首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Petrological and geochemical studies on some volcanic and sub-volcanic rocks from the Lower Benue rift indicate that they are basalts, basaltic and doleritic sills, trachybasalt and trachyte which generally belong to the alkali basalt series. The alkaline affinity is clearly evident in both their normative and modal mineral compositions, as well as their chemical compositions. The generally high fractionation indices [(La/Yb)N] are 7.06 to 17.65 for the basaltic rocks and 23.59 to 135. 35 for the trachytic ...  相似文献   

2.
Miocene volcanism of the Oglakci region (Sivrihisar, Eskisehir) in northwestern Central Anatolia, Turkey, is represented by basaltic and trachytic groups of rocks. Samples of both groups have been investigated using mineral-chemical data together with whole-rock major-, trace-element, and radiogenic Sr-Nd isotopic data. The basaltic volcanic rocks consist of mugearites and shoshonites, whereas the trachytic rocks include trachytes, latite, and rhyolite. Both groups are of alkaline character. The basaltic rocks contain plagioclase (An29-63), alkali feldspar (Or12-74), olivine, orthopyroxene (En64-67), clinopyroxene (Wo43-48), biotite (Mg#82-88), and Fe-Ti oxide phenocrysts, whereas the trachytic rocks contain plagioclase (An21-64), alkali feldspar (Or10-53), clinopyroxene (Wo41-49), amphibole (Mg#64-83), biotite (Mg#79-85), Fe-Ti oxide, titanite, apatite, and quartz phenocrysts. The measured 87Sr/86Sr ratios of basaltic samples range from 0.7045 to 0.7048, and those of trachytic samples from 0.7054 to 0.7056. The basaltic samples have 143Nd/144Nd ratios ranging from 0.512753 to 0.512737, and those of trachytic samples are 0.512713 to 0.512674. Isotopic, major-, and trace-element data suggest that the Oglakci volcanic rocks are products of postcollisional magmatism and originated from a complex interplay of crustal assimilation, magma mixing, and fractional crystallization processes following the demise of Neotethys. Trace-element characters also are consistent with an OIB-like mantle source. These volcanic rocks probably were associated with extensional tectonics, which occurred within the Anatolian plate as a result of collision of the Eurasian and Afro-Arabian plates during the neotectonic evolution of Turkey.  相似文献   

3.
The Sete Cidades volcano (São Miguel, Azores) is situatedat the eastern end of the ultraslow spreading Terceira riftaxis. The volcano comprises several dominantly basaltic pre-calderaeruptions, a trachytic caldera-forming stage and a post-calderastage consisting of alternating trachytic and basaltic eruptions.The post-caldera flank lavas are more primitive (>5 wt %MgO) than the pre-caldera lavas, implying extended fractionalcrystallization and longer crustal residence times for the pre-caldera,shield-building lavas. Thermobarometric estimates show thatthe ascending alkali basaltic magmas stagnated and crystallizedat the crust–mantle boundary (15 km depth), whereas themore evolved magmas mainly fractionated in the upper crust (3km depth). The caldera-forming eruption was triggered by a basalticinjection into a shallow trachytic magma chamber. Lavas fromall stages follow a single, continuous liquid line of descentfrom alkali basalt to trachyte, although slight differencesin incompatible element (e.g. Ba/Nb, La/Nb) and Sr isotope ratiosimply some heterogeneity of the mantle source. Major and traceelement data suggest similar partial melting processes throughoutthe evolution of the volcano. Slight geochemical differencesbetween post- and pre-caldera stage lavas from the Sete Cidadesvolcanic system indicate a variation in the mantle source compositionwith time. The oxygen fugacity increased from the pre-calderato the post-caldera stage lavas, probably as a result of theassimilation of crustal rocks; this is supported by the presenceof crustal xenoliths in the lavas of the flank vents. The lavasfrom the Sete Cidades volcano generally have low Sr isotoperatios; however, rocks from one post-caldera vent on the westernflank indicate mixing with magmas resembling the lavas fromthe neighbouring Agua de Pau volcano, having higher Sr isotoperatios. The different magma sources at Sete Cidades and theadjacent Agua de Pau volcano imply that, despite their closeproximity, there is only limited interaction between them. KEY WORDS: crystallization depth; fractionation; stratigraphy; Terceira rift; volcanic stages  相似文献   

