首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The time and spatial characteristics of 324 large sunspots (S50 millionths of the solar hemisphere) selected from the Abastumani Astrophysical Observatory photoheliogram collection (1950–1990) have been studied. The variations of sunspot angular rotation velocity residuals and oscillations of sunspot tilt angle were analyzed. It has been shown that the differential rotation rate of selected sunspots correlates on average with the solar cycle. The deceleration of differential rotation of large sunspots begins on the ascending arm of the activity curve and ends on the descending arm reaching minimum near the epochs of solar activity maxima. This behavior disappears during the 21st cycle. The amplitudes and periods of sunspot tilt-angle oscillations correlate well with the solar activity cycle. Near the epochs of activity maximum there appear sunspots with large amplitudes and periods showing a significant scatter while the scatter near the minimum is rather low. We also found evidence of phase difference between the sunspot angular rotation velocity and the amplitudes and periods of tilt-angle oscillations.  相似文献   

2.
A periodic long-term modulation of the solar surface rotation with a time scale on the order of 100 years is found in the sunspot data from 1874 to 1992 obtained by combinig the Greenwich Photoheliographic Results from cycle 11 to cycle 20 analysed by Balthasar, Vázquez, and Wöhl and the Mitaka sunspot sketch data from cycle 18 to 22 of the National Astronomical Observatory of Japan which was the Tokyo Astronomical Observatory of the University of Tokyo until 1988. A new index of the solar rotation M defined by integrating the angular momentum density over the whole surface, which we call the angular momentum surface layer density, reached a maximum at solar cycle 14, decreased to a minimum at cycle 17, and then increased to reach another maximum at cycle 21. The increase of M means acceleration of the surface layer as a whole by transport of angular momentum from the deeper layer. This implies an decrease (increase) of the radial gradient of the differential rotation if the basic radial gradient of the differential rotation increases (decreaes) inward. The decrease of M means deceleration of the surface layer and implies an increase (decrease) of the radial gradient. The degree of the equatorial acceleration of the surface differential rotation is also found to have undergone the same 100 year periodic modulation during the same interval, reaching a minimum at cycle 14, a maximum at cycle 17, and a minimum at cycle 21 in antiphase with the modulation of M. Thus both radial and latitudinal gradients of the differential rotation increased and decreased in phase (in anti-phase) if the basic radial gradient increases (decreases) inward.  相似文献   

3.
Long-Term Variations in Solar Differential Rotation and Sunspot Activity   总被引:2,自引:0,他引:2  
The solar equatorial rotation rate, determined from sunspot group data during the period 1879–2004, decreased over the last century, whereas the level of activity has increased considerably. The latitude gradient term of the solar rotation shows a significant modulation of about 79 year, which is consistent with what is expected for the existence of the Gleissberg cycle. Our analysis indicates that the level of activity will remain almost the same as the present cycle during the next few solar cycles (i.e., during the current double Hale cycle), while the length of the next double Hale cycle in sunspot activity is predicted to be longer than the current one. We find evidence for the existence of a weak linear relationship between the equatorial rotation rate and the length of sunspot cycle. Finally, we find that the length of the current cycle will be as short as that of cycle 22, indicating that the present Hale cycle may be a combination of two shorter cycles. Presently working for the Mt. Wilson Solar Archive Digitization Project at UCLA.  相似文献   

4.
The differential rotation of the solar corona has been analyzed using as the input data the brightness of the coronal green line Fe xiv 530.3 nm for more than five activity cycles. It is found that the character of rotation of the solar corona changes during the activity cycle. Approximately at the middle of the descending branch the differential rotation is weakly pronounced, while the greatest differential gradient is observed at the ascending branch and, occasionally, at the maximum of the cycle. An explanation of this difference has been suggested. The total rotation rate of the corona can be represented as a superposition of two rotation modes (components) – the fast and slow ones. The synodic period of the fast mode near the equator is about 27 days, increasing slightly with latitude. The synodic period of the slow mode exceeds 30 days. The changing relative fraction of these two modes results in variation of the latitude dependence of the observed rotation rate during the activity cycle. The characteristics of two principal types of differential rotation of the solar corona have been determined. The first type consists of the fast mode alone and is established approximately at the middle of the descending branch of the cycle. The second type is the sum of both modes with the fast mode dominating at low latitudes and the slow mode at high latitudes. The results obtained can be used for in-depth study of interaction of the velocity field and dynamo mechanism in the Sun and stars.  相似文献   

