首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We study the timing and spectral properties of Be/X-ray binary pulsar EXO 2030+375 using a Suzaku observation taken on 2012 May 23,during a less intense Type I outburst.Pulsations were clearly detected in the X-ray light curves at a barycentric period of 41.2852 s,which suggest that the pulsar is spinning-up.The pulse profiles were found to be peculiar,e.g.unlike those obtained from the earlier Suzaku observation acquired on 2007 May 14.A single-peaked narrow profile at soft X-rays(0.5–10 ke V range)changed to a double-peaked broad profile in the 12–55 ke V energy range and again reverted back to a smooth single-peaked profile at hard X-rays(55–70 ke V range).The 1.0–100.0 ke V broadband spectrum of the pulsar was found to be well described by three continuum models described as(i)a partial covering high energy cut-off power-law model,(ii)a partially absorbed power-law with highenergy exponential rolloff and(iii)a partial covering Negative and Positive power law with EXponential(NPEX)continuum model.Unlike the earlier Suzaku observation during which several low energy emission lines were detected,a weak and narrow Iron Kαemission line at 6.4 ke V was only present in the pulsar spectrum during the2012 May outburst.Non-detection of any absorption like feature in the 1–100 ke V energy range supports the claim of the absence of the cyclotron resonance scattering feature in EXO 2030+375 from the earlier Suzaku observation.Pulse-phase resolved spectroscopy revealed the presence of additional dense matter causing the absence of a second peak from the soft X-ray pulse profiles.The details of the results are described in the paper.  相似文献   

2.
Temporal and spectral characteristics of X-ray emission from 60 flares of intensity ≥C class observed by the Solar X-ray Spectrometer(SOXS) during 2003–2011 are presented. We analyze the X-ray emission observed in four and three energy bands by the Si and Cadmium-Zinc-Telluride(CZT)detectors, respectively. The number of peaks in the intensity profile of the flares varies between 1 and 3. We find moderate correlation(R ≈0.2) between the rise time and the peak flux of the first peak of the flare irrespective of energy band, which is indicative of its energy-independent nature. Moreover, the magnetic field complexity of the flaring region is found to be highly anti-correlated(R = 0.61) with the rise time of the flares while positively correlated(R = 0.28) with the peak flux of the flare. The time delay between the peak of the X-ray emission in a given energy band and that in 25–30 keV decreases with increasing energy, suggesting conduction cooling is dominant in the lower energies. Analysis of 340 spectra from 14 flares reveals that the peak of differential emission measure(DEM) evolution is delayed by 60–360 s relative to that of the temperature, and this time delay is inversely proportional to the peak flux of the flare. We conclude that temporal and intensity characteristics of flares are dependent on energy as well as the magnetic field configuration of the active region.  相似文献   

3.
The spectral energy distribution (SED) of the γ-ray flare observed in July 1997 in BL Lacertae is re-considered. It is pointed out that the optical observations made by Webb et al. showed the associated optical flare has a hard spectrum (the average spectral index αopt~0.48, Fν∝ν^-α), and the ASCA observations made by Tanihata et al. showed very steep spectra in the soft X-ray band (0.7-1.5 keV) (αx~3-4). We find that the flux densities and spectral indices in both the optical and soft X-ray bands are closely consistent with a ‘canonical‘ synchrotron spectrum emitted by relativistic electrons of a power-law energy distribution with a high energy cutoff, and thus the peak of the SED of the synchrotron radiation (in representation of νFν) is located in the EUV - soft X-ray bands. Therefore, the GeV γ-ray emission observed in the July 1997 outburst may be mainly due to the synchrotron self-Compton (SSC) process, contrasting with the current explanations in terms of external radiation Compton (ERC) process, in which the seed photons are mostly taken to be the UV emission from the clouds of the broad emission line region. We argue that the hard optical spectra observed during the γ-ray outburst may be an important signature for the acceleration of high energy electrons (γe-10^4) in the γ-ray emitting region.  相似文献   

