首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 314 毫秒
1.
We have studied 56 unfractured chalk samples of the Upper Cretaceous Tor Formation of the Dan, South Arne and Gorm Fields, Danish North Sea. The samples have porosities of between 14% and 45% and calcite content of over 95%. The ultrasonic compressional‐ and shear‐wave velocities (VP and VS) for dry and water‐saturated samples were measured at up to 75 bar confining hydrostatic pressure corresponding to effective stress in the reservoir. The porosity is the main control of the ultrasonic velocities and therefore of the elastic moduli. The elastic moduli are slightly higher for samples from the South Arne Field than from the Dan Field for identical porosities. This difference may be due to textural differences between the chalk at the two locations because we observe that large grains (i.e. filled microfossils and fossil fragments) that occur more frequently in samples from the Dan Field have a porosity‐reducing effect and that samples rich in large grains have a relatively low porosity for a given P‐wave modulus. The clay content in the samples is low and is mainly represented by either kaolinite or smectite; samples with smectite have a lower P‐wave modulus than samples with kaolinite at equal porosity. We find that ultrasonic VP and VS of dry chalk samples can be satisfactorily estimated with Gassmann's relationships from data for water‐saturated samples. A pronounced difference between the VP/VS ratios for dry and water‐saturated chalk samples indicates promising results for seismic amplitude‐versus‐offset analyses.  相似文献   

2.
Summary In a series of triaxial experiments we have measuredV p ,V s and volumetric strain simultaneously in dilating dry and saturated rocks. For the first time these data permit quantitative comparison of seismic velocities or their ratio and dilatant volumetric strain. In air-dry samplesV p /V s decreases by a few per cent at strains of 10–3; in saturated materials with high pore pressure,V p /V s increases by a comparable amount. Decreases in seismic velocity ratio are difficult to generate in initially saturated rocks even with low pore pressures and at strain rates of 10–4/sec. A liquid-vapor transition will not produce a significant drop inV p /V s . If dilatancy and fluid flow are responsible for seismic travel time anomalies prior to earthquakes, our results suggest that such anomalies will occur only in regions where pore fluid source to sink dimensions are of the order of 10 km or more, or in regions where the rocks are not saturated to begin with.  相似文献   

3.
The Tian Shan is a vast range that spans several countries in Asia. Understanding its evolutionary history may provide valuable insights into intracontinental orogenic dynamics. In this study, we explored the crustal characteristics of the Tian Shan and their relationships to the tectonic evolution of the region. A new H-stacking method that combines the P receiver function and gravity anomalies was used to estimate the thickness and ratio of P- to S-wave velocities (vP/vS) for 91 broadband seismic stations in the central and western Tian Shan. Our results revealed significant lateral variations in crustal thickness and vP/vS. A ~45-km-thick crust and an intermediate-high vP/vS (~1.74–1.84) were found in the Kazakh Shield and Tarim Basin, which we interpreted to indicate a mafic crystalline basement and lower crust. The central Tian Shan varied greatly in crustal thickness (40–64 km) and vP/vS ratio (1.65–2.00), which may be due to crustal shortening, mafic underplating, and crustal melting. In contrast, we observed a relatively thin crust (42–50 km) with an intermediate vP/vS ratio (~1.78) in the western Tian Shan. The differences in the crustal structures between the western and central Tian Shan imply that the Talas-Fergana Fault may be trans-lithospheric.  相似文献   

4.
Summary Radioactive heat productionA is a scalar and isotropic petrophysical property independent of in situ temperature and pressure. Its value is usually expressed in HGU units (1 HGU=10–13 cal/cm3 sec) and depends on the amounts of uranium, thorium and potassium.A varies with rock type over several orders of magnitude and reflects the geochemical conditions during rock formation (magmatic differentiation, sedimentation or metamorphism).In order to assign realistic thermal parameters to deeper-seated rocks correlations with seismic velocity (which can be determined from the surface) have been looked for. In the range characteristic for crystalline rocks of the crust (5–8 km/sec)A is strongly correlated with density and compressional wave velocityv p:A decreases with increasingv p orp. From this relationship it is now possible to estimate heat production values for any particular layer of a crustal section from measured seismic velocities. Contrary to earlier belief there is, as shown by experimental determinations, no correlation between heat productionA and thermal conductivityK in igneous and metamorphic rocks. In sediments however, especially in sand/shale sequences, a correlation betweenK andA is most likely: increasing clay mineral content, characterized by increasingA, causes the decrease ofK in these rocks.Contribution No. 111, Institute of Geophysics, Swiss Federal Institute of Technology, Zurich, Switzerland.  相似文献   