5.
Periodicities in the occurrence rate of solar proton events   总被引:1,自引:0,他引:1  
Power spectral analyses of the time series of solar proton events during the past three solar cycles reveal a periodicity around 154 days. This feature is prominent in all of the cycles combined, cycles 19 and 21 individually but is only weak in cycle 20. These results are consistent with the presence of similar periodicities between 152 and 155 days in the occurrence rate of major solar flares, the sunspot blocking function (P s ), the 10.7 cm radio flux (F 10.7) and the sunspot number (R z ). This suggests that the circa 154-days periodicity may be a fundamental characteristic of the Sun. Periods around 50–52 days are also found in the combined data set and in the three individual cycles in general agreement with the detection of this periodicity in major flares in cycle 19 and inP s ,F 10.7, andR z in cycle 21. The cause of the 155 day period remains unknown. The spectra contain lines (or show power at frequencies) consistent with a model in which the periodicity is caused by differential rotation of active zones and a model in which it is related to beat frequencies between solar oscillations, as proposed by Wolff.  相似文献   

6.
Javaraiah  J. 《Solar physics》2003,212(1):23-49
Using Greenwich data (1879–1976) and SOON/NOAA data (1977–2002) on sunspot groups we found the following results: (i) The Sun's mean (over all the concerned cycles during 1879–1975) equatorial rotation rate (A) is significantly larger (≈0.1%) in the odd-numbered sunspot cycles (ONSCs) than in the even-numbered sunspot cycles (ENSCs). The mean rotation is significantly (≈10%) more differential in the ONSCs than in the ENSCs. North–south difference in the mean equatorial rotation rate is larger in the ONSCs than in the ENSCs. North–south difference in the mean latitude gradient of the rotation is significant in the ENSCs and insignificant in the ONSCs. (ii) The known very large decrease in A from cycle 13 to cycle 14 is confirmed. The amount of this decrease in the mean A was about 0.017 μrad s−1. Also, we find that A decreased from cycle 17 to cycle 18 by about 0.008 μrad s−1 and from cycle 21 to cycle 22 by about 0.016 μrad s−1. From cycle 13 to cycle 14 the decrease in A was more in the northern hemisphere than in the southern hemisphere, it is opposite in the later two epochs. The time gap between the consecutive drops in A is about 44 years, suggesting the existence of a `44-yr' cycle or `double Hale cycle' in A. The time gap between the two large drops, viz., from cycle 13 to cycle 14 and from cycle 21 to cycle 22, is about 90 years (Gleissberg cycle). We predict that the next drop (moderate) in A will be occurring from cycle 25 to cycle 26 and will be followed by a relatively large-amplitude `double Hale cycle' of sunspot activity. (iii) Existence of a 90-yr cycle is seen in the cycle-to-cycle variation of the latitude gradient (B). A weak 22-yr modulation in B seems to be superposed on the relatively strong 90-yr modulation. (iv) The coefficient A varies significantly only during ONSCs and the variation has maximum amplitude in the order of 0.01 μrad s−1 around activity minima. (v) There exists a good anticorrelation between the mean variation of B during the ONSCs and that during the ENSCs, suggesting the existence of a `22-yr' periodicity in B. The maximum amplitude of the variation of B is of the order of 0.05 μrad s−1 around the activity minima. (vi) It seems that the well-known Gnevyshev and Ohl rule of solar activity is applicable also to the cycle-to-cycle amplitude modulation of B from cycle 13 to cycle 20, but the cycles 12 (in the northern hemisphere, Greenwich data) and 21 (in both hemispheres, SOON/NOAA data) seem to violate this rule in B. And (vii) All the aforesaid statistically significant variations in A and B seem to be related to the approximate 179-yr cycle, 1811–1989, of variation in the Sun's motion about the center of mass of the solar system.  相似文献   

