首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The ARGO-YBJ experiment is almost completely installed at the YangBaJing Cosmic Ray Laboratory (4300 m a.s.l., Tibet, P.R. China). The lower energy limit of the detector (E∼1 GeV) is reached with the scaler mode, i.e., recording the single particle rate at fixed time intervals. In this technique, due to its high altitude location and large area (∼6700 m2), this experiment is the most sensitive among all present and past ground-based detectors. In the energy range under investigation, signals due to local (e.g. solar GLEs) and cosmological (e.g. GRBs) phenomena are expected as significant enhancements of the counting rate over the background. Results on the search for GRBs in coincidence with satellite detections are presented. For the ARGO-YBJ Collaboration.  相似文献   

2.
The Hard X-ray Modulation Telescope (HXMT) is a broadband X-ray (1250 keV) astronomical satellite. Its core payload, the High Energy X-ray Telescope (hereafter HE), is operated in the hard X-ray energy range (20250 keV) and dedicated to the hard X-ray high-sensitivity survey observation, hard X-ray sky mapping and high-sensitivity focused observations towards particular celestial bodies. In order to achieve a high sensitivity, it is important to reduce effectively the background that is caused by the interactions between the detector and space particles (γ-ray, protons, electrons, neutrons). Combining a series of references about the near-earth space background with the up-to-date observational data, this paper presents a set of self-consistent data and energy spectrum formulae of near-earth space particles for the convenience of applications. In addition, by the simulative calculations with the software Geant 4, the background of HXMT and its variations with the time and orbit are also given.  相似文献   

3.
How structures of various scales formed and evolved from the early Universe up to present time is a fundamental question of astrophysical cosmology. EDGE (Piro et al., 2007) will trace the cosmic history of the baryons from the early generations of massive stars by Gamma-Ray Burst (GRB) explosions, through the period of galaxy cluster formation, down to the very low redshift Universe, when between a third and one half of the baryons are expected to reside in cosmic filaments undergoing gravitational collapse by dark matter (the so-called warm hot intragalactic medium). In addition EDGE, with its unprecedented capabilities, will provide key results in many important fields. These scientific goals are feasible with a medium class mission using existing technology combined with innovative instrumental and observational capabilities by: (a) observing with fast reaction Gamma-Ray Bursts with a high spectral resolution. This enables the study of their star-forming and host galaxy environments and the use of GRBs as back lights of large scale cosmological structures; (b) observing and surveying extended sources (galaxy clusters, WHIM) with high sensitivity using two wide field of view X-ray telescopes (one with a high angular resolution and the other with a high spectral resolution). The mission concept includes four main instruments: a Wide-field Spectrometer (0.1–2.2 eV) with excellent energy resolution (3 eV at 0.6 keV), a Wide-Field Imager (0.3–6 keV) with high angular resolution (HPD = 15”) constant over the full 1.4 degree field of view, and a Wide Field Monitor (8–200 keV) with a FOV of ? of the sky, which will trigger the fast repointing to the GRB. Extension of its energy response up to 1 MeV will be achieved with a GRB detector with no imaging capability. This mission is proposed to ESA as part of the Cosmic Vision call. We will outline the science drivers and describe in more detail the payload of this mission.  相似文献   

4.
MARIA (Maxi Array for Rapid Imaging of -ray burst Activity) is a large-area instrument that could be flown on a balloon in 1997–1999. It is expected to contribute significantly to the GRB log N - log S distribution and to provide rapid GRB localizations by means of a rapidly moving gamma-camera.  相似文献   

5.
The High-Energy Transient Experiment (HETE) is designed for the multiwavelengths study of Gamma-Ray Bursts (GRBs) in UV, X-ray and gamma-ray range with three scientific instruments. The X-ray instrument, Wide-field X-ray Monitor (WXM), consists of four units of one-dimensional position sensitive gas proportional counters and two perpendicularly oriented one-dimensional coded apertures. The WXM has a wide FOV of 1.5 steradian together with the capability to locate GRBs with 10 arcmin accuracy, and covers photon energies of 2 to 25 keV with an energy resolution of typically 18 % at 6 keV, measuring wide band spectra together with the gamma-ray spectrometer (FREGATE). The coded X-ray image will be deconvolved on board and the GRB location will be provided to the UV camera within 1 sec . GRB locations will also be broadcast in real time to ground-based observers for follow-up observations.  相似文献   

6.
We review models of cosmological gamma-ray bursts (GRBs). The statistical and -ray transparency issues are summarized. Neutron-star and black-hole merger scenarios are described and estimates of merger rates are summarized. We review the simple fireball models for GRBs and the recent work on non-simple fireballs. Alternative cosmological models, including models where GRBs are analogs of active galactic nuclei and where they are produced by high-field, short period pulsars, are also mentioned. The value of neutrino astronomy to solve the GRB puzzle is briefly reviewed.  相似文献   

