首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
日球层是指以超音速径向外流的太阳风在周围星际介质中所占有的空间范围。磁化太阳风和星际介质的相互作用形成终止激波、日鞘区、日球层顶。在外日球层,太阳风中存在宇宙线能量粒子辐射背景以及螺旋形行星际磁场、行星磁层等准稳态结构。太阳风离子与星际中性氢原子通过电荷交换生成太阳风拾起(pickup)离子和能量中性原子(Energetic Neutral Atom,ENA),导致外日球层太阳风的加热和减速。外日球层太阳风宏观磁流体动力学与ENA辐射场是强烈耦合的,ENA携带其原属离子群的成分及能量信息并且在日球层内直线运动。ENA辐射是遥测广袤日球层的远程探针,该辐射在全天球范围内的成像能描绘外日球层在粒子多能段的全景肖像。辐射磁流体理论被应用于描述日球层大尺度动力学和能量粒子加速及传输的多尺度耦合。认证外日球层太阳风物理的重大科学问题,阐述该科学问题对辐射磁流体的物理建模及其数值求解的内禀需求,分析外日球层辐射磁流体数值模拟在国内外的发展脉络和当前现状,提出我国在外日球层领域辐射磁流体数值模拟的发展建议。  相似文献   

2.
辐射磁流体力学(RMHD)是磁流体力学和等离子体物理学一个新的分支,它研究与辐射有显著能量和/或动量交换的磁流体动力学行为。天体辐射磁流体力学描述天体等离子体在宏观尺度上的电磁相互作用、结构、辐射、动力学和爆发现象。"天体辐射磁流体力学"是中国科学院数理学部2015—2016年度所支持的一个学科发展战略研究项目,其目的是评估这一生长中的学科分支的发展态势、国内外研究现状、适用的主要科学对象和发展战略,重点设定在三维数值模拟研究,或广义而言,数值实验研究。为了推动RMHD三维数值实验研究,这一专卷收入了天体物理学、太阳和空间物理学、受控等离子体实验等领域关于RMHD研究的部分调研和评述报告。  相似文献   

3.
净梵 《天文爱好者》2010,(11):24-27
等离子体天体物理学是研究宇宙间最广泛存在的物质状态规律的科学。太阳最外层大气日冕的温度约达到一二百万度,高温下的太阳物质呈现高温等离子体状态;地球电离层是处于温度相对较低的等离子体状态。人造地球卫星以及太阳系深空探测表明,行星际空间并非真空,而是存在着来自日冕的连续微粒辐射——太阳风,它是因日冕膨胀而形成的连续向外发出的、伸向遥远的太阳系空间的等离子体流。等离子体物理过程在许多日地物理现象中,诸如太阳耀斑、黑子、日冕物质抛射、日珥、太阳风等研究中起重要作用,探索日地空间物理过程的规律是认识与之有关的空间现象的关键。  相似文献   

4.
太阳风行星际闪烁(interplanetary scintillation,IPS)研究在太阳物理,日地空间物理和空间天气学研究中具有重要科学意义,经过近30年重点研究太阳风后,从90年代初开始,IPS研究在太阳风与日球观测的对比分析、行星际扰动与地磁活动预报,观测数据的层析分析三方面都取得了新的进展。  相似文献   

5.
本文以行星际空烁为主,综述了通过电波传播的观测来研究太阳风的方法及近30年的观测结果。概述了这种方法的优缺点,基本假设和基础理论,讨论了这种方法所得到的太阳风电子密度谱,太阳风三维结构以及与太阳活动周的关系,特别是肯定了闪烁测量在研究太阳风加速区问题中的作用。并且结合当前的国际日地物理计划指出了90年代的研究重点。最后,简述了北京天文台密云站射电天文设备用于行星际闪烁观测的可能性及特点。  相似文献   