4.
We study RXTE PCA data for the high mass X-ray binary source SMC X-1 between 2003–10 and 2003–12 when the source was in its high states.The source is found to be frequently bursting which can be seen as flares in lightcurves that occur at a rate of one every 800 s, with an average of 4–5 Type Ⅱ X-ray bursts per hour.We note that typically a burst was short, lasting for a few tens of seconds in addition to a few long bursts spanning more than a hundred seconds that were also observed.The flares apparently occupied 2.5% of the total observing time of 225.5 ks.We note a total of 272 flares with mean FWHM of the flare ~21 s.The rms variability and aperiodic variability are independent of flares.As observed, the pulse profiles of the lightcurves do not change their shape, implying that there is no change in the geometry of an accretion disk due to a burst.The hardness ratio and rms variability of lightcurves exhibit no correlation with the flares.The flare fraction shows a positive correlation with the peak-to-peak ratio of the primary and secondary peaks of the pulse profile.The observed hardening or softening of the spectrum cannot be correlated with the flaring rate but may be due to the interstellar absorption of X-rays as evident from the change in hydrogen column density(n_H).It is found that the luminosity of the source increases with the flaring rate.Considering that the viscous timescale is equal to the mean recurrence time of flares, we fixed the viscosity parameter α~ 0.16.  相似文献   

5.
One of the popular models for the low/hard state of black hole binaries is that the standard accretion disk is truncated and the hot inner region produces, via Comptonization, hard X-ray flux.This is supported by the value of the high energy photon index, which is often found to be small,~ 1.7( 2), implying that the hot medium is starved of seed photons. On the other hand, the suggestive presence of a broad relativistic Fe line during the hard state would suggest that the accretion disk is not truncated but extends all the way to the innermost stable circular orbit. In such a case, it is a puzzle why the hot medium would remain photon starved. The broad Fe line should be accompanied by a broad smeared reflection hump at ~ 30 ke V and it may be that this additional component makes the spectrum hard and the intrinsic photon index is larger, i.e. 2. This would mean that the medium is not photon deficient, reconciling the presence of a broad Fe line in the observed hard state. To test this hypothesis,we have analyzed the RXTE observations of GX 339–4 from the four outbursts during 2002–2011 and identify observations when the system was in the hard state and showed a broad Fe line. We have then attempted to fit these observations with models, which include smeared reflection, to understand whether the intrinsic photon index can indeed be large. We find that, while for some observations the inclusion of reflection does increase the photon index, there are hard state observations with a broad Fe line that have photon indices less than 2.  相似文献   

6.
It is surprising to find an instance of migration in the peak positions of synchrotron spectral energy distribution components during the activity epochs of Markarian 421(Mrk 421),accompanying an orphan flare at the X-ray and GeV-TeVγ-ray bands.A geometric interpretation and standard shock or stochastic acceleration models of blazar emission have difficulty reproducing these observed behaviors.The present paper introduces a linear acceleration by integrating the reconnection electric field into the particle transport model for the observed behaviors of Mrk 421.We note that strong evidence for evolution in characteristic of multi-wavelength spectral energy distribution including shifting the peak frequency,accompanying an orphan flare at the X-ray and GeV-TeVγ-ray bands provides an important electrostatic acceleration diagnostic in a blazar jet.Assuming suitable model parameters,we apply the results of the simulation to the 13-day flaring event in March 2010 of Mrk 421,concentrating on the evolution of multiwavelength spectral energy distribution characteristic by shifting the peak frequency.It is clear that the ratio of the electric field and magnetic field strength plays an important role in temporal evolution of the peak frequency of synchrotron spectral energy distribution component.We suggest it is reasonable that the electrostatic acceleration is responsible for the evolution of multi-wavelength spectral energy distribution characteristic by shifting the peak frequency.Based on the model results,we assert that the peak frequency of the synchrotron spectral energy distribution component may signify a temporary characteristic of blazars,rather than a permanent one.  相似文献   