5.
The pressure dependence of P- and S-wave velocities, velocity anisotropy, shear wave splitting and crack-porosity has been investigated in a number of samples from different crustal rock types for dry and wet (water saturated) conditions. At atmospheric pressure, P-wave velocities of the saturated, low-porosity rocks (< 1%) are significantly higher than in dry rocks, whereas the differences for S-wave velocities are less pronounced. The effect of intercrystalline fluids on seismic properties at increased pressure conditions is particularly reflected by the variation of the Poisson's ratio because P-wave velocities are more sensitive to fluids than S-wave velocities in the low-porosity rocks. Based on the experimental data, the respective crack-density parameter (), which is a measure of the number of flat cracks per volume unit contained within the background medium (crack-free matrix), has been calculated for dry and saturated conditions. There is a good correlation between the calculated crack-densities and crack-porosities derived from the experimentally determined volumetric strain curves. The shear wave velocity data, along with the shear wave polarisation referred to a orthogonal reference system, have been used to derive the spatial orientation of effective oriented cracks within a foliated biotite gneiss. The experimental data are in reasonable agreement with the self consistent model of O'Connell and Budiansky (1974). Taking the various lithologies into account, it is clear from the present study, that combined seismic measurements ofV p andV s , using theV p V s -ratio, may give evidence for fluids on grain boundaries and, in addition, may provide an estimate on the in-situ crack-densities.  相似文献   

6.
Field investigations of the amplitude dependence of the P wave velocity in dry and water-saturated rocks are carried out in the space between two shallow boreholes. The seismic wave velocity nonlinearly varies with the strain amplitude in the range ~(4–50) × 10?8. The pattern of the velocity variation with amplitude depends on the pulse propagation direction. In dry and partially water-saturated rocks, the wave velocity decreases by 1.5% with the amplitude increasing within the range mentioned above and increases by 0.4% in completely water-saturated rocks (with an accuracy of up to 0.1%). Amplitude variations within a closed cycle (A min … → A max … → A min) lead to hysteresis in the V p (A min-max-min) dependence (i.e., the ascending and descending branches of the curve do not coincide). If the hysteretic loop is not closed, the residual velocity component ΔV p (A) is present. This effect is observed in dry and weakly saturated rocks. In a completely saturated rock, hysteresis of the velocity dependence is absent; the ascending and descending amplitude branches coincide. It is suggested that the amplitude characteristics and their hysteresis can be used in the future as an additional criterion for the differentiation of rocks by their fluid saturation.  相似文献   

7.
This paper describes the measurements of the acoustic and petrophysical properties of two suites of low‐shale sandstone samples from North Sea hydrocarbon reservoirs, under simulated reservoir conditions. The acoustic velocities and quality factors of the samples, saturated with different pore fluids (brine, dead oil and kerosene), were measured at a frequency of about 0.8 MHz and over a range of pressures from 5 MPa to 40 MPa. The compressional‐wave velocity is strongly correlated with the shear‐wave velocity in this suite of rocks. The ratio VP/VS varies significantly with change of both pore‐fluid type and differential pressure, confirming the usefulness of this parameter for seismic monitoring of producing reservoirs. The results of quality factor measurements were compared with predictions from Biot‐flow and squirt‐flow loss mechanisms. The results suggested that the dominating loss in these samples is due to squirt‐flow of fluid between the pores of various geometries. The contribution of the Biot‐flow loss mechanism to the total loss is negligible. The compressional‐wave quality factor was shown to be inversely correlated with rock permeability, suggesting the possibility of using attenuation as a permeability indicator tool in low‐shale, high‐porosity sandstone reservoirs.  相似文献   