7.
We have used the data from the COBE satellite to search for delayed microwave emission (31 - 90 GHz) from Gamma Ray Bursts (GRBs). The large 7° beam of COBE is well matched to the large positional uncertainties in the GRB locations, although it also means that fluxes from (point source) GRB objects will be diluted. In view of this we are doing a statistical search of the GRBs which occurred during the currently released COBE DMR data (years 1990 and 1991), which overlap 200 GRBs recorded by GRO. Here we concentrate on just the top 10 GRBs (in peak counts/second). We obtain the limits on the emission by comparing the COBE fluxes before and after the GRB at the GRB location. Since it is thought that the microwave emission should lag the GRB event, we have searched the GRB position for emission in the few months following the GRB occurrence.  相似文献   

8.
We report on two small aperture robotic telescopes called BART and D50 operated in Ondřejov. Both telescopes are capable of automatic observation of gamma ray burst (GRB) optical afterglows. Coordinates of GRBs are taken from alerts distributed via Internet. Telescopes observe other interesting high energy sources when there is not any alert. The smaller telescope BART has aperture D = 254 mm. The bigger telescope D50 has a primary mirror of diameter D = 500 mm. Both telescopes are controlled by free software package RTS2 and are accessible through Internet. We describe the two telescopes and related software and show some results such as our first observed optical counterpart of GRB.  相似文献   

9.
Here we present a crustal folding or buckling mechanism to explain the rootless 3–5 km high Alborz Mountains in northern Iran as well as  10 km of Late Miocene to recent subsidence in the south Caspian basin and  3–6 km of subsidence in the central Iranian basin in the context of the middle Miocene to recent Arabia–Eurasia collision. A key element of the mechanism is the presence of lateral and vertical lithospheric strength contrasts between the north Iranian continental and south Caspian oceanic crusts: when compression from the collision is applied across the region, the strong south Caspian oceanic crust, buried under > 10 km of premiddle Miocene sediment, interacts with the bottom of the mechanically strong continental upper crust of northern Iran, resulting in upward buckling of the continental crust and downward buckling of the oceanic crust. We test this mechanism using a finite-element numerical model with a Maxwell rheology and obtain results that are consistent with the geological and geophysical observations. The observations compiled here and the model results demonstrate the potential for using this region as a natural laboratory for studying the early stages of continent–oceanic collision, including processes like basin inversion, fault localization and, potentially, subduction initiation.  相似文献   

10.
A set of 13 new unspiked K–Ar dates has been obtained for the Quaternary basaltic volcanism in the Kula area of western Turkey, providing improved age control for the fluvial deposits of the Gediz River that underlie these basalt flows. This dating is able, for the first time, to resolve different ages for the oldest basalts, assigned to category β2, that cap the earliest Gediz deposits recognised in this area, at altitudes of 140 to 210 m above present river level. In particular, the β2 basalt capping the Sarnıç Plateau is dated to 1215 ± 16 ka (± 2σ), suggesting that the youngest underlying fluvial deposits, 185 m above present river level, are no younger than marine oxygen isotope stage (MIS) 38. In contrast, the β2 basalt capping the adjacent Burgaz Plateau is dated to 1014 ± 23 ka, suggesting that the youngest underlying fluvial deposits, 140 m above present river level, date from MIS 28. The staircase of 11 high Gediz terraces capping the latter plateau is thus dated to MIS 48-28, assuming they represent consecutive 40 ka Milankovitch cycles, although it is possible that as many as two cycles are missing from this sequence such that the highest terrace is correspondingly older. Basalt flows assigned to the β3 category, capping Gediz terraces 35 and 25 m above the present river level, have been dated to 236 ± 6 ka and 180 ± 5 ka, indicating incision rates of 0.15 mm a− 1, similar to the time-averaged rates since the eruptions of the β2 basalts. The youngest basalts, assigned to category β4, are Late Holocene; our K–Ar results for them range from zero age to a maximum of 7 ± 2 ka.This fluvial incision is interpreted using numerical modelling as a consequence of uplift caused by a regional-scale increase in spatial average erosion rates to 0.1 mm a− 1, starting at 3100 ka, caused by climate deterioration, since when a total of 410 m of uplift has occurred. Parameters deduced on this basis from the observed disposition of the Early Pleistocene Gediz terraces include the local effective viscosity of the lower crust, which is 2 × 1018 Pa s, the Moho temperature of 660 °C, and the depth of the base of the brittle upper crust, which is 13 km. The thin lithosphere in this area results in high heat flow, causing this relatively shallow base of the brittle upper crust and the associated relatively thick lower-crustal layer, situated between depths of 13 and 30 km. It estimated that around 900 ka, at the start of the 100 ka Milankovitch forcing, the spatial average erosion rate increased slightly, to 0.12 mm a− 1; the associated relatively sluggish variations in uplift rates are as expected given the relatively thick lower-crustal layer.This modelling indicates that the growth of topography since the Pliocene in this study region has not involved a steady state. The landscape was significantly perturbed by the Middle Pliocene increase in erosion rates, and has subsequently adjusted towards—but not reached—a new steady state consistent with these increased erosion rates. It would not be possible to constrain what has been occurring from the Middle to Late Pleistocene or even the Early Pleistocene uplift response alone; information regarding the starting conditions is also essential, this being available in this region from the older geological record of stacked fluvial and lacustrine deposition. This result has major implications for the rigorous modelling of uplift histories in regions of rapid erosion, where preservation of information to constrain the starting conditions is unlikely.  相似文献   