6.
孙何雨 《天文学报》2023,64(3):29-117
电子是太阳风粒子中最为重要的组分之一,它可以通过多种机制对太阳风产生影响.太阳风中的电子通常具有温度各向异性和束流两种非热平衡分布特征,这些偏离热平衡分布的特征可以通过波粒相互作用激发电子不稳定性和等离子体波动,激发的等离子体波动又可以通过波粒相互作用调制太阳风粒子的分布,从而加热太阳风中的背景粒子.因此电子动力学不稳定性在太阳风的演化过程中扮演了极为重要的角色.详细介绍了太阳风中常见的电子动力学不稳定性,并基于等离子体动力论,详细介绍太阳风传播过程中所出现的各种不稳定性,尤其是在近日球层和太阳大气区域所出现的电子声热流不稳定性以及低混杂热流不稳定性,并分析其波粒相互作用机制,以便更加深入地研究太阳风传播过程中的电子分布函数演化.  相似文献   

7.
太阳风源自太阳大气,在行星际空间传播过程中被持续加热,然而究竟是何种能量加热了太阳风至今未研究清楚.太阳风普遍处于湍动状态,其湍动能量被认为是加热太阳风的重要能源.然而,太阳风湍流通过何种载体、基于何种微观物理机制加热了太阳风尚不明确,这是相关研究的关键问题.将回顾人类对太阳风加热问题的研究历史,着重介绍近年来我国学者在太阳风离子尺度湍流与加热方面取得的研究进展,展望未来在太阳风加热研究中有待解决的科学问题和可能的研究方向.  相似文献   

8.
帕克太阳探测器热防护系统研究及启示   总被引:1,自引:0,他引:1  
帕克太阳探测器(Parker Solar Probe, PSP)是以现代太阳风和磁重联理论的奠基人——尤金·纽曼·帕克(Eugene Newman Parker)命名的航天器,将穿过太阳的日冕层,探测人类从未探测过的区域,对日冕和太阳风的起源和动力学特征进行直接探测,有望破解日冕高温和太阳风加速度奇高这两大谜团,其热防护系统遇到的困难和挑战远超目前所有航天器。首先介绍了探测太阳的意义和帕克太阳探测器的科学目标,然后简述了帕克太阳探测器轨道和轨道热环境并指出热防护的难点。分析了帕克太阳探测器热防护系统的结构,然后详细阐述了热防护系统的热盾及迎日涂层、太阳能电池板及冷却系统设计,最后总结了帕克太阳探测器热防护系统对我国抵近太阳探测器热防护系统设计的启示。  相似文献   

9.
宋其武  吴德金 《天文学报》2004,45(4):381-388
由磁绳结构主导、平均尺度约二、三十个小时的行星际磁云是日冕物质抛射在行星际膨胀、传播的体现。最近,Moldwin等人报道在太阳风中还观测到一些尺度在几十分钟的小尺度磁绳结构,并认为太阳风中的磁绳结构在尺度分布上可能具有双峰特征,在全面检视了WIND卫星(1995年-2000年)和ACE卫星(1998年-2000年)的观测资料后,发现了在行星际太阳风中一些尺度为几个小时的中尺度磁绳结构,利用初步整理的其中28个中尺度磁绳结构事件,认为太阳风中的磁绳结构在尺度分布上可能是连续的,这对行星际太阳风中磁绳结构物理起源的研究可能提出重要的物理限制。  相似文献   

10.
介绍了行星形成涉及到的几个重要阶段,如行星迁移、核吸积和大气逃逸的基本物理过程和数值模拟研究现状。行星迁移会影响行星的轨道偏心率和倾角,并改变原行星盘的结构;核吸积是决定行星演化为类地行星或者类木行星的关键因素;大气逃逸对行星的气候和演化产生重要影响。这些过程均涉及到复杂的辐射磁流体动力学过程,早期的理论研究往往采用很多人为的简化假设。随着超级计算机计算能力的提高和磁流体数值模拟算法的日渐成熟,人们已经可以对这类复杂的非线性动力学问题开展直接的数值模拟研究,克服了早期理论研究中人为假设的局限。但是,目前人们开展的研究主要基于磁流体动力学数值模拟,对辐射转移如何影响磁流体动力学过程的研究还比较欠缺。强调了进行辐射磁流体动力学数值模拟的必要性和紧迫性。针对辐射磁流体数值模拟程序的开发,从辐射转移,磁场的处理,吸积盘的自引力、三维效应、非理想效应和尘埃的效应等方面提出了相应的技术需求。介绍了本研究领域内发展辐射磁流体数值模拟的策略。  相似文献   