7.
We present the results obtained from detailed timing and spectral studies of the Be/X-ray binary pulsar KS 1947+300 during its 2013 giant outburst. We used data from Suzaku observations of the pulsar at two epochs, i.e. on 2013 October 22(close to the peak of the outburst) and 2013 November 22. Xray pulsations at ~18.81 s were clearly detected in the light curves obtained from both observations. Pulse periods estimated during the outburst showed that the pulsar was spinning up. The pulse profile was found to be single-peaked up to ~10 ke V beyond which a sharp peak followed by a dip-like feature appeared at hard X-rays. The dip-like feature has been observed up to ~70 keV. The 1–110 ke V broad-band spectroscopy of both observations revealed that the best-fit model was comprised of a partially absorbed Negative and Positive power law with EXponential cutoff(NPEX) continuum model along with a blackbody component for the soft X-ray excess and two Gaussian functions at 6.4 and 6.7 ke V for emission lines. Both the lines were identified as emission from neutral and He-like iron atoms. To fit the spectra, we included the previously reported cyclotron absorption line at 12.2 keV. From the spin-up rate, the magnetic field of the pulsar was estimated to be ~1.2×10~(12)G and found to be comparable to that obtained from the detection of the cyclotron absorption feature. Pulse-phase resolved spectroscopy revealed the pulsating nature of the soft X-ray excess component in phase with the continuum flux. This confirms that the accretion column and/or accretion stream are the most probable regions of the soft X-ray excess emission in KS1947+300.The presence of the pulsating soft X-ray excess in phase with continuum emission may be the possible reason for not observing the dip at soft X-rays.  相似文献   

8.
Here we present research on an ultra-luminous X-ray source(ULX) candidate 2XMM J140229.91+542118.8. The X-ray light curves of this ULX candidate in M101 exhibit features of a flare star.More importantly, the Chandra light curve displays unusual X-ray double flares, which is comprised of two close peaks. The X-ray(0.3–11.0 ke V) flux of the first peak was derived from the two-temperature APEC model as ~ 1.1 ± 0.1 × 10-12 erg cm-2s-1. The observed flux at its first peak increased by about two orders of magnitude in X-ray as compared to quiescence. The slope of the second fast decay phase is steeper than the slope of the first fast decay phase, indicating that the appearance of a second flare accelerated the cooling of the first flare in a way we do not understand yet. We also observed its optical counterpart using a 2.16 m telescope administered by National Astronomical Observatories, Chinese Academy of Sciences.By optical spectral fitting, it is confirmed to be a late type d Me2.5 star. According to the spectral type and apparent magnitude of its optical counterpart, we estimate the photometric distance to be ~ 133.4 ± 14.2pc. According to the X-ray spectral fitting, a possible explanation is provided. However, more similar close double flares are needed to confirm whether this accelerated cooling event is a unique coincidence or a common physical process during double flaring.  相似文献   

9.
We performed time resolved spectroscopy of 1H0707–495 and IRAS 13224–3809 using long XMM-Newton observations. These are strongly variable narrow line Seyfert 1 galaxies and show broad features around 1 ke V that have been interpreted as relativistically broad Fe Lα lines. Such features are not clearly observed in other active galactic nuclei despite sometimes having high iron abundance required by the best fitted blurred reflection models. Given the importance of these lines, we explore whether the rapid variability of spectral parameters may introduce broad bumps/dips artificially in the time averaged spectrum, which may then be mistaken as broadened lines. We tested this hypothesis by performing time resolved spectroscopy using long(100 ks) XMM-Newton observations and by dividing them into segments with typical exposures of a few ks. We extracted spectra from each such segment and modeled them using a two component phenomenological model consisting of a power law to represent the hard component and a black body to represent the soft emission. As expected, both the sources showed variations in the spectral parameters. Using these variation trends, we simulated model spectra for each segment and then co-added to get a combined simulated spectrum. In the simulated spectra, we found no broad features below 1 ke V and in particular no deviation near 0.9 ke V as seen in the real averaged spectra. This implies that the broad Fe Lα line that is seen in the spectra of these sources is not an artifact of the variation of spectral components and, hence, provides evidence that the line is indeed genuine.  相似文献   