4.
As shown by geological, mineralogical, and isotope geochemical data, trachybasaltic-trachytic-trachyrhyolitic (TTT) rocks from the Nyalga basin in Central Mongolia result from several eruptions of fractionated magmas within a short time span at about 120 Ma. Their parental basaltic melts formed by partial melting of mantle peridotite which was metasomatized and hydrated during previous subduction events. Basaltic trachyandesites have high TiO2 and K2O, relatively high P2O5, and low MgO contents, medium 87Sr/86Sr(0) ratios (0.70526-0.70567), and almost zero or slightly negative εNd(T) values. The isotope geochemical signatures of TTT rocks are typical of Late Mesozoic basaltic rocks from rift zones of Mongolia and Transbaikalia. The sources of basaltic magma at volcanic centers of Northern and Central Asia apparently moved from a shallower and more hydrous region to deeper and less hydrated lithospheric mantle (from spinel to garnet-bearing peridotite) between the Late Paleozoic and the latest Mesozoic. The geochemistry and mineralogy of TTT rocks fit the best models implying fractional crystallization of basaltic trachyandesitic, trachytic, and trachyrhyodacitic magmas. Mass balance calculations indicate that trachytic and trachydacitic magmas formed after crystallization of labradorite-andesine, Ti-augite, Sr-apatite, Ti-magnetite, and ilmenite from basaltic trachyandesitic melts. The melts evolved from trachytic to trachyrhyodacitic and trachyrhyolitic compositions as a result of prevalent crystallization of K-Na feldspar, with zircon, chevkinite-Ce, and LREE-enriched apatite involved in fractionation. Trachytic, trachyrhyodacitic, and trachyrhyolitic residual melts were produced by the evolution of compositionally different parental melts (basaltic trachyandesitic, trachytic, and trachyrhyodacitic, respectively), which moved to shallower continental crust and accumulated in isolated chambers. Judging by their isotopic signatures, the melts assimilated some crustal material, according to the assimilation and fractional crystallization (AFC) model.  相似文献   

5.
Sanshui basin is one of the typical Mesozoic–Cenozoic intra-continental rift basins with voluminous Cenozoic volcanic rocks in southeastern China. Thirteen cycles of volcanic eruptions and two dominant types of volcanic rocks, basalt and trachyte–rhyolite, have been identified within the basin. Both basalt and trachyte–rhyolite members of this bimodal suit have high values of εNd (+2.3 to +6.2) and different Sr isotopic compositions (initial 87Sr/86Sr ratios are 0.70461–0.70625 and 0.70688–0.71266 for basalts and trachyte–rhyolite, respectively), reflecting distinct magma evolution processes or different magma sources. The results presented in this study indicate that both of the trachyte–rhyolite and basaltic magmas were derived from similar independent primitive mantle, but experienced different evolution processes. The trachyte-rhyolitic magma experienced significant clinopyroxene and plagioclase fractionational crystallization from deeper magma chamber with significant crustal contamination, while the basaltic magmas experienced significant olivine and clinopyroxene fractionational crystallization in shallower magma chamber with minor crustal contamination. New zircon U–Pb dating confirms an initial volcanic eruption at 60 Ma and the last activity at 43 Ma. Geologic, geochemical, and geochronological data suggest that the inception of the Sanshui basin was resulted from upwelling of a mantle plume. The Sanshui basin widened due to subsequent east–west extension and the subsequent volcanism constantly occurred in the center of the basin. Evidence also supports a temporal and spatial association with other rift basins in southeastern China. The upwelling mantle plume became more active during late Cenozoic time and most likely triggered opening of other basins, including the young South China Sea basin.  相似文献   

6.
长岭断陷早白垩世火山岩富硅、富碱,岩石以非碱性系列为主,包括钙碱性和高钾钙碱性系列,碱性系列火山岩为钾玄岩系列。酸性岩与中、基性岩的微量元素特征差别明显,岩石总体微量元素特征与造山带火山岩相似,富集LREE、Rb、K和大离子亲石元素,TiO2含量低,贫Sr。火山岩的形成与造山带岩石圈拆沉作用引起地壳拉张减薄的大地构造背景有关。研究区基性火山岩为地幔岩部分熔融作用的产物,岩浆演化过程中存在单斜辉石和橄榄石等矿物的分离结晶作用,中性岩为原生玄武质岩浆分异演化的产物,营城组酸性火山岩的形成与构造活动存在直接关系,为构造剪切挤压应力致使上地壳重熔的结果。  相似文献   