7.
Long-term variation in the distribution of the solar filaments observed at the Observatorie de Paris, Section de Meudon from March 1919 to December 1989 is presented to compare with sunspot cycle and to study the periodicity in the filament activity, namely the periods of the coronal activity with the Morlet wavelet used. It is inferred that the activity cycle of solar filaments should have the same cycle length as sunspot cycle, but the cycle behavior of solar filaments is globally similar in profile with, but different in detail from, that of sunspot cycles. The amplitude of solar magnetic activity should not keep in phase with the complexity of solar magnetic activity. The possible periods in the filament activity are about 10.44 and 19.20 years. The wavelet local power spectrum of the period 10.44 years is statistically significant during the whole consideration time. The wavelet local power spectrum of the period 19.20 years is under the 95% confidence spectrum during the whole consideration time, but over the mean red-noise spectrum of α = 0.72 before approximate Carrington rotation number 1500, and after that the filament activity does not statistically show the period. Wavelet reconstruction indicates that the early data of the filament archive (in and before cycle 16) are more noiseful than the later (in and after cycle 17).  相似文献   

8.
We studied the solar rotation rate and its temporal change, using the sunspot data obtained during activity cycle 23 (1996 – 2006). The equatorial rotation rate is nearly the same as in the former cycle 22, while the latitudinal gradient of differential rotation considerably increased. Comparison of our results with others indicates the existence of a long-term periodicity of about eight cycles in differential rotation. In addition, no significant asymmetry in differential rotation between the northern and southern hemispheres during cycle 23 was found. The equatorial rotation rate and the latitudinal gradient of the differential rotation in the period of cycle 23 are approximately constant, except for the initial and final phases in the cycle.  相似文献   

9.
We have extended our long-term study of coronal holes, solar wind streams, and geomagnetic disturbances through the rising phase of sunspot cycle 21 into the era of sunspot maximum. During 1978 and 1979, coronal holes reflected the influence of differential rotation, and existed within a slowly-evolving large-scale pattern despite the relatively high level of sunspot activity. The long-lived 28.5-day pattern is not produced by a rigidly-rotating quasi-stationary structure on the Sun, but seems to be produced by a non-stationary migratory process associated with solar differential rotation. The association between coronal holes and solar wind speed enhancements at Earth continues to depend on the latitude of the holes (relative to the heliographic latitude of Earth), but even the best associations since 1976 have speeds of only 500–600 km s-1 rather than the values of 600–700 km s-1 that usually occurred during the declining phase of sunspot cycle 20.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

10.
We study the evolution of the longitudinal asymmetry in solar activity through the wave packet technique applied to the period domain of 25 – 31 days (centered at the 27-day solar rotation period) for the sunspot number and geomagnetic aa index. We observe the occurrence of alternating smaller and larger amplitudes of the 11-year cycle, resulting in a 22-year periodicity in the 27-day signal. The evolution of the 22-year cycle shows a change of regime around the year 1912 when the 22-year period disappears from the sunspot number series and appears in the aa index. Other changes, such as a change in the correlation between solar and geomagnetic activity, took place at the same time. Splitting the 27-day frequency domain of aa index shows an 11-year cycle for higher frequencies and a pure22-year cycle for lower frequencies, which we attribute to higher latitude coronal holes. This evidence is particularly clear after 1940, which is another benchmark in the evolution of the aa index. We discuss briefly the mechanisms that could account for the observed features of the 22-year cycle evolution.  相似文献   

11.
Suzuki  Miyosi 《Solar physics》1998,178(2):259-265
The solar rotation rate derived from the measurements of daily sunspot positions during activity cycle 22 (1988–1996) are presented. The averaged differential rotation is nearly symmetric with respect to the equator. The comparisons of our measurement with those for previous cycles show that the equatorial rotation rate gradually increases from cycle 18 to 22.  相似文献   