11.
We present the first calculation of the kinetic Sunyaev–Zel’dovich (kSZ) effect due to the inhomogeneus reionization of the universe based on detailed large-scale radiative transfer simulations of reionization. The resulting sky power spectra peak at ℓ = 2000–8000 with maximum values of [ℓ(ℓ + 1)C/(2π)]max  4–7 × 10 −13. The scale roughly corresponds to the typical ionized bubble sizes observed in our simulations, of 5–20 Mpc. The kSZ anisotropy signal from reionization dominates the primary CMB signal above ℓ = 3000. At large-scales the patchy kSZ signal depends only on the source efficiencies. It is higher when sources are more efficient at producing ionizing photons, since such sources produce larger ionized regions, on average, than less efficient sources. The introduction of sub-grid gas clumping in the radiative transfer simulations produce significantly more power at small-scales, but has little effect at large-scales. The patchy reionization kSZ signal is dominated by the post-reionization signal from fully-ionized gas, but the two contributions are of similar order at scales ℓ  3000 − 104, indicating that the kSZ anisotropies from reionization are an important component of the total kSZ signal at these scales.  相似文献   

12.
The temporal behavior of GRBs is quantified using a power spectrum analysis. The power spectrum of great variety of GRBs is well represented by the simple –2 behavior. We then study a cosmological GRB model in which relativistic flows interact with dense radiation fields. This mechanism in the densest stellar regions known to exist, surprisingly yields the correct temporal behavior. Other characteristics are also reproduced, including the duration bimodality and the hardness-duration distribution.  相似文献   

13.
We present the observations of cosmic gamma-ray bursts (GRBs) with the main detector of the SIGMA telescope onboard the Granat Observatory from January 1990 through September 1994. The observations were carried out in the energy range 35–1300 keV. We detected 36 GRBs and 31 high-energy solar flares during this period. No GRB fell within the main field of view; they were all recorded by the “secondary optics” of the telescope. The SIGMA telescope recorded relatively bright bursts with peak fluxes of 10?6–10?4 erg s?1 cm?2 in the 100–500-keV energy band. Stable detector background allows the long-term variability of GRB sources on a time scale of ~1000 s to be studied. The results of our search for early afterglows of GRBs are presented. The flux averaged over all bursts in the interval 100–800 s after the main event is 0.36±0.14 counts s?(35–300 keV), suggesting that there is soft gamma-ray emission on this time scale after a considerable number of GRBs.  相似文献   

14.
The search for high energy ray bursts (GRBs) from primordial black holes (PBHs) has continued for the past 20 years. We discuss a very interesting group of GRBs of very short time duration and an increasing hard spectrum from the published BATSE catalog. We point out that the trend, i.e. anti-correlation of hardness ratio vs. GRB duration, would be expected if some of the short GRBs came from black holes evaporation. We discuss the possibility that the onset of the quark-gluon plasma can give rise to such GRB from PBH evaporation.  相似文献   

15.
We estimate the flux of the gamma-ray burst (GRB) neutrino background and compute the event rate at SK and TITAND in the collapsar model, assuming that GRB formation rate is proportional to the star formation rate. We find that the predicted background neutrino flux is highly sensitive to unknown model parameters, mainly to the mass–accretion rate, to the fraction of disk energy emitted in thermal neutrinos (as opposed to emission through electromagnetic processes), and to the fraction of collapsar events leading to GRBs. The predicted neutrino flux varies over many orders of magnitude as the values of unknown model parameters are varied. We investigate the detection possibility of thermal neutrinos from collapsars which lead to GRBs by TITAND. We find that the GRB neutrino background might be detected by TITAND within 10 yrs only for the optimistic cases in which the average mass–accretion rate is high ( a few M s−1), and the probability that one collapsar generates a GRB is high (f=0.5–1.0).  相似文献   