10.
The spin period variations and hard X-ray spectral properties of the Be/Xray pulsar GRO J1008–57 are studied with INTEGRAL observations during two outbursts in 2004 June and 2009 March.The pulsation periods of~93.66 s in 2004and~93.73 s in 2009 are determined.Pulse profiles of GRO J1008–57 during outbursts are strongly energy dependent with a double-peaked profile from 3–7 keV and a single-peaked profile in hard X-rays above 7 keV.Combined with previous measurements,we find that GRO J1008–57 has undergone a spin-down trend from 1993–2009 with a rate of~4.1×10-5s d-1,and could have changed into a spin-up trend after 2009.We find a relatively soft spectrum in the early phase of the 2009 outburst with cutoff energy~13 keV.Above a hard X-ray flux of~10-9erg cm-2s-1,the spectra of GRO J1008–57 during outbursts need an enhanced hydrogen absorption with column density~6×1022cm-2.The observed dip-like pulse profile of GRO J1008–57 in soft X-ray bands could be caused by this intrinsic absorption.Around the outburst peaks,a possible cyclotron resonance scattering feature at~74 keV is detected in the spectra of GRO J1008–57 which is consistent with the feature that was reported in MAXI/GSC observations,making the source a neutron star with the highest known magnetic field(~6.6×1012G)among accreting X-ray pulsars.This marginal feature is supported by the present detections in GRO J1008–57 following the correlation between the fundamental line energies and cutoff energies in accreting X-ray pulsars.Finally we discovered two modulation periods at~124.38 d and~248.78 d using RXTE/ASM light curves of GRO J1008–57.Two flare peaks appearing in the folded light curve had different spectral properties.The normal outburst lasting 0.1 of an orbital phase had a hard spectrum and could not be significantly detected below 3 keV.The second flare lasting ten days showed a very soft spectrum without significant detections above 5 keV.GRO J1008–57 is a good candidate of an accreting system with an equatorial circumstellar disk around the companion star.The neutron star passing the disk of the Be star near periastron and apastron produces two X-ray flares.The soft spectral properties in the secondary flares still need further detailed studies with soft X-ray spectroscopy.  相似文献   

11.
We analyze the long-term lightcurve of 3C 454.3 observed with Fermi/LAT and investigate its relation to flux in the radio,optical and X-ray bands.By fitting the 1-day binned Ge V lightcurve with multiple Gaussian functions(MGF),we propose that the typical variability timescale in the Ge V band is 1–10 d.The Ge V flux variation is accompanied by the spectral variation characterized as fluxtracking,i.e.,"harder when brighter."The Ge V flux is correlated with the optical and X-ray fluxes,and a weak correlation betweenγ-ray flux and radio flux is also observed.Theγ-ray flux is not correlated with the optical linear polarization degree for the global lightcurves,but they show a correlation for the lightcurves before MJD 56000.The power density spectrum of the global lightcurve shows an obvious turnover at~7.7 d,which may indicate a typical variability timescale of 3C 454.3 in theγ-ray band.This is also consistent with the derived timescales by fitting the global lightcurve with MGF.The spectral evolution and an increase in the optical linear polarization degree along with the increase inγ-ray flux may indicate that the radiation particles are accelerated and the magnetic field is ordered by the shock processes during the outbursts.In addition,the nature of 3C 454.3 may be consistent with a self-organized criticality system,similar to Sagittariusand thus the outbursts could be from plasmoid ejections driven by magnetic reconnection.This may further support the idea that the jet radiation regions are magnetized.  相似文献   

12.
W Comae has significant variability in multi-wavelengthes, from radio to gamma-ray bands. A bright outburst in optical and X-ray bands was observed in 1998, and most recently, a strong TeV flare was detected by VERITAS in 2008. It is the first TeV intermediate-frequency-peaked BL Lacertae source. I find that both the broadband spectral energy distributions (SEDs) which were quasi-simultaneously obtained during the TeV flare and during the optical/X-ray outburst are well fit by using a single-zone synchrotron + synchrotron-self-Compton model. The satisfactory fitting requires a large beaming factor, i.e., δ- 25 and δ- 20 for the TeV flare and the optical/X-ray outburst, respectively, suggesting that both the optical/X-ray outburst and the TeV flare are from a relativistic jet. The size of the emission region of the TeV flare is three times larger than that of the optical/X-ray outburst, and the strength of the magnetic field for the TeV flare is - 14 times smaller than that of the X-ray/optical outburst, likely indicating that the region of the TeV flare is more distant from the core than that of the X-ray/optical outburst. The inverse Compton component of the TeV flare peaks around 1.3 GeV, but it is around 20 MeV for the X-ray/optical outburst, lower than that for the TeV flare by two orders of magnitude. The model predicts that the optical/X-ray outburst might be accompanied by a strong MeV/GeV emission, but the TeV flare may be not associated with the X-ray/optical outburst. The GeV emission is critical for characterizing the SEDs of the optical/X-ray outburst and the TeV flare. The predicted GeV flux is above the sensitivity of Fermi/LAT, and it could be verified with the observations by Fermi/LAT in the near future.  相似文献   