11.
活动星系核反馈是星系中心超大质量黑洞在吸积过程中通过释放电磁辐射、风、喷流对宿主星系产生的反馈作用。这一过程对星系核球、星系,及星系团中的气体分布与恒星形成都产生重要影响,是研究星系形成与演化的关键物理过程。由于这一过程的复杂性,目前该领域的大部分理论研究是通过数值模拟进行的。对这一年轻的领域进行了总结,侧重于数值模拟方面的进展,依次介绍了活动星系核反馈的射电模式尤其是星系团中的冷却流、辐射模式,然后较为详细地介绍了一个活动星系核反馈的特例——银河系中的费米气泡的形成。最后,对国际上该领域的未来发展进行了简单的展望,并提出了我国发展活动星系核数值模拟研究的建议。  相似文献   

12.
日球边界射电辐射是太阳系最强的射电辐射现象,辐射功率至少达1013 W,能够提供日球边界附近高能电子束和背景磁等离子体结构的重要物理信息.自1983年旅行者号卫星首次探测到日球边界射电辐射后,其便受到研究者们的广泛持续关注.日球边界射电辐射大致有两类:辐射频率相对较高的瞬时辐射或称漂移辐射以及辐射频率相对较低的持续辐射或称非漂移辐射.通常两类辐射都从大约2 kHz开始,漂移辐射具有向高频率漂移的特征,频漂率约为1–3 kHz/yr,频率范围1.8–3.6 kHz,持续时间较短大致100–300 d;非漂移辐射没有明显的频率漂移,频率范围1.8–2.6 kHz,持续时间较长大致3 yr.目前普遍认为日球边界射电辐射与激波有关.介绍了该射电辐射可能的辐射产生源区、辐射物理机制以及与辐射相关的激波来源,并且讨论了尚存在的科学问题以及展望了未来可以进一步开展的研究.  相似文献   

13.
基于最小二乘法原理的速度因子方法是保流形结构算法中效率最高、稳定性最好、应用最广的方法.利用速度因子方法讨论了主星为辐射源,伴星为扁球的平面圆型限制性三体问题的稳定性问题.数值研究表明:(1)仅考虑扁状摄动项时,系统混沌运动的轨道数量会增多;(2)仅考虑辐射项时,系统有序运动的轨道数量会增多;(3)同时存在辐射和扁状摄动时,辐射占主导作用,系统有序运动的几率会增加.  相似文献   

14.
随着观测手段、理论模型和数值方法的发展,人们对各种太阳风扰动如日冕物质抛射,以及相关的空间天气效应的认识和理解越来越深入。为获取行星际背景磁场、背景太阳风参数和日冕物质抛射、激波等太阳风扰动的传播参数,人们建立发展了各种模式;在这些获取的参数基础上,建立了各种太阳风扰动的传播模式,从而为空间天气预报提供了必要的经验和理论模型支持。根据这些模式所研究和描述物理量的不同,将这些参数获取模式和传播预报模式分为背景磁场获取模式、背景太阳风参数获取模式、日冕物质抛射传播参数获取模式、日冕物质抛射偏转模式、日冕物质抛射(激波)传播模式以及基于三维磁流体力学的数值模拟方法,并分别概述性地总结了各种模式的特点及其用途。  相似文献   

15.
杨磊  孙畅  李家威 《天文学报》2023,64(6):61-37
阿尔文波在太阳风中普遍存在,对其中等离子体的加热与加速有重要意义.从太阳风中的结构、太阳风湍流、太阳风全球模型、等离子体不稳定性(参量衰变不稳定性和火蛇管不稳定性)、太阳风的加热与加速等方面,总结了近年来太阳风中阿尔文波相关的研究进展.结合目前的研究趋势,从亚阿尔文速太阳风、太阳风全球模型和太阳源区3个方向展望了未来阿尔文波的相关研究.  相似文献   