16.
The excitation mechanism of solar five-minute oscillations is studied in the present paper. We calculated the non-adiabatic oscillations of low- and intermediate-degree (l = 1  25) g4-p39 modes for the Sun. Both the thermodynamic and dynamic couplings are taken into account by using our non-local and time-dependent theory of convection. The results show that all the lowfrequencyf- and p-modes with periods P > 5.4 min are pulsationally unstable, while the coupling between convection and oscillations is neglected. However, when the convection coupling is taken into account, all the g- and low-frequency f- and p-modes with periods longer than 16 minutes (except the low-degree p1-modes) and the high frequency p-modes with periods shorter than 3 minutes become stable, and the intermediate-frequency p-modes with period from 3 to 16 minutes are pulsationally unstable. The pulsation amplitude growth rates depend only on the frequency and almost do not depend on l. They achieve the maximum at ν 3700 μHz (or P 270 sec). The coupling between convection and oscillations plays a key role for stabilization of low-frequency f- and p-modes and excitation of intermediate-frequency p-modes. We propose that the solar 5-minute oscillations are not caused by any single excitation mechanism, but they are resulted from the combined effect of “regular” coupling between convection and oscillations and turbulent stochastic excitation. For low- and intermediatefrequency p-modes, the coupling between convection and oscillations dominates; while for high-frequency modes, stochastic excitation dominates.  相似文献   

17.
We present details of one operational ground-based experiment for optical detection of GRBs and two which are under consideration/development. The wide-field CCD camera is already in manual burst alert operation with promising results. The Optical Transient Monitor is a CCD-based double monitor suitable for network use for reliable detection of short-lived phenomena in the sky. The system is well suited for correlated efforts with GRB projects. The third experiment is a robotic telescope with automatic response to GRB burst alert messages received via the Internet link. It is expected to get CCD frames with a FOV of 20 deg (needed for BACODINE triggers) of positions of newly detected GRBs within 1 minute.  相似文献   

18.
Unspiked K–Ar dating makes the age of the Çakmaközü basalt in eastern Turkey 1818 ± 39 ka (± 2σ). This basalt overlies a staircase of four terraces of the River Murat, a Euphrates tributary, each separated vertically by  20 m. We deduce from the relationship with the basalt that these fluvial deposits aggraded during successive  40 ka climate cycles around the Pliocene–Pleistocene boundary (probably MIS 72-66). The incision and rock uplift at  0.5 mm a− 1, thus indicated, are roughly consistent with the  500 m of entrenchment of this  1.8 Ma Murat palaeo-valley into a former lake basin since the Mid-Pliocene climatic optimum. We infer that the  130 m of incision in this locality since  1.8 Ma dramatically underestimates the associated rock uplift, estimated as  600 m. The  1100 m of rock uplift and  800 m of surface uplift thus estimated since the Mid-Pliocene indicate (assuming Airy isostatic equilibrium)  5 km of thickening of the continental crust, from  37 km to the present 42 km. Eastern Anatolia was thus at a much lower altitude in the Mid-Pliocene than at present, consistent with the low-relief lacustrine palaeo-environment. We infer that the subsequent development of topography and excess crustal thickness are being caused by coupling between surface processes and induced flow in the lower crust: climate change following the Mid-Pliocene climatic optimum resulted in faster erosion that has drawn mobile lower crust beneath the study region.  相似文献   

19.
We consider Vela Jr. as being the old Supernova Remnant (SNR) at the beginning of the transition from adiabatic to radiative stage of evolution. According to our model, Vela Jr. is situated outside Vela SNR at the distance of 600 pc and its age is 17500 yr. We model the high energy fluxes from Vela Jr. and its broadband spectrum. We find our results compatible with experimental data in radio waves, X- and γ-rays. Our hydrodynamical model of Vela Jr. explains the observed TeV γ-ray flux by hadronic mechanism. The proposed model does not contradict to the low density environment of the SNR and does not need extreme fraction of the explosion energy to be transferred to Cosmic Rays.  相似文献   

20.
During the GRIF experiment onboard the Mir orbiting station, cosmic gamma-ray bursts (GRBs) were observed in the photon energy range 10–300 keV. We developed a technique for selecting events, cosmic GRB candidates, based on output readings from the PX-2 scintillation spectrometer, the main astrophysical instrument. Six events interpreted as cosmic GRBs were identified at a threshold sensitivity level of ≥10?7 erg cm?2. The GRIF burst detection rate recalculated to all the sky is ~103 yr?1 (fluence ≥10?7 erg cm?2). This rate matches the BATSE/CGRO estimate and significantly differs from the value predicted by the S?3/2 dependence, which holds for a spatially uniform source distribution. The GRB detection rate at low peak fluxes is compared with the results of analysis for BATSE/CGRO “nontriggered” events and with predictions of major cosmological models. We conclude that the PX-2 observational data on faint cosmic GRBs are consistent with predictions of models with the highest frequency of GRB occurrence at z ≥1.5–2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号