13.
The anomalous X-ray pulsar 4U 0142+61 has been studied with observations from INTEGRAL. The hard X-ray spectrum in the range 18–500 keV for4U 0142+61 was derived using nearly nine years of INTEGRAL/IBIS data. We obtained the average hard X-ray spectrum of 4U 0142+61 with all available data. The spectrum of 4U 0142+61 can be fitted with a power law that includes an exponential high energy cutoff. This average spectrum is well fitted by a power law withΓ~ 0.51 ± 0.11 plus a cutoff energy at 128.6 ± 17.2 keV. The hard X-ray flux of the source from 20–150 keV showed no significant variations(within 20%) from 2003–2011. The spectral profiles have some variability over the nine years such that the photon index varies from 0.3–1.5 and the cutoff energies from 110–250 keV. The detection of the high energy cutoff around 130 keV shows some constraints on the radiation mechanisms of magnetars and possibly probes the differences between magnetar and accretion models for this special class of neutron stars. Future HXMT observations could provide stronger constraints on the hard X-ray spectral properties of this source and other magnetar candidates.  相似文献   

14.
The radiative mechanism of black hole X-ray transients(BHXTs) in their quiescent states(defined as the 2–10 ke V X-ray luminosity 10~(34) erg s~(-1)) remains unclear. In this work, we investigate the quasi-simultaneous quiescent state spectrum(including radio, infrared, optical, ultraviolet and X-ray)of two BHXTs, A0620–00 and XTE J1118+480. We find that these two sources can be well described by a coupled accretion – jet model. More specifically, most of the emission(radio up to infrared, and the X-ray waveband) comes from the collimated relativistic jet. Emission from hot accretion flow is totally insignificant, and it can only be observed in mid-infrared(the synchrotron peak). Emission from the outer cold disk is only evident in the UV band. These results are consistent with our previous investigation on the quiescent state of V404 Cyg and confirm that the quiescent state is jet-dominated.  相似文献   

15.
Using long-term optical, ultraviolet(UV) and X-ray data, we present a study of a classical T Tauri star CV Cha. The V-band light curve obtained from the All Sky Automated Survey(ASAS) shows short as well as long-term variability. The short-term variability could be due to rotational modulation of CV Cha. We derive the rotational period of 3.714 ± 0.001 d for CV Cha. UV light curves obtained from Swift also show the variations. X-ray light curves from XMM-Newton and Swift do not show any significant short as well as long-term variability. However, the light curve from Chandra appears to be variable, which could be due to the emergence of flaring activities. X-ray spectra from all observations are explained well by the single temperature plasma of 0.95 keV with X-ray luminosity of 1030.4erg s-1in the 0.5–7.5 keV energy band. It appears that variability in optical and UV bands could be due to the presence of both hot and cool spots on the surface, while X-ray emission is dominated by magnetic processes.  相似文献   

16.
In this paper we investigate three novel rising submillimeter(THz) bursts that occurred sequentially in Super Active Region NOAA 10486. The average rising rate of the flux density above 200 GHz is only 20 sfu GHz-1(corresponding to spectral index α of 1.6) for the THz spectral components of the2003 October 28 and November 4 bursts, but it attained values of 235 sfu GHz-1(α = 4.8) in the 2003 November 2 burst. The steeply rising THz spectrum can be produced by a population of highly relativistic electrons with a low-energy cutoff of 1 Me V, but it only requires a low-energy cutoff of 30 ke V for the two slowly rising THz bursts, via gyrosynchrotron(GS) radiation based on our numerical simulations of burst spectra in the magnetic dipole field case. The electron density variation is much larger in the THz source than in the microwave(MW) source. It is interesting that the THz source radius decreased by 20%–50%during the decay phase for the three events, but the MW source increased by 28% for the 2003 November2 event. In the paper we will present a formula that can be used to calculate the energy released by ultrarelativistic electrons, taking the relativistic correction into account for the first time. We find that the energy released by energetic electrons in the THz source exceeds that in the MW source due to the strong GS radiation loss in the THz range, although the modeled THz source area is 3–4 orders smaller than the modeled MW source one. The total energies released by energetic electrons via the GS radiation in radio sources are estimated, respectively, to be 5.2 × 1033, 3.9 × 1033 and 3.7 × 1032 erg for the October 28, November 2and 4 bursts, which are 131, 76 and 4 times as large as the thermal energies of 2.9 × 1031, 2.1 × 1031and5.2 × 1031 erg estimated from soft X-ray GOES observations.  相似文献   

