首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
大量低产低效井严重阻碍我国煤层气产业发展,其中,煤粉沉降导致的裂缝堵塞、管柱结块是气井稳产时间短、产气量降低甚至不产气的重要因素。系统梳理国内外煤层气井产出煤粉物质组成、生成机理、悬浮运移和产出控制等研究最新进展,总结煤粉凝聚–沉降及分散行为控制机理及关键问题,提出研究展望。煤粉问题伴随煤层气勘探开发全过程,涉及地质选区评价、工程压裂施工和排采管理控制的各个方面。煤粉包括因煤体结构破坏生成的原生煤粉和工程施工形成的次生煤粉,在气井产出中以有机碎屑和黏土矿物组成的混合物为主,部分样品黏土矿物含量高。煤粉悬浮运移受控于储层条件下煤岩结构和表面性质、nm~μm级煤粉颗粒的相互作用、有机质和黏土矿物的作用、通道内的气水流动等因素。煤粉能够适度稳定产出是排采管控的关键,涉及地层水环境对煤粉表面润湿性、表面电性和空间位阻效应的影响及作用机制,以及分散剂离子加入对煤层气的解吸和渗流能力影响等。围绕煤粉“黏附–润湿–凝聚–沉降全过程开展实验模拟”和“煤粉分散稳定性优化及流动实验”研究,以及煤粉理化性质精细表征、凝聚沉降机理分析和分散行为界定,提出适合煤粉稳定运移控制的流速,形成保持煤粉悬浮产出的基础性依据,为保障煤层气–水–煤粉稳定高效产出提供理论和技术支撑。   相似文献   

2.
煤层气压裂返排过程中产出的煤粉影响煤层气解吸运移,易造成煤层渗透率的永久伤害,降低气井产气量。采用自主研发的压裂液裂缝返排实验装置,模拟一定煤粉粒径配比关系下,采用不同的排采制度和不同外加液体,研究裂缝中煤粉的运移规律,测定煤粉和支撑剂被携带出的临界流量和煤粉返排效率,揭示煤粉运移与流体流速、外加液体关系的变化规律。研究表明:清水不能润湿煤粉,煤粉悬浮剂能较好润湿煤粉;煤粉含量越大,流出率越低;煤粉流出量随时间变化满足幂函数递减规律;变排量排采可以增大煤粉的返排效率。   相似文献   

3.
研究煤粉运移规律并以此制定减少煤粉产出的措施是保证煤层气井高产、稳产的关键。基于煤粉颗粒在煤岩通道中的运动学和动力学分析,建立了煤储层中煤粉随流体运移的数学模型,并依据现场调研资料研究煤粉粒径、通道孔径等因素对煤粉运移的影响。实例分析结果表明,煤储层中煤粉颗粒运移的临界流速表征了煤层气井开始产出煤粉的特征值,当流体流速达到临界流速时煤粉即发生运移。随煤粉颗粒和通道(喉道)半径不断减小,煤粉运移临界流速逐渐降低,颗粒更容易运移,将加重煤层气井的煤粉产出量。骨架煤粉颗粒的增大和相邻颗粒质心连线与通道方向间夹角的减小使得通道孔壁变得更加粗糙,煤粉运移临界流速逐渐提升,这会减轻煤层气井的出煤粉问题。该研究首次系统而定量的分析了煤储层中煤粉运移规律,为控制煤层气井出煤粉量和采取合理的排采作业方法提供了重要依据。   相似文献   

4.
煤粉是煤层气水平井排采中的不利因素,影响煤层气的产能。根据沁水盆地南部樊庄区块煤层气水平井的排采数据,分析了煤粉产出特征;通过煤粉在支撑裂缝中运移的物模试验,揭示了煤粉在支撑裂缝中的运移和伤害规律;利用流体迁移规律研究装置,进一步研究了煤粉在水平井筒的流动规律,建立了煤粉运移模型。研究结果表明:煤粉主要来源为钻井过程中钻具对煤层的研磨及压裂过程中大排量携砂混合流体对裂缝煤壁的摩擦和冲刷;煤粉对支撑裂缝中导流能力伤害率达90%,且排采速度越大,出煤粉量越多;煤粉在水平井筒中运移的流型为层流流动,通过控制压力、流量和煤粉含量,可在排采初期实现对煤粉的控制。   相似文献   