7.
滇西南晚古生代火山岩与裂谷作用及区域构造演化   总被引:10,自引:1,他引:10       下载免费PDF全文
特提斯构造东南带的滇西南地区发育三个系列的晚古生代火山岩:碱性橄榄玄武岩系列,大陆拉斑玄武岩系列和类似MORB拉斑玄武岩系列。地质、地球化学特征反映它们可能是保山—掸邦地块东缘昌宁—孟连晚古生代裂谷(局部向初始洋盆转化),而不大可能是宽阔洋底和洋岛的火山作用产物。逐渐增强的前进式裂谷作用伴随陆壳的减薄(局部分离,洋壳诞生)和软流圈顶面的抬升,可能导致不同深度地幔产生不同程度熔融作用,形成本区三个系列岩浆。地幔对流可能引导陆缘裂谷、洋壳扩张、俯冲、微陆块碰撞以及岩石圈深部剪切作用,制约区域晚古生代至中生代早期的构造岩浆演化。  相似文献   

8.
本文对华北克拉通晚中生代和新生代碱性玄武质岩石中的单斜辉石巨晶进行了主、微量元素和Sr-Nd同位素的综合研究,发现晚中生代和新生代单斜辉石巨晶存在明显的主、微量元素和同位素组成上的差异。新生代单斜辉石巨晶有Al-普通辉石和次透辉石两类;而中生代单斜辉石巨晶只有Al-普通辉石。新生代单斜辉石SiO_2含量高、REE配分型式为上凸型、LILE和放射性元素含量高,并具有比寄主碱性玄武岩更亏损的Sr和Nd同位素组成;而中生代单斜辉石SiO_2含量低、REE配分型式为LREE富集型、LILE和部分HFSE以及放射性元素含量低,并具有比寄主碱性玄武岩稍富集的Sr和Nd同位素组成;巨晶的结构、矿物成分和地球化学特征,以及Mg-Fe在熔体与单斜辉石间的分配状况皆说明,新生代碱性玄武岩中单斜辉石巨晶是碱性玄武岩浆在高压下结晶的,因此二者是同源的;而中生代单斜辉石巨晶是被寄主岩浆偶然捕获的捕虏晶,是不同源的。华北新生代单斜辉石巨晶存在于碱性玄武岩和拉斑玄武岩中,它们具有比寄主碱性玄武岩更亏损的Sr和Nd同位素组成,说明即使是碱性玄武岩也不能完全代表软流圈来源的原始岩浆,其在上升过程中或多或少存在同位素组成富集的物质的混入。同时,拉斑玄武岩不是碱性玄武质岩浆直接结晶分异的产物,亦不是完全由部分熔融程度的不同造成的。拉斑玄武岩中存在岩石圈地幔物质的贡献或是岩浆房内碱性玄武质岩浆受地壳混染作用的结果。  相似文献   

9.
吉林省长白山地区新生代火山岩的特点及其成因   总被引:7,自引:5,他引:7  
田丰  汤德平 《岩石学报》1989,5(2):49-64
长白山地区新生代火山岩是一套玄武岩、粗面岩和钠闪碱流岩的双峰式火山岩组合。玄武岩类分别属于碱性玄武岩系列和拉斑玄武岩系列。奶头山期玄武岩是幔源原生岩浆直接喷发于地表的产物,其他各期玄武岩是幔源原生岩浆经历了一定程度分异作用的产物。粗面岩和钠闪碱流岩与玄武岩有成因联系,可能是玄武岩浆通过分离结晶作用而形成的。本区新生代火山岩是大陆裂谷构造环境下的产物,是在地幔增温和底辞上升过程中形成的。  相似文献   