8.
Two rock samples with different structures and materials were deformed under a biaxial loading system, and multipoint strain measurements were performed for each sample. The distribution of strain anomalies during the deformation and the instability process were analyzed by using C v value put forward by WANG Xiao-qing and CHEN Xue-zhong, et al, a parameter to describe the heterogeneous distribution of earthquake precursors, so as to examine the method of C v value and to explore its physical meaning experimentally. The result shows that the change of C v value is correlated to the change of deformation characteristics and is an effective parameter to describe the heterogeneity of precursor distribution. C v value increases firstly and then decreases before the instability, and the instability occurs when C v value decreases to the level before increasing. This indicates that C v value may be a useful parameter for earthquake prediction. Foundation item: Chinese Joint Earthquake Sciences Foundation (9507435).  相似文献   

9.
On July 4, 2006, an earthquake of MS5.1 took place in Wen’an, Hebei Province, just at the south center of China’s Capital Circle area digital seismograph network. It is the strongest event recorded ever since the network went into operation in 2002. We processed the vast amounts of phase data yielded by the 107 digital seismic stations between 2002~2007 using Wadati method. In order to improve the precision and stability of shear and compressional wave velocities (vP/vS) calculation, we impose a number of restrictions on the computation environment and condition, e.g., the earthquakes are densely concentrated, selected stations are limited in range, the number of stations in- volved in the computation is larger than 5 and linear fitting features high precision and small error. Under these restrictions, the study shows that vP/vS in and around Wen’an and Tangshan underwent a normal-low-normal proc- ess one year before Wen’an earthquake, vP/vS became obviously low and the low ratio lasted for about one year, meanwhile, little variation of vP/vS was seen in Xingtai, northwest of Beijing, southwest of Beijing, Beijing-Tianjin and Beijing; after the quake, the vP/vS returned normal in Wen’an and Tangshan. Error and stability analysis of the calculated result for vP/vS shows it is convincible that anomaly appeared in and around Wen’an and Tangshan be- fore Wen’an earthquake.  相似文献   

10.
单轴压缩下干燥和饱水岩石中超声P波的衰减   总被引:1,自引:0,他引:1       下载免费PDF全文
根据脉冲传播和频谱比方法的基本原理建立了一套超声波衰减和波速测量系统。研究了单轴压缩下超声P波在干燥和饱水的小浪底砂岩和房山大理岩中的衰减和速度。常压下,水饱和样品的Q_P值低于干燥样品。初始加载时,在大多数情况下,Q_p值明显增加即衰减减小;当应力水平达破裂强度50-60%后,岩石开始膨胀,Q_p减小即衰减增加;临近破裂Q_p减至最小。Q_p的变化量达一个数量级。单轴压缩下,在干燥和饱水的砂岩、大理岩中,V_p分别增加为27%和28%,44%和11%。径向Q_p和V_p随单轴压力的变化比轴向小得多,呈现明显各向异性。在本实验条件下,波在裂纹表面的摩擦耗散是主要的衰减机制,水的作用主要是潮湿和润滑裂纹表面,促进滑动,增加衰减。  相似文献   