5.
煤粉问题是制约煤层气连续稳定排采的关键因素之一。以韩城煤层气区块为研究区,采用煤层气井现场监测、实验测试分析、物理模拟实验、现场工程应用相结合的方法,从煤粉产出的影响因素及成因、煤粉产出规律及管控措施方面,开展了煤粉产出机理及管控措施的系统研究。研究结果表明:影响煤粉产出的因素分为煤储层物性静态地质因素与煤层气开发动态工程因素两类。指出了不同煤体结构煤产出煤粉的倾向性及特征不同。碎粒煤和糜棱煤产出的煤粉体积分数高,产出煤粉量大。产出煤粉的成分以无机矿物和镜质组为主。在煤层气不同排采阶段,产出煤粉的体积分数和粒度特征具有明显的阶段性变化。在煤粉产出机理研究的基础上,结合煤层气井生产实践,从地质预防、储层改造、设备优选、生产预警、排采控制和工艺治理方面,提出了一套煤粉管控措施体系。应用于韩城区块煤层气井的煤粉管控,取得了良好效果。   相似文献   

6.
煤储层含气量是煤层气开发的核心参数,但实测煤储层含气量与煤储层的真实含气量之间往往存在误差。基于窑街矿区海石湾井田煤层气井不同时段的产气量,以煤储层含气量“定体积”降低为基础,反演煤储层实时含气量,研究煤层气井排采过程煤储层实时含气量的变化规律。结果表明:煤储层含气量随排采时间呈线性下降趋势,不同步长煤层气井产气量与煤储层含气量降低幅度一致,遵循“定体积”产气特征,即煤层气单井产气量是煤基质“定体积”产出;煤层气井的产气量与含气量降低速率有关,而与煤储层原始含气量无关。煤储层为隔水层,水力压裂难以改变煤基微孔隙通道的结合水状态,CH4产出过程受水–煤界面作用控制,煤层气产出是“CH4·煤·水”三相界面传质作用的结果,水–煤界面作用中水的湍动提供并传递能量,激励块煤中CH4解吸与产出。   相似文献   

7.
通过理论研究分析了采动区煤层裂隙特征、煤层气赋存特征和煤层气运移特征,揭示了煤矿采动影响下上覆被保护煤层产气机理。分析认为采动区煤层产气机理与常规煤层气产气机理不同,一是采动区煤层基质孔隙大、内部裂隙多、离层裂隙发育。二是采动区煤层气解吸快、解吸量大、水中溶解气少。三是采动区煤层气运移以气体单向流为主,评价渗透性指标为透气性系数。在收集大量采动区煤层气井产气数据的基础上,研究了产气机理对产气规律的影响。采动区煤层气井产气规律与常规煤层气井相比,具有产量提升快、产气峰值高的特点,整体呈现先迅速增大后逐渐减小趋于平稳的规律。结合采动区煤层产气机理研究,分析认为气产量提升速度快是由于煤层裂隙迅速增多且气体在裂隙中以气相单相流运移为主,产气峰值高是由于储层压力快速下降使煤层气加速解吸,短时间内在井筒附近聚集大量游离气。  相似文献   

8.
从实际资料入手,深入分析煤层气水平井煤粉形成原因、煤粉产出规律及防治煤粉措施。分析结果表明:井壁原始应力状态改变、煤岩物质成分及组成、钻具的碾磨作用和钻遇煤层段井眼轨迹弯曲大煤层局部受到钻具挤压以及排采工作制度改变使降液速率变化大等是影响煤层气水平井煤粉形成的主要原因;黏土矿物是煤粉的主要来源,且黏土矿物含量越高,煤层出粉的可能性越大;排采早期产出的煤粉颗粒直径在几十微米到几百微米之间,粒径变化明显,表明排采早期产生的煤粉以钻具碾磨和井壁原始应力状态改变形成为主,排采后期产出的煤粉颗粒直径主要在几十微米左右,粒径分布相对均匀,表明排采后期产生的煤粉以煤层煤岩物质成分组成和排采工作制度变化影响形成为主;加强水平段循环清洗工作,优化合理的筛管缝隙尺寸、筛管直径、筛管长度等综合工艺技术,优选合适的排煤粉设备、制定合理的控煤粉排采制度等是煤层气水平井煤粉防治的主要措施。   相似文献   

9.
基于我国煤层特性和煤层气井的排采工艺,分析了煤层气生产过程中产生煤粉的原因。综合考虑煤粉成因机制、产出来源、对生产的影响等因素,提出煤粉的成因机制一产出位置综合分类体系。煤层的自身性质是煤粉产出的基础,而工程扰动是煤粉产出的诱因。以煤粉综合分类体系为基础,讨论了合理控制煤层气排采过程中煤粉产出的措施。  相似文献   

10.
基于煤层气井产出煤粉浓度的现场连续监测,采用煤粉浓度监测仪、激光粒度测试仪、反射偏光显微镜、X射线衍射、电子扫描电镜带X射线能谱仪,研究了临汾区块煤层气井排采过程中产出煤粉的浓度、粒度、成分和表面特征,分析了煤粉特征的影响因素,探讨了煤粉产出机理。结果表明,临汾区块平均煤粉浓度随排采阶段的变化趋势是排水降压阶段<憋压排采阶段<气水合采阶段;不同开发层段产出的煤粉浓度变化趋势是单采5号煤<合采5号和8号煤<合采(4+5)号、(8+9)号煤。煤粉颗粒粒径分布范围广,为0.5~1 000 μm,多集中在100 μm以下。煤粉成分以无机矿物和镜质组为主,无机矿物以硬石膏、黄铁矿和伊利石为主。将煤粉颗粒分为光滑表面和粗糙表面两种,光滑表面的煤粉颗粒以C元素为主,粗糙表面的煤粉颗粒以Fe、S、O元素为主。煤粉产出与煤中矿物含量、镜质组含量以及构造煤发育程度和排采阶段有关。   相似文献   

11.
随着煤层气勘探开发的深入,多煤层合层排采受到广泛关注。合层排采管控工艺是确保煤层气合采井高产稳产的关键,而多煤层组合条件下复杂的地质条件增加了合层排采管控的难度。数值模拟技术是研究煤层气井合层排采管控工艺的有效手段,科学、可靠的模拟结果可为合采井排采管控提供依据。考虑温度效应、煤基质收缩效应、有效应力作用对煤层流体运移规律以及渗透率等煤层物性参数的影响,建立煤层气直井合层排采生产动态过程多物理场耦合数学模型,并进行有限元法的多物理场耦合求解。通过对沁水盆地南部郑庄区块煤层气合采井组的模拟,探讨不同排采速率下煤层气直井合层排采产气效果及渗透率等煤层物性参数动态演化特征,提出煤层气直井合层排采工程建议。模拟结果显示,郑庄区块3号、15号煤层整体含气量较高,煤层气合采井组具有较大增产潜力,提高排采速率对提高煤层气采收率的效果不显著;排采过程中,煤基质收缩效应对渗透率的影响强于有效应力作用,是提高煤层气井排采速率的保障,在确保排采速率不超过煤层渗流能力上限的基础上,适当提高排采速率可实现煤层气井增产。基于模拟结果,建议排采速率的调整以控制动液面或液柱压力为主;以3号、15号煤层气合采井增产为目标,产水阶段和憋压阶段,郑庄区块煤层气直井合层排采速率以液柱压力降幅0.12~0.20 MPa/d或动液面降幅12~20 m/d为宜,既可实现煤层气增产,又可避免储层伤害。   相似文献   

12.
在煤层层数较多的地区进行煤层气开采时,如果实施分层压裂、合层排采的技术,可以有效的降低煤层气的勘探开发成本,还可以提高单井产气量。研究分析此项技术的使用条件可以有效的提高多煤层合采的成功率。桑峨区内煤层层多,煤层结构较简单,厚度变化较小,是煤层气开发的较有利区块,在对直井产气特征研究的基础上,系统分析了主要煤层储层压力、压力梯度、临界解吸压力、储层渗透率、上下围岩特征等因素对合采的影响,认为研究区三套主力煤层基本符合分压合采的要求,可以考虑采用合层排采的方法来降低煤层气开采成本。  相似文献   

13.
我国煤层气开发主要集中在中浅煤层,深部?超深部煤储层地质条件更加复杂,储层压裂改造技术及排采管控技术是影响深部煤层气井能否成功开发的两大关键。渝东南地区龙潭组煤层埋深可达2 000 m,且该区没有超深煤层气井开发经验可供借鉴。基于此,以渝东南地区NY1井为例,通过优化压裂工艺,以减阻水压裂液体系为基础,按照大排量、低砂比、段塞式、不同粒径复合加砂的技术思路完成该井的压裂施工;在排采过程中,采用分段控制、逐步降速、适时调整、无套压生产的方式,尽可能增加煤层气井见气前返排率,扩大供气半径,并且避免液面大幅波动形成速敏效应影响煤储层渗流通道。结果表明:NY1井压裂过程中施工压力平稳,未见砂堵现象,排采过程中保持了日产气量2 800~3 000 m3。根据生产实际,NY1井实现了高产和稳产,该井的压裂工艺和排采制度的成功实施,对超深煤层气井的理论研究和实际开发具有一定的指导意义。   相似文献   

14.
合理控制套压和井底流压、合理排水降压采气是提高煤层气井开发效果的关键技术。井底流压回升可抑制煤层气解吸产出,造成储层伤害,降低煤层气井产量,影响煤层气井开发效果。通过沁水盆地樊庄区块生产实践动态分析、理论研究和室内实验,提出了煤层气流压回升型不正常井起因,通过理论研究和现场数据分析,明确煤层气井流压回升对储层伤害机理,提出流压回升对储层伤害程度评价方法及治理对策。研究结果表明:煤层气井煤没度增加导致套压降低,套压下降速率越快,则井底流压下降越快;煤没度增加速率过快的煤层气井,其井底流压回升对储层伤害严重,导致气体产出阻力增加,部分气体被毛细管压力封堵在孔隙中,难以产出。流压回升伤害指数可以表征流压回升导致储层伤害程度,抽油泵凡尔漏失和气锁导致煤层气井排水量小于煤层向井筒供水量是井底流压回升的主要原因,其治理措施可通过液压冲洗清除固定凡尔煤粉,通过机械振动清除游动凡尔煤粉,通过恒沉没防气锁工艺与煤层气井间断抽水工艺相结合措施治理气锁。   相似文献   

15.
含气量是影响煤层气井生产的关键参数,但是,多数煤层气井无法直接获得目标煤层含气量,且解吸法测定的低阶煤储层含气量误差较大。文章以大佛寺井田煤层含气量动态变化特征为研究目标,结合煤层气井排采数据对煤储层参数动态的同步反馈,采用“定体积法”分析煤层气井排采数据,进行4#煤储层实时含气量的动态反演。结果表明:(1)设定多个原始含气量,实时含气量随时间变化呈线性递减关系,且下降趋势一致,皆能得到实时含气量变化线性斜率相同的结果:产气量与含气量消耗同步,且与生产时间间隔无关。(2)分析1 d、3 d、5 d的不同时间步长,设定原始含气量分别为2 m3/t、3 m3/t、4 m3/t、5 m3/t、6 m3/t、8 m3/t时,煤储层实时含气量变化关系高度一致,认为煤层气井遵循“定体积”产气规律,即不存在压降漏斗的形成与扩展。(3)连续排采阶段,实时含气量与排采时间呈线性降低关系,排采间断前后两个阶段煤储层实时含气量线性降低速率不同:为-0.00546和 -0.00435;第二阶段较第一阶段实时含气量变化斜率减小,是因为排采过程产生煤粉,堵塞阻碍块煤的解吸作用,造成储层伤害,能够解吸的煤层体积缩小。  相似文献   

16.
煤层气储层压力是煤层能量的具体表现形式之一,也是煤层气运移、产出的动力,它不仅影响煤层的含气量、煤层气的赋存状态,也影响着煤层的渗透性,从而制约着煤层气的开发。根据9口煤层气参数和试验井的试井资料,结合煤田勘探阶段的钻孔抽水试验资料,对河南省煤储层压力特征进行了系统研究。结果表明,河南省煤层气储层压力变化较大,从欠压到高压均有分布。储层压力是由地下水补给、运移和滞留造成的。在地下水径流区常形成欠压,在弱径流区和滞留区一般形成常压和高压。地下水作用下的煤层气运移不仅从地下水动力条件得到证实,而且从煤层气的成分和成因角度也得到验证。这种压力的形成机制与国内外商业化开发煤层气藏类似,异常高压区是煤层气富集和开发的有利区域。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号