10.
赵正  漆亮  黄智龙  严再飞  许成 《岩石学报》2012,28(6):1915-1927
鸡街碱性超基性杂岩体产出于攀西古裂谷南段,地处云南省境内的罗茨地区,空间上与峨嵋山玄武岩紧密伴生。岩体的主体由霞霓钠辉岩、霓霞岩和磷霞岩组成,三类岩石具有相似的微量元素和稀土元素(REE)配分,富集大离子亲石元素K、Rb、Sr、Ba,过渡族元素Sc、Cr和Ni相对亏损,Nb/Ta、Zr/Hf比值在幔源岩的范围内,Sr-Nd同位素沿"幔源趋势"线分布。鸡街碱性超基性岩中不相容元素总体亏损,含量与EMORB相当,稀土总量ΣREE=32.86~70.07偏低,(La/Yb)N=3.03~4.47,HREE亏损,指示源区的适度亏损。微量元素和同位素信息共同指示鸡街碱性超基性岩为地幔岩高压条件下低程度部分熔融的产物(<10%),岩浆演化过程中经历了橄榄石、辉石和少量磁铁矿的结晶分异。霞霓钠辉岩、霓霞岩与磷霞岩来自同一地幔源区,岩浆源区的相对亏损,可能与中-晚二叠纪大量的玄武质岩浆从深部地幔抽取有关。攀西古裂谷的多期次活动为峨嵋地幔柱提供了岩浆通道,地幔柱活动的早期阶段或晚期阶段岩石圈地幔(或混合地幔)低程度部分熔融的碱性岩浆沿此构造薄弱带上侵,形成了攀西古裂谷内呈带状分布的各碱性杂岩体。  相似文献   

11.
The olivine shonkinites localized among dunites and alkali gabbroids in the northern part of the alkaline ultrabasic Inagli massif (northwestern part of Central Aldan) have been studied. The obtained data on the chemical and trace-element compositions of the rocks and minerals and the results of melt inclusion study showed that the olivine shonkinites crystallized from alkaline basanite melt enriched in Cl, S, CO2, and trace elements. Clinopyroxene crystallized at 1180-1200 °C from a homogeneous silicate-salt melt, which was probably separated into immiscible silicate and carbonate-salt fractions with temperature decreasing. The composition of the silicate fraction evolved from alkaline basanite to alkaline trachyte. The carbonate-salt fraction had an alkaline carbonate composition and was enriched in S and Cl. The same trend of evolution of clinopyroxene-hosted melts and the igneous rocks of the Inagli massif suggests that the alkali gabbroids, melanocratic alkali syenites, and pulaskites formed from the same magma, which had a near-alkaline basanite composition during its crystallization differentiation. The geochemical studies showed that the olivine shonkinites and glasses of homogenized melt inclusions in clinopyroxene grains have similar contents of trace elements, one or two orders of magnitude higher than those in the primitive mantle. The high contents of LILE (K, Rb, and Sr) and LREE in the olivine shoshonites and homogenized inclusions suggest the enriched mantle source, and the negative anomalies of HFSE and Ti are a specific feature of igneous rocks formed with the participation of crustal material. The slight depletion in HREE relative to LREE and the high (La/Yb)n ratios in the rocks and inclusion glasses (10.0-11.4 and 4.7-6.2, respectively) suggest the presence of garnet in the mantle source.  相似文献   

12.
通过对新疆卡拉麦里姜巴斯套组火山岩野外地质特征、岩石学和高精度同位素年代学的研究,发现姜巴斯套组火山岩具典型双峰式组合,岩石类型包括玄武岩-酸性火山碎屑岩-玄武粗面安山岩;得到玄武粗面安山岩LA-ICP-MS锆石U-Pb年龄为(319.8±2)Ma(加权均方偏差值为3),表明姜巴斯套组火山岩形成于早石炭世谢尔普霍夫阶。对火山岩地球化学特征的研究表明,姜巴斯套组火山岩钙碱性系列、高钾钙碱性系列和钾玄岩系列岩石兼而有之,岩石的稀土元素配分曲线均为轻稀土元素富集型,无明显Eu异常,玄武岩和玄武粗面安山岩具有K正异常和Sr负异常,酸性火山碎屑岩表现出Nb、Ta和Ti显著亏损。总体来说,姜巴斯套组火山岩富集大离子亲石元素,相对亏损高场强元素。玄武岩和玄武粗面安山岩表现出大陆裂谷(大陆板内拉张区域)岩石特征;酸性火山碎屑岩表现出岛弧或者活动大陆边缘岩石属性。总之,姜巴斯套组火山岩形成于卡拉麦里洋盆闭合碰撞造山后的拉张伸展环境,卡拉麦里地区在早石炭世末期就进入了碰撞后的陆内伸展拉伸阶段。  相似文献   