16.
通过观测和模拟星际空间的辐射转移过程,探索天体的物理化学性质和分布演化过程,是天体物理学研究的一种重要手段。星际尘埃在星际辐射的产生和加工方面都扮演了重要角色。星际尘埃的分布为三维不均匀分布,需采用尘埃三维辐射转移模型以更真实地模拟尘埃的辐射转移过程。在研究分析尘埃三维辐射转移模型有关文献的基础上,重点介绍了用蒙特卡洛方法模拟尘埃三维辐射转移的基本图景和对模拟结果的一般处理步骤。详细梳理了适用于不同物理环境的6种模拟尘埃三维辐射转移的开源代码,比较分析了它们的模拟对象、辐射源类型、尘埃分布和组成等要素,总结评析了各个代码的特点和优势,便于需要利用数值模拟来进行科学研究的相关人员根据科学目标进行鉴别和采用。  相似文献   

17.
最近对低质量X射线双星中的千赫兹准周期振动的研究表明 ,是辐射压力 ,而不是盘和磁球的相互作用以及处于盘内边界的广义相对论效应在短时标的盘切断机制上起作用。本文给出了一些研究结果及讨论。  相似文献   

18.
周晓伟  吴德金  陈玲 《天文学报》2023,64(3):34-210
射电辐射机制,尤其是射电暴发现象的相干辐射机制,是天体物理中最复杂、争议最多的电磁辐射机制.由于受到多重物理因素相互牵连的复杂影响,相干射电辐射机制的理论研究存在很大的难度,长期以来在等离子体辐射和电子回旋脉泽辐射这两类相干辐射机制间争议一直不断.近年来,人们开始尝试将粒子数值模拟方法应用于相干射电辐射机制的研究,并已经取得了一些积极的进展.本文将着重介绍近年来的粒子模拟研究工作及其取得的主要进展,并对现存的一些问题和困难进行简要评述.  相似文献   

19.
在磁约束聚变等离子体中,等离子体辐射是其中的一个重要问题。当等离子体辐射功率达到一定比例时,会引起不稳定性,甚至导致等离子体破裂。在磁约束等离子体中,辐射磁流体力学主要涉及到的是由辐射引起的磁流体不稳定性,及其对等离子体约束的影响。目前仍存在一些关键性的问题,如密度极限、等离子体破裂过程中的辐射损失等,并且磁约束聚变等离子体中还没有完整的辐射磁流体动力学的数值模拟工作,因此,从事这方面的工作有望走在国际前沿。  相似文献   

20.
基于磁流体力学模拟的太阳高能粒子物理模式研究进展   总被引:1,自引:0,他引:1  
太阳高能粒子(SEP)事件是一类重要的空间天气灾害性事件,其数值预报研究在空间天气预报研究中占有很重要的地位。SEP事件主要包括3种类型:与太阳耀斑爆发相关联的脉冲型事件,与日冕物质抛射驱动的激波相关联的缓变型事件,以及同时具有缓变型和脉冲型事件特征的混合型事件。其中,缓变型SEP事件持续时间较长并且高能粒子强度较大,对这类事件的模拟是当前研究的难点。目前针对缓变型SEP事件的模拟工作业已发展了多个理论和数值模型。每个模型都对SEP加速和传播的复杂过程作了基本的假设,这些模型的模拟结果能够部分重现观测到的SEP事件特征。而若要提高预报SEP事件的能力,则需要将描述三维日冕物质抛射驱动的激波模型与描述高能粒子在行星际空间中的加速和传输的模型耦合起来,建立基于接近真实的SEP加速和传播的三维太阳风背景模拟及以激波参数为输入的SEP模型。主要回顾了缓变型SEP事件中粒子的加速和传输方面的研究进展,以及可用于获取CME激波传播参数的磁流体力学太阳风模型研究现状;综述了缓变型SEP事件的激波一粒子模型(shock-and-particle model);最后对未来工作进行了讨论和展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号