11.
Velocities of compressional and shear waves in limestones   总被引:2,自引:1,他引:2  
Carbonate rocks are important hydrocarbon reservoir rocks with complex textures and petrophysical properties (porosity and permeability) mainly resulting from various diagenetic processes (compaction, dissolution, precipitation, cementation, etc.). These complexities make prediction of reservoir characteristics (e.g. porosity and permeability) from their seismic properties very difficult. To explore the relationship between the seismic, petrophysical and geological properties, ultrasonic compressional‐ and shear‐wave velocity measurements were made under a simulated in situ condition of pressure (50 MPa hydrostatic effective pressure) at frequencies of approximately 0.85 MHz and 0.7 MHz, respectively, using a pulse‐echo method. The measurements were made both in vacuum‐dry and fully saturated conditions in oolitic limestones of the Great Oolite Formation of southern England. Some of the rocks were fully saturated with oil. The acoustic measurements were supplemented by porosity and permeability measurements, petrological and pore geometry studies of resin‐impregnated polished thin sections, X‐ray diffraction analyses and scanning electron microscope studies to investigate submicroscopic textures and micropores. It is shown that the compressional‐ and shear‐wave velocities (Vp and Vs, respectively) decrease with increasing porosity and that Vp decreases approximately twice as fast as Vs. The systematic differences in pore structures (e.g. the aspect ratio) of the limestones produce large residuals in the velocity versus porosity relationship. It is demonstrated that the velocity versus porosity relationship can be improved by removing the pore‐structure‐dependent variations from the residuals. The introduction of water into the pore space decreases the shear moduli of the rocks by about 2 GPa, suggesting that there exists a fluid/matrix interaction at grain contacts, which reduces the rigidity. The predicted Biot–Gassmann velocity values are greater than the measured velocity values due to the rock–fluid interaction. This is not accounted for in the Biot–Gassmann velocity models and velocity dispersion due to a local flow mechanism. The velocities predicted by the Raymer and time‐average relationships overestimated the measured velocities even more than the Biot model.  相似文献   

12.
Variations in the major cation ratios in the (micro-) tektites of each of the different strewn fields were studied with the help of Niggli parameters. There is a high degree of variability in almost each individual strewn field which, however, is not random. Invariably, as SiO2 increases the proportion of alumina and the alkalies among the cations increases, that ofMgO + ΣFeO (total iron as FeO) and CaO decreases; simultaneouslyK2O/Na2O increases whileMgO/FeO decreases. This is entirely analogous to magmatic differentiations and is incompatible with an explanation by mechanical mixing of sedimentary parent rocks. The picture can best be explained by partial melting, in analogy to fulgurites and combustion ultrametamorphic glasses.In some strewn fields (e.g. javaites, georgiaites, bediasites), all tektites formed from the same set of parent rocks. In these fields each cation parameter, when plotted against silica, follow a linear slightly curved path with a very small scatter (simple type). In others (e.g. moldavites, philippinites, australites) some or all cation parameters show a strong scatter which sometimes almost obliterates the differentiation trends. These complex diagrams can be reduced to 2–5 diagrams (lineages) of the simple type, each reflecting a different combination of parent rocks. Most lineages again show the influence of partial melting differentiation.If the chemical variations of tektites are caused by partial melting, the silica-poor end of each variation diagram (case of total melting) and not the average composition corresponds to the parent rock combination involved. Thus, neglecting losses by evaporation (which are minor), the chemical compositions of 25 starting materials were established. All except one of these can very closely be matched by a combination, in appropriate proportions, of only two of the most common sedimentary rocks. The only group which cannot be duplicated by a combination of any two sedimentary rocks are the bottle-green microtektites.  相似文献   

13.
Shanxi Graben is in the middle part of the North China Craton, from south to north. With the teleseismic data recorded by Regional Seismograph Networks and the temporary ZBnet-W Seismic Array around east part of Shanxi Graben, we measured the crustal thickness and vP/vS ratio beneath each station using the H-κ stack of receiver functions. The observed crustal thickness shows obvious lateral variation, increasing gradually from east to west in the Shanxi Graben. Beneath the Shanxi Graben the crust is relatively thicker than both sides of the south and the north. In addition, the vP/vS ratio in the north of study zone is higher than that in the south. The highest vP/vS ratio exists in the crust of the Xinding basin and the Datong basin. Our study also suggests that high velocity ratio might result from the strong activities of the magmation and volcanism.  相似文献   