13.
Garnet-bearing and garnet-free pyroxenite xenoliths from Quaternary basanites of Marsabit, northern Kenya, were analysed for microstructures and mineral compositions (major and trace elements) to constrain the thermal and compositional evolution of the lithospheric mantle in this region. Garnet-bearing rocks are amphibole-bearing websterite with ~5–10 vol% orthopyroxene. Clinopyroxene is LREE-depleted and garnet has high HREE contents, in agreement with an origin as cumulates from basaltic mantle melts. Primary orthopyroxene inclusions in garnet suggest that the parental melts were orthopyroxene-saturated. Rock fabrics vary from weakly to strongly deformed. Thermobarometry indicates extensive decompression and cooling (~970–1,100°C at ~2.3–2.6 GPa to ~700–800°C at ~0.5–1.0 GPa) during deformation, best interpreted as pyroxenite intrusion into thick Paleozoic continental lithosphere subsequently followed by continental rifting (i.e., formation of the Mesozoic Anza Graben). During continental rifting, garnet websterites were decompressed (garnet-to-spinel transition) and experienced the same P–T evolution as their host peridotites. Strongly deformed samples show compositional overlaps with cpx-rich, initially garnet-bearing lherzolite, best explained by partial re-equilibration of peridotite and pyroxenite during deformation and mechanical mingling. In contrast, garnet-free pyroxenites include undeformed, cumulate-like samples, indicating that they are younger than the garnet websterites. Major and trace element compositions of clinopyroxene and calculated equilibrium melts suggest crystallisation from alkaline basaltic melt similar to the host basanite, which suggests formation in the context of alkaline magmatism during the development of the Kenya rift. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
In the southern Gregory Rift valley a series of transitional basalt, ferrobasalt, and benmoreite flows (1.65–1.4 Myr) is overlain by flood trachyte lavas (1.3–0.9 Myr). Mass balance calculations for major element compositions of rocks of this suite and their phenocrysts and microphenocrysts suggest that the ferrobasalts and benmoreites formed from magma resembling the most primitive basalt by closed system fractionation of plagioclase, clinopyroxene, olivine, titanomagnetite, and apatite. The trachytes formed from evolved magmas largely by alkali feldspar fractionation. Estimates of phenocryst and liquid densities and Rayleigh-law modelling of trace element contents support these conclusions. From Rayleigh-law modelling, we derived a set of effective distribution coefficients. Partial melting of crustal rocks or volatile transfer processes had no significant effect on the petrogenesis of this suite. The duration of the eruptive cycle, cooling time calculations, and mass balance calculations suggest that fractionation occurred in a magma reservoir with volume of at least 3 × 104 km3 during an interval of about 0.8 Myr. Temperatures during fractionation probably ranged from about 1200 °C to 900 °C, and pressures may have been roughly 5 to 8 Kb. We suggest that rift development was accompanied by large-scale injection of basaltic magma and dilation of the crust, extensive fractionation, preferential eruption of low-density and fluid trachytic flood lavas, and by several episodes of normal faulting.  相似文献   

15.
This work presents data on phosphorus content in the central and peripheral sectors of primary jointing blocks in olivine basalts of the Baikal rift zone (Khamar-Daban Range), as well as basaltic andesite flows and dolerite sills on the Karabakh Highland of the Lesser Caucasus. The P2O5 content decrease near cracks in volcanic rocks of the Baikal rift zone is caused by leaching of phosphorus during humid weathering. Estimates of the amount of mobilized phosphorus suggest that alkaline basic volcanic rocks can serve as the continental source for the formation of phosphates.  相似文献   

16.
Rare-earth-element, radiogenic and oxygen isotope, and mineral chemical data are presented for tholeiitic and alkaline Quaternary volcanism from Karasu Valley (Hatay, southeastern Turkey). Karasu Valley is the northern segment of the Dead Sea transform fault and is filled with flood-basalt type volcanics of Quaternary age. This valley is an active fault zone that is known as “Karasu fault,” extending in a NE-SW direction. The Karasu Valley basaltic volcanics (KVBV) are subaphyric to porphyritic, with variable amounts of olivine, clinopyroxene, and plagioclase phenocrysts. Alkali basalts are generally characterized by high contents of olivine, clinopyroxene, and plagioclase phenocrysts. Their groundmass contains olivine, clinopyroxene, plagioclase, and Fe-Ti oxides. Tholeiitic basalts are subaphyric to porphyritic (high contents of olivine, clinopyroxene, and plagioclase). Their groundmass is similar to that of alkali basalts. The range of olivine phenocryst and microlite compositions for all analyzed samples is Fo81 to Fo43. Plagioclase compositions in both tholeiitic and alkali basalts range from andesine, An38 to bytownite, An72. Clinopyroxene compositions range from diopside to calcic augite. Most of the olivine, plagioclase, and clinopyroxene phenocrysts are normally zoned and/or unzoned. Fe-Ti oxides in both series are titanomagnetite and ilmenite.