12.
A. Böhme 《Solar physics》1989,122(1):13-27
The flux density of a noise storm continuum is known to depend on importance parameters of the associated sunspot group, e.g., its total area A. A study of the continua at 287, 234, 113, and 64 MHz, however, reveals in case of the two cycles Nos. 20 and 21 that the radiation signatures of sunspot groups, with a value of A kept fixed, vary systematically with time indicating regular changes of relevant parameters of the overlying loop systems with the phase of the solar cycle. A trend of intense continua at high frequencies (for definition, cf. Figures 1, 2(b)) to occur preferably during the first activity maximum of a solar cycle has been obtained in either case suggesting a decrease of the emissivity of sunspot groups with time. Vice versa, intense continua at lower frequencies (for definition, cf. Figures 1, 2(b)) were mainly observed during the later phase of both cycles. The latter effect is shown to be attributed rather to a long-term variation of the spectral characteristics of the type-I continua than to an enhanced number of intense type-III continua. From the result obtained it follows that non-potential loops extending to great heights into the corona or developing at least conditions favourable for the generation of an intense type-I continuum even at the frequencies < 100 MHz tend to occur more frequently above sunspot groups during the later phase of a solar cycle than above the comparable groups of its first activity maximum.Furthermore, characteristic periods have been found for both cycles during which the emissivity, especially of the very large sunspot groups, was significantly diminished with reference to the comparable groups of the adjacent time intervals.  相似文献   

13.
Using the data on sunspot groups compiled during 1879&amp;#x2013;1975, we determined variations in the differential rotation coefficientsA andB during the solar cycle. The variation in the equatorial rotation rateA is found to be significant only in the odd numbered cycles, with an amplitude &amp;#x223C; 0.01 &amp;#x03BC; rads-1. There exists a good anticorrelation between the variations of the differential rotation rateB derived from the odd and even numbered cycles, suggesting existence of a &amp;#x2018;22-year&amp;#x2019; periodicity inB. The amplitude of the variation ofB is &amp;#x223C; 0.05 &amp;#x03BC; rad s-1.  相似文献   

14.
Sunspot nests     
For the period August 1959–December 1964 the Greenwich Photoheliographic Results were searched for sunspot nests. Such a nest is a sequence of sunspot groups that appear within a small area on the solar surface and that last for several months. The search procedure is described and data for 41 probable sunspot nests are given. At least three quarters of these nests appear to be real, and not chance clusters.The nests are the same type of activity sequences as the Fleckenherde discovered by Becker (1955) and the complexes of activity pointed out by Gaizauskas et al. (1983). The complexes of activity as defined by Bumba and Howard (1965) are different patterns, however; the relation between complexes and the nests is shown.Some properties of the nests are: (i) many nests appear as double structures; (ii) single nests and components of double nests are quite compact: the effective areas are comparable to those of medium-large sunspot groups; (iii) each nest rotates at its own steady rate about the Sun; (iv) the intrinsic scatter in the rotation rates is much larger than the trend in the differential rotation; (v) displacements in latitude are less than a few meters per second; (vi) many nests live for 6 to 15 Carrington rotation periods, the minimum lifetime is not yet determined; (vii) the fraction of the sunspot groups that are members of nests is large (at least 30%).  相似文献   

15.
The extended Greenwich data set consisting of positions of sunspot groups is used for the investigation of cycle-related variations of the solar rotation in the years 1874–1981. Applying the residual method, which yields a single number for each year describing the average deviation from the mean value of the solar rotation, the dependence of the rotation velocity residual on the phase of the solar cycle is investigated. A secular deceleration of the solar rotation was found: the slope being statistically significant at the 3σ level. Periods of 33, 22, 11, 5.2, and 3.5 years can be identified in the power spectra. The rotation velocity residuals were averaged for all years with the same solar cycle phase relative to the nearest preceding sunspot minimum. The variation pattern reveals a higher than average rotation velocity in the minimum of activity and, to a lesser extent, also around the maximum of activity. The analysis was repeated with several changes in the reduction method, such as elimination of the secular trend, application of statistical weights, different cutoffs of the central meridian distance, division of the latitude into subregions and treating data from the years of activity minima separately. The results obtained are compared with those from the literature, and an interpretation of the observed phenomena is proposed.  相似文献   