14.
Heavily populated by Beijing and Tianjin cities, Bohai basin is a seismically active Cenozoic basin suffering from huge lost by devastating earthquakes, such as Tangshan earthquake. The attenuation (QP and QS) of the surficial Quaternary sediment has not been studied at natural seismic frequency (1?10 Hz), which is crucial to earthquake hazards study. Borehole seismic records of micro earthquake provide us a good way to study the velocity and attenuation of the surficial structure (0?500 m). We found that there are two pulses well separated with simple waveforms on borehole seismic records from the 2006 MW4.9 Wen'an earthquake sequence. Then we performed waveform modeling with generalized ray theory (GRT) to confirm that the two pulses are direct wave and surface reflected wave, and found that the average vP and vS of the top 300 m in this region are about 1.8 km/s and 0.42 km/s, leading to high vP/vS ratio of 4.3. We also modeled surface reflected wave with propagating matrix method to constrain QS and the near surface velocity structure. Our modeling indicates that QS is at least 30, or probably up to 100, much larger than the typically assumed extremely low Q (~10), but consistent with QS modeling in Mississippi embayment. Also, the velocity gradient just beneath the free surface (0?50 m) is very large and velocity increases gradually at larger depth. Our modeling demonstrates the importance of borehole seismic records in resolving shallow velocity and attenuation structure, and hence may help in earthquake hazard simulation.  相似文献   

15.
The method of measuring the pore pressure of stratum fluid in deep bore-holes is presented. Taking the sedimentary basins in North China as an example, the variation law of pore pressure measured in strata within the depth range of 0 to 4 km is analyzed. Furthermore, the relation between the regional distribution of abnormal pore pressures in 3 000 m depth and seismic activities is discussed in connection with the earthquakes of M S5.0 that occurred after 1 900 in the studied region. The study result indicates that the strata pore pressure P 0 measured in deep bore-holes is not exactly the same as the hydrostatic pressure PH. Ultra pore pressure does exist, though not commonly. The relation that the pore pressures (P 01, P 02 and P 03) measured in exploration, evaluation and exploitation wells in Oil-fields and the hydrostatic pressuree (P H) of the above wells is as follows: 1 P 01>P 02>P H>P 03 in areas with ultra pore pressures; 2 P H>P 01>P 02>P 03 in areas where the pore pressures are normal or on the lower side. The relation between the regional distribution of ultra pore pressures and the activity of earthquakes of M S5.0 has been analyzed. The result shows that, with latitudes 36.0°–36.5°N as a demarcation, pore pressures are ultra-high in the south and are normal or lower in the north. In the south, the measured pore pressure is obviously higher than the hydrostatic pressure below the depth of about 2 000 m and it increases as a power function with increasing depth; meanwhile, the earthquake activity there is weaker. In the north, however, the measured pore pressure increases as a linear function with increasing depth; meanwhile, the earthquake activity there is stronger. This project sponsored by the Chinese Joint Seismological Science Foundation.  相似文献   

16.
The North China Craton (NCC) is one of the oldest cratons on earth. Several important tectonic transformations of Mesozoic-Cenozoic tectonic regime led to the destruction of the North China craton. The knowledge of crustal structure can provide important constraints for the formation and evolution of cratons. New maps of sediment thickness, crustal thickness (H) and vP/vS (κ) in the central and western NCC were obtained using sequential H-κ stacking. P-wave receiver functions are calculated using teleseismic waveform data recorded by 405 stations from ChinArray project. Benefiting from the densely distribution of temporary seismic stations, our results reveal details of the crustal structure in the study area. The thickness of sedimentary layer in North China ranges from 0–6.4 km, and the thickest sedimentary layer is in Ordos block and its surroundings (about 2.8–6 km); The thickness of sedimentary layer in the Mongolia fold belt and Yinshan orogenic belt is relatively thin (less than 1 km). The crustal thickness of the study area varies between 27–48 km, of which the crust of the North China Plain is about 30–33 km, the central NCC is about 33–40 km, and the Ordos block is 40–48 km thick. The average vP/vS ratios in the study area is mostly between 1.66 and 1.90, and that in the Yanshan-Taihang mountain fold belt is between 1.70 and 1.85, and that in the Ordos block is between 1.65 and 1.90, with an average value of 1.77, indicating the absence of a thick basaltic lower crust. The obvious negative correlation between crustal thickness and average vP/vS ratio within Ordos and Central Asia orogenic belt may be related to magmatic underplating during the crustal formation. There is no significant correlation between the crustal thickness and the vP/vS ratio in the Lüliang-Taihang mountain fold belt, which may be related to the multiple geological processes such as underplating and crustal extension and thinning in this area. The lack of correlation between crust thickness and topography in the central orogenic belt and the North China Basin indicates the topography of these areas are controlled not only by crustal isostatic adjustment but also by the lithospheric mantle processes.  相似文献   