Based on normative and geochemical data, the Karasu Valley basaltic volcanics are mostly olivine and quartz-tholeiites, and relatively lesser amount of alkali olivine-basalts. KVBV have low K2O/Na2O ratios, typically between 0.25 and 0.45. Olivine- and quartz-tholeiites are older than alkali olivine-basalts. Olivine tholeiites have Zr/Nb and Y/Nb ratios similar to alkaline rocks, but their Ba/Nb, Ba/La, and La/Nb ratios are slightly higher than alkali olivine-basalts. In contrast, quartz-tholeiites have the highest Ba/Nb, Ba/La, Zr/Nb, and Y/Nb and the lowest Nb/La ratios among the KVBV. Alkali basalts have 87Sr/86Sr and 143Nd/144Nd ratios ranging from 0.703353 to 0.704410 and 0.512860 to 0.512910, respectively. In contrast, quartz-tholeiites have higher 87Sr/86Sr and lower 143Nd/144Nd ratios, which vary from 0.704410 to 0.705490 and 0.512628 to 0.512640, respectively. Olivine tholeiites have intermediate isotopic compositions ranging from 0.703490 to 0.704780 and 0.512699 to 0.512780, respectively. 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb isotopic ratios of KVBV range from 18.817 to 19.325, 15.640 to 15.718, and 39.054 to 39.223, respectively. The range of O isotope values is between +5.84 and +7.97‰. The higher O and Sr isotopes in olivine- and quartz-tholeiites relative to alkali olivine-basalts can be explained by contamination of magmas by crustal materials.

The KVBV have intraplate chemistry similar to that of other tholeiitic and alkaline basalts in other within-plate environments, and isotopes range from isotopically depleted mantle to enriched isotope compositions similar to some enriched ocean islands. Trace-element and isotope data indicate that the KVBV are derived from a common OIB-like asthenospheric mantle source, but they have experienced different degrees of crustal contamination during their ascent to the surface, contemporaneous with little fractional crystallization. Although quartz-tholeiites display significant effects of crustal contamination, alkali olivine-basalts appear to have negligible or no crustal contamination in their geesis.  相似文献   

17.
安徽庐枞中生代火山岩系的特征及其形成的构造背景   总被引:15,自引:6,他引:15  
孙冶东  杨荣勇 《岩石学报》1994,10(1):94-103
庐枞地区中生代火山岩素是一套由粗面玄武岩-玄武粗安岩-粗安岩-粗面岩组成的岩石组合。岩石硅近饱和,全碱含量(尤其是K2O)高,K2O/Na2O、Fe2O3/FeO比值大,Al2O3含量高且变化大,TiO2含量低,富集Rb、Sr、Ba、Zr、Th、U和LREE等元素,稀土配分为轻稀土富集型,锶、铅、氧等同位素显示了岩浆的幔源特征。本文通过详细的岩石化学和地球化学的对比研究,认为庐枞中生代火山岩系属于橄榄玄粗岩系,它形成于活动大陆边缘由挤压作用向引张作用转变的过渡时期,是火山弧后拉张形成的前裂谷阶段的产物。  相似文献   