17.
4U 1822–371 is a typical edge-on eclipsing low mass X-ray binary and the prototype of accretion disk coronal sources. We report on the results of a spectral analysis over the energy range 0.5–45 ke V observed by Suzaku in 2006. We extract spectra from five orbital phases. The spectra can be equally well described by various previously proposed models: an optically thick model described by a partially covered cutoff power law and an optically thin model described by a blackbody plus a cutoff power law. The optically thick model requires a covering fraction of about 55%, while the optically thin model requires a temperature of the central source of about 0.16 ke V. The spectrum in the optically thick model also shows the previously detected cyclotron line feature at ~30 ke V with the same Suzaku observation. This feature confirms the presence of a strong magnetic field. The Fe Kα fluorescent line strengths as well as the detected Fe XXVI strengths are similar to previous Chandra and XMM-Newton detections in our phased spectral analysis; however, we also observe strong Fe XXVI during the eclipse, which indicates a slightly larger central corona.  相似文献   

18.
Understanding the variation of lags with respect to the X-ray flux is important to explore the geometry of the inner region of the accretion disk in AGNs. We performed frequency-lag, energy–lag and spectral studies for two sets of observations, in order to investigate the variations in lags with respect to X-ray flux in the AGN source Mrk 704 using the XMM-Newton observatory. We divided one of the light curves into two sections which were noticed to exhibit a flux variation. The frequency-lag sp...  相似文献   

19.
White-light(WL) flares have been observed and studied for more than a century since their first discovery. However, some fundamental physics behind the brilliant emission remains highly controversial.One of the important facts in addressing the flare energetics is the spatio-temporal correlation between the WL emission and the hard X-ray(HXR) radiation, presumably suggesting that energetic electrons are the energy sources. In this study, we present a statistical analysis of 25 strong flares(≥M5) observed simultaneously by the Helioseismic and Magnetic Imager(HMI), on board the Solar Dynamics Observatory(SDO),and the Reuven Ramaty High Energy Solar Spectroscopic Imager(RHESSI). Among these events, WL emission was detected by SDO/HMI in 13 flares, associated with HXR emission. To quantitatively describe the strength of WL emission, equivalent area(EA) is defined as the integrated contrast enhancement over the entire flaring area. Our results show that the EA is inversely proportional to the HXR power-law index,indicating that stronger WL emission tends to be associated with a larger population of high energy electrons. However, no obvious correlation is found between WL emission and flux of non-thermal electrons at50 ke V. For the other group of 13 flares without detectable WL emission, the HXR spectra are softer(larger power-law index) than those flares with WL emission, especially for the X-class flares in this group.  相似文献   

20.
Solar hard X-rays(HXRs) appear in the form of either footpoint sources or coronal sources. Each individual source provides its own critical information on acceleration of nonthermal electrons and plasma heating. Earlier studies found that the HXR emission in some events manifests a broken-up power-law spectrum, with the break energy around a few hundred keV based on spatially-integrated spectral analysis,and it does not distinguish the contributions from individual sources. In this paper, we report on the brokenup spectra of a coronal source studied using HXR data recorded by Reuven Ramaty High Energy Solar Spectroscopic Imager(RHESSI) during the SOL2017–09–10 T16:06(GOES class X8.2) flare. The flare occurred behind the western limb and its footpoint sources were mostly occulted by the disk. We could clearly identify such broken-up spectra pertaining solely to the coronal source during the flare peak time and after. Since a significant pileup effect on the RHESSI spectra is expected for this intense solar flare, we have selected the pileup correction factor, p = 2. In this case, we found the resulting RHESSI temperature(~30MK) to be similar to the GOES soft X-ray temperature and break energies of 45–60 keV. Above the break energy, the spectrum hardens with time from spectral index of 3.4 to 2.7, and the difference in spectral indices below and above the break energy increases from 1.5 to 5 with time. However, we note that when p = 2 is assumed, a single power-law fitting is also possible with the RHESSI temperature higher than the GOES temperature by ~10MK. Possible scenarios for the broken-up spectra of the loop-top HXR source are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号