16.
A study of the green corona rotation rate, during the period 1970–1974, confirms that the differential rotation degree varies systematically through a solar cycle and that the corona rotates in an almost rigid manner before sunspot minimum. During the first two years, 1970–1971, the differential rotation degree, characteristic of high solar activity periods is detected. While during the years of declining activity, 1972–1974, a drastic decrease of the differential rotation degree occurs and the green corona rotates almost rigidly, as the coronal holes observed in the same period. These conclusions are valid only for the rotation of coronal features with lifetime of at least one solar rotation.  相似文献   

17.
We devised a new method, which we call the running-segment method, to achieve high-resolution time series of indices of solar rotation for determining the latitude dependence of the differential rotation by a least-squares fitting of the daily translation of positions of sunspot groups during a fixed time segment of 11 years. The segment is moved by an amount of one year to determine the differential profile of the next point of time. Time of the determined rotation data is defined by an arithmetic mean of the beginning and ending years of the segment. The rotation underwent an acceleration from 1948 to 1974 and a deceleration from 1974 to 1987. We found that the time profile of the indexM, the angular momentum surface layer density defined by integration of the angular momentum volume density over the whole surface, follows almost exactly the time profile of the 11-year running mean of the yearly mean of the sunspot relative number with a delay time of about 20 years. The acceleration (deceleration) phase corresponds to the ascending (descending) phase of amplitude of the 11-year solar cycle of cycle 16 (19) to cycle 19 (20) with a delay time of about 20 years. The cycles 15–20 correspond to the 55-year grand cycle V of the 11-year cycle. The delay time of about 20 years agrees well with the delay time predicted by a nonlinear dynamo theory of the solar cycle for driving the 55-year modulation of the 11-year solar cycle. The agreement suggests that the Lorentz force of the magnetic field of the solar cycle during grand cycle V drives the solar rotation modulation from 1948 to 1987 and that the force needed about 20 years to modify the rotation during 1943–1992.  相似文献   

18.
Pishkalo  Mykola I. 《Solar physics》2011,270(1):347-363
The photometrical flattening index of the solar corona a+b is defined according to Ludendorff. In this paper we have investigated how the flattening index varies with respect to the phase of solar activity and the sunspot number. We have compiled 170 values of the flattening index using the data on 60 total solar eclipses from 1851 to 2010. We have found that the flattening index takes values from 0 to 0.4, and is anticorrelated with solar activity. The value of the flattening index at the beginning of solar cycle 24 was used as a precursor to forecast the amplitude of the cycle. It was found that the amplitude of solar cycle 24 will be about 95 in terms of the smoothed monthly sunspot numbers.  相似文献   

19.
M. Suzuki 《Solar physics》2014,289(11):4021-4029
Long-term modulation of solar differential rotation was studied with data from Mt. Wilson and our original observations during Solar Cycles 16 through 23. The results are that i) the global B-value (i.e. latitudinal gradient of differential rotation) is modulated with a period of about six or seven solar cycles, ii) the B-values of the northern and southern hemispheres are also modulated with a period similar to the global one, but iii) they show quasi-oscillatory behavior with a phase shift between them. We examined the yearly fluctuations of the B-values in every solar cycle with reference to the phase of the sunspot cycle and found that the B-values in the sunspot-minimum years show large and erratic variations, while those in the sunspot-maximum years show small fluctuations. Positive correlation between the former B-values and the latter was found. We discuss the independent long-term behavior of solar differential rotation between the northern and southern solar hemispheres and the implication for the solar dynamo.  相似文献   

20.
Correlation analysis of the mean longitude distribution of sunspot groups (taken from the Greenwich Photoheliographic Results) and high-speed solar wind streams (inferred from the C9 index for geomagnetic disturbances) with the Bartels rotation period P = 27.0 days shows anti-correlation for individual cycles.In particular, the longitudes of post-maximum stable streams of cycle 18 and 19 are well anticorrelated with the preferred longitudes of sunspot groups during the maximum activity periods of these cycles. This is further analyzed using the daily Zürich sunspot number, R, between 1932 and 1980, which reveals a conspicuous similarity of cycle 18 and 19 as well as cycle 20 and 21.We conclude that there is a solar memory for preferred longitudes of activity extending at least over one, probably two cycles (i.e. one magnetic cycle of 22 years). We conjecture that this memory extends over longer intervals of time as a long-term feature of solar activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号