17.
A density profile and a modern temperature distribution in the lithosphere of the Voronezh crystalline massif (VCM) are derived through the use of the VP(z), VS(z) seismic velocity models, petrological data, measurements of VP, VS, density (ρ) and mean atomic weight (m) for several groups of rocks and minerals of different composition and genesis, as well as from pressure and temperature derivatives for different thermodynamic regimes.  相似文献   

18.
在1.2千巴围压下进行了三种初始饱和岩样(辉长岩、花岗岩Ⅰ和Ⅱ,各以淡水和盐水饱和)的压缩实验直至破裂并继续到摩擦滑动,所有实验中测定了岩样电阻率。 以Brace等人研究表面电导的方法为基础,我们引入给定含水岩样的体电阻系数和面电导系数两个专用术语以分析实验结果。发现一旦岩样开始膨胀,其面电导系数随差应力增加都增大。结果表明:含水岩样体膨胀后电阻率下降主要是由于表面电导作用的增强。 和前人的结果不同,不同岩样摩擦滑动时电阻率变化各异。作者提出:这种差异可能与岩石中所含矿物颗粒大小有关。含大颗粒的岩石滑动时电阻率下降,而含小颗粒的岩石滑动时电阻率上升。   相似文献   

19.
The Yangbi MS6.4 earthquake occurred on May 21, 2021 in western Yunnan, China, where moderate earthquakes strike frequently. It exhibited a typical “foreshock-mainshock-aftershock” sequence and did not occur on a pre-existing active fault. The seismogenic environment and mechanism of this earthquake have aroused considerable research attention. In this study, we obtain the three-dimensional vP, vS and vP/vS images using the vP/vS consistency-constrained double-difference tomography method, which improves the accuracy of vP/vS models. We focus on characteristics of vP/vS images in areas with a lateral resolution of 0.1°, and reveal the seismogenic environment of the Yangbi MS6.4 earthquake. The conclusions are as follows: (1) Low velocity and high-vP/vS anomalies are revealed at different depths around the northern segment of the Red River fault. vS and vP/vS images along the Weixi-Qiaohou-Weishan fault and the buried faults on its west show obviously segmented feature. (2) The source region of the Yangbi MS6.4 earthquake is located in a low-vP/vS zone implying high medium strength. High-vP/vS anomalies in its NW direction indicate cracks development and the existence of fluids or partial melts, which are unfavorable for stress accumulation and triggering large earthquakes. Such conditions have also prevented the earthquake sequence from extending northwestward. (3) With the southeastward extrusion of materials from the Tibetan Plateau, fluid migration was blocked by the low-vP/vS body in the source region. The high-vP/vS anomaly beneath the source region may implies that the fluids or partial melts in the middle and lower crust gradually weakened medium strength at the bottom of the seismogenic layer, and preparing the largest foreshock in the transition zone of high to low vP/vS. Meanwhile, tectonic stress incessantly accumulated in the brittle upper crust, eventually led to the MS6.4 earthquake occurrence.  相似文献   

20.
Results from a laboratory investigation into the electrical properties of fully and partially saturated Wildmoor Triassic Sandstone have been modelled using the Archie, Waxman–Smits and Hanai–Bruggeman equations. The results demonstrate the limitation of using simple relationships to describe samples when the matrix resistivity ρr is not significantly greater than the saturating electrolyte resistivity ρw. In these situations Archie's parameters m and n are not accurately determined. Conversely, the more sophisