyanite is inferred from a symplectite of sapphirine + corundum + plagioclase ± spinel, interpreted to have formed during decompression. Garnet peridotite contains an assemblage of garnet + olivine + orthopyroxene + clinopyroxene. Thermobarometry indicates that all rock types experienced peak P–T conditions of 18.5–27.3 kbar and 870–1050 °C. A medium–high pressure granulite facies overprint (780–820 °C, 9.5–12 kbar) is defined by the formation of secondary clinopyroxene ± orthopyroxene + plagioclase at the expense of garnet and early clinopyroxene in the mafic granulites, as well as by growth of spinel and plagioclase at the expense of garnet and kyanite in the felsic granulite. SHRIMP II zircon U‐Pb geochronology yields ages of 493 ± 7 Ma (mean of 11) from the felsic granulite, 497 ± 11 Ma (mean of 11) from sapphirine‐bearing metabasite and 501 ± 16 Ma (mean of 10) from garnet peridotite. Rounded zircon morphology, cathodoluminescence (CL) sector zoning, and inclusions of peak metamorphic minerals indicate these ages reflect HP/HT metamorphism. Similar ages determined for eclogites from the western segment of the SAT suggest that the same continental subduction/collision event may be responsible for HP metamorphism in both areas.  相似文献   

16.
This study investigates the behaviour of the geochronometers zircon, monazite, rutile and titanite in polyphase lower crustal rocks of the Kalak Nappe Complex, northern Norway. A pressure–temperature–time–deformation path is constructed by combining microstructural observations with P–T conditions derived from phase equilibrium modelling and U–Pb dating. The following tectonometamorphic evolution is deduced: A subvertical S1 fabric formed at ~730–775 °C and ~6.3–9.8 kbar, above the wet solidus in the sillimanite and kyanite stability fields. The event is dated at 702 ± 5 Ma by high‐U zircon in a leucosome. Monazite grains that grew in the S1 fabric show surprisingly little variation in chemical composition compared to a large spread in (concordant) U–Pb dates from c. 800 to 600 Ma. This age spread could either represent protracted growth of monazite during high‐grade metamorphism, or represent partially reset ages due to high‐T diffusion. Both cases imply that elevated temperatures of >600 °C persisted for over c. 200 Ma, indicating relatively static conditions at lower crustal levels for most of the Neoproterozoic. The S1 fabric was overprinted by a subhorizontal S2 fabric, which formed at ~600–660 °C and ~10–12 kbar. Rutile that originally grew during the S1‐forming event lost its Zr‐in‐rutile and U–Pb signatures during the S2‐forming event. It records Zr‐in‐rutile temperatures of 550–660 °C and Caledonian ages of 440–420 Ma. Titanite grew at the expense of rutile at slightly lower temperatures of ~550 °C during ongoing S2 deformation; U–Pb ages of c. 440–430 Ma date its crystallization, giving a minimum estimate for the age of Caledonian metamorphism and the duration of Caledonian shearing. This study shows that (i) monazite can have a large spread in U–Pb dates despite a homogeneous composition; (ii) rutile may lose its Zr‐in‐rutile and U–Pb signature during an amphibolite facies overprint; and (iii) titanite may record crystallization ages during retrograde shearing. Therefore, in order to correctly interpret U–Pb ages from different geochronometers in a polyphase deformation and reaction history, they are ideally combined with microstructural observations and phase equilibrium modelling to derive a complete P–T–t–d path.  相似文献   

17.
The youngest known ultrahigh‐pressure (UHP) rocks in the world occur in the Woodlark Rift of southeastern Papua New Guinea. Since their crystallization in the Late Miocene to Early Pliocene, these eclogite facies rocks have been rapidly exhumed from mantle depths to the surface and today they remain in the still‐active geodynamic setting that caused this exhumation. For this reason, the rocks provide an excellent opportunity to study rates and processes of (U)HP exhumation. We present New Rb–Sr results from 12 rock samples from eclogite‐bearing gneiss domes in the D'Entrecasteaux Islands, and use those results to examine the time lag between (U)HP metamorphism and later ductile thinning, penetrative fabric development and accompanying metamorphic retrogression at amphibolite facies conditions during their exhumation. A Rb–Sr age for a sample of mafic eclogite (with no preserved coesite) from the core zone of the Mailolo gneiss dome (Fergusson Island) provides a new estimate of the timing of HP metamorphism (5.6 ± 1.6 Ma). The strongly deformed quartzofeldspathic and granitic gneisses (90–95% by volume) that enclose variably retrogressed relict blocks of mafic eclogite (5–10% by volume) yield Rb–Sr isochron ages from 4.4 to 2.4 Ma. For the UHP‐bearing gneisses of Mailolo dome, previously published U–Pb ages on zircon and our Rb–Sr isochron ages are consistent with a mean time lag of 2.2 ± 1.5 Ma (~95% c.i.) for passage of the rock between eclogite and amphibolite facies conditions. New thermobarometric data indicate that the main syn‐exhumational foliation developed at amphibolite facies conditions of 630–665 °C and 12.1–14.4 kbar. These pressure estimates indicate that the lower crust of the Woodlark Rift was unusually thick (>40 km) at the time of the amphibolite facies overprint, possibly as a result of accumulation and underplating of UHP‐derived material from below. Our data imply a minimum unroofing rate of 10 ± 7 mm year?1 (~95% c.i.) for the (U)HP body from minimum HP depths (73 ± 7 km) to lower crustal depths. This minimum unroofing rate reinforces previous inferences that the exhumation from the mantle to the surface of the gneiss domes in the D'Entrecasteaux Islands took place at plate tectonic rates. On the basis of previous structural studies and the new thermobarometry, we attribute the high (cm year?1) exhumation to diapiric ascent of the partially molten terrane from mantle depths, with a secondary contribution from pure shear thinning of the terrane after its arrival in the crust.  相似文献   

18.
Controversy over the plate tectonic affinity and evolution of the Saxon granulites in a two‐ or multi‐plate setting during inter‐ or intracontinental collision makes the Saxon Granulite Massif a key area for the understanding of the Palaeozoic Variscan orogeny. The massif is a large dome structure in which tectonic slivers of metapelite and metaophiolite units occur along a shear zone separating a diapir‐like body of high‐P granulite below from low‐P metasedimentary rocks above. Each of the upper structural units records a different metamorphic evolution until its assembly with the exhuming granulite body. New age and petrologic data suggest that the metaophiolites developed from early Cambrian protoliths during high‐P amphibolite facies metamorphism in the mid‐ to late‐Devonian and thermal overprinting by the exhuming hot granulite body in the early Carboniferous. A correlation of new Ar–Ar biotite ages with published PTt data for the granulites implies that exhumation and cooling of the granulite body occurred at average rates of ~8 mm/year and ~80°C/Ma, with a drop in exhumation rate from ~20 to ~2.5 mm/year and a slight rise in cooling rate between early and late stages of exhumation. A time lag of c. 2 Ma between cooling through the closure temperatures for argon diffusion in hornblende and biotite indicates a cooling rate of 90°C/Ma when all units had assembled into the massif. A two‐plate model of the Variscan orogeny in which the above evolution is related to a short‐lived intra‐Gondwana subduction zone conflicts with the oceanic affinity of the metaophiolites and the timescale of c. 50 Ma for the metamorphism. Alternative models focusing on the internal Variscan belt assume distinctly different material paths through the lower or upper crust for strikingly similar granulite massifs. An earlier proposed model of bilateral subduction below the internal Variscan belt may solve this problem.  相似文献   

19.
The Central Asian Orogenic Belt (CAOB) is one of the largest accretionary collages in the world, and records a prolonged sequence of subduction‐accretion and collision processes. The Tarim Craton is located at the southernmost margin of the CAOB. In this study, the discovery of early Palaeozoic high‐pressure (HP) granulites from the Dunhuang block in the northeastern Tarim Craton is reported, and these rocks are characterized through detailed petrological and geochronological studies. The peak mineral assemblage of the HP mafic granulite is garnet + clinopyroxene + plagioclase + quartz + rutile, which is overprinted by amphibolite facies retrograde metamorphic assemblages. The calculated P–T conditions of the peak metamorphism are ~1.4–1.7 GPa and ~800 °C. The retrograde P–T conditions are ~0.7 GPa and ~700 °C. The metamorphic zircon grains from the HP mafic granulite show homogeneous CL‐images, low Th/U ratios and flat HREE patterns and yield a weighted mean 206Pb/238U age of 444 ± 5 Ma. The metamorphic zircon grains from the associated kyanite‐bearing garnet gneiss and garnet‐mica schist show a similar 206Pb/238U age of 429 ± 3 and 435 ± 4 Ma, respectively. The c. 440–430 Ma age is interpreted to mark the timing of HP granulite facies metamorphism in the Dunhuang block. The results from this study suggest that the Dunhuang block experienced continental subduction prior to the early Palaeozoic collisional orogeny between the northeastern Tarim Craton and the southern CAOB, and the Dunhuang area could be considered as the southward extension of the CAOB. It is suggested that the continental collision in the eastern part involving the Dunhuang block of the southern CAOB may have occurred c. 120 Ma earlier than in the western part involving the Tianshan orogen.  相似文献   

20.
Although the U–Pb zircon chronometer has been widely used for dating metamorphism in moderate‐ to high‐grade rocks, it is generally difficult to link the U–Pb age of zircon to specific metamorphic reactions. In this study, the initial Hf isotopic composition of secondary zircon is compared with the evolution of Hf isotopic composition of the bulk sample, back‐projected from the measured value through time. This approach may enhance the interpretation of radiometric ages performed on metamorphic mineral assemblages. Here, U–Pb, Sm–Nd and Lu–Hf geochronology and thermobarometry have been integrated and applied to two metamorphosed diabase dykes in the Sveconorwegian orogen, SW Sweden. The dykes are located ~5 km east of the NNE‐trending Göta Älv deformation zone in the Idefjorden terrane, and trend parallel to this zone. The Lunden dyke is recrystallized into a coronitic, granulite facies assemblage. U–Pb isotopic analyses of baddeleyite in this dyke indicate an emplacement age of c. 1300 Ma. Thermobarometric techniques applied to garnet and omphacitic clinopyroxene coronas indicate high‐pressure metamorphism at ~15 kbar and ~740 °C. The growth of polycrystalline zircon at the expense of baddeleyite occurred at 1046 ± 6 Ma. The identical Hf isotopic composition of polycrystalline zircon and baddeleyite shows that the baddeleyite‐to‐zircon transition took place before Hf equilibration among the other metamorphic minerals and, hence the c. 1046 Ma age of polycrystalline zircon sets an upper age limit of metamorphism of this sample. The Haregården dyke is recrystallized into a granoblastic transitional upper amphibolite to granulite facies assemblage. The estimated P–T conditions are ~10 kbar and ~700 °C. Analyses of small (~30 μm), clear and round zircon in this sample yield a Concordia U–Pb age of 1026 ± 4 Ma, which is indistinguishable from the Lu‐Hf and Sm‐Nd mineral isochron ages of 1027 ± 9 and 1022 ± 34 Ma, respectively. This type of secondary zircon plots at the lower end of the Lu‐Hf isochron and indicates simultaneous growth with garnet at c. 1026 Ma, a time when Hf isotopic equilibrium among minerals must have been reached.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号