18.
Extremely fractionated basaltic to ferrobasaltic amphibolites and granulites comprise two spatially associated mafic tholeiitic suites (?deformed sills) within the Early Proterozoic Oonagalabi basement gneiss complex, Harts Range, Central Australia. The metatholeiites are characterised by high to very high FeO, TiO2 and P2O5 contents, and variable depletion in CaO and Al2O3. Despite similar Zr/Nb ratios, the rocks from the two suites show different degrees of enrichment in LREE and other “immobile” incompatible elements. The basaltic melts which were parental to the two mafic suites were not comagmatic and the rocks cannot be related simply by fractionation of realistic assemblages of low-pressure fractionating phases. The data suggest that primary basaltic liquids for the two suites were derived by different degrees of partial melting from essentially similar undepleted mantle source regions. Clinopyroxene in the residual mantle assemblage controlled the composition of the segregating melt at lower degrees of melting. The ferrobasaltic compositions imply long residence times for the basaltic magmas in shallow-level differentiating tholeiitic sills and/or magma chambers in a mature propagating rift environment. High-grade (granulite facies) metamorphism, and subsequent restricted metasomatic reequilibration of the mafic rocks with interlayered migmatitic and quartzofeldspathic gneisses, have affected only abundances of certain highly-smobile elements (e.g. K2O and Rb), resulting in the partial disruption of inter-element correlations. However, the geochemical data do not indicate any large-scale depletion of large ion lithophile elements (LILE) in the Oonagalabi gneiss complex.  相似文献   

19.
The Mid to Late Miocene intraplate alkaline volcanic suites of western Bohemia are relict of the intensive voluminous volcanism accompanied by large-scale uplift and doming. The association with the uplift of the NE flank of the Cheb–Domažlice Graben (CDG) is uncertain in view of the mostly transpressional tectonics of the graben. The volcanism is most probably of the Ohře/Eger Rift off-rift settings. Two cogenetic volcanic suites have been recognised: (i) silica-saturated to oversaturated consisting of olivine basalt–trachybasalt-(basaltic) trachyandesite–trachyte–rhyolite (13.5 to 10.2 Ma) and (ii) silica-undersaturated (significantly Ne-normative) (melilite-bearing) olivine nephelinite–basanite–tephrite (18.3 to 6.25 Ma). A common mantle source is suggested by similar primitive mantle-normalised incompatible element patterns and Sr–Nd–Pb isotopic compositions for the assumed near-primary mantle-derived compositions of both suites, i.e., olivine basalt and olivine nephelinite. Apparently, they were generated by different degrees of partial melting of a common mantle source, with garnet, olivine and clinopyroxene in the residuum. Negative Rb and K anomalies indicate a residual K-phase (amphibole/phlogopite) and melting of partly metasomatised mantle lithosphere. The evolution of the basanite–olivine basalt–trachybasalt-(basaltic) trachyandesite–trachyte–rhyolite suite suggests the presence of an assimilation–fractional crystallization process (AFC). Substantial fractionation of olivine, clinopyroxene, Fe–Ti oxide, plagioclase/alkali feldspar and apatite accompanied by a significant assimilation of magma en route by crustal material is most evident in evolved member, namely, trachytes and rhyolites. The magmas were probably sourced by both sub-lithospheric and lithospheric partly metasomatised mantle. The evolution of the (melilite-bearing) olivine nephelinite–basanite–tephrite suite is less clear because of its limited extent. Parental magma of both these rock suites is inferred to have originated by low-degree melting of the mantle source initiated at ca. 18 Ma and reflects mixing of asthenosphere-derived melts with isotopically enriched lithospheric melts. The older Oligocene alkaline rocks (29–26 Ma) occur within the Cheb–Domažlice Graben (CDG) locally but are significant in the closely adjacent neighbouring western Ohře Rift. The Sr–Nd–Pb isotopic composition of primitive volcanic rocks of both suites is similar to that of the European Asthenospheric Reservoir (EAR). Initial Pb isotopic data plot partly above the northern hemisphere reference line at radiogenic 206Pb/204Pb ratios of ∼19 to 20, and indicate the presence of a Variscan crustal component in the source.  相似文献   

20.
宁芜中生代火山盆地产出火山岩与侵入岩,火山岩以玄武粗安岩,粗安岩和粗面岩为主,安山岩和响岩少量,火山岩以高钾富碱为特征,已确定为橄榄安粗岩系。侵入岩以辉长闪长玢岩-一辉长闪长岩为主,以高钠低硅为特征,并有辉长岩和花岗岩产生,据地质学和Nd,Sr,Pb同位素资料,侵入岩与火山岩属同一个岩浆系列,是碱性玄武岩浆在下地壳经过轻度AFC混合后,侵入上地壳,在轻度混染的情况下,经过以结晶分离为主的岩浆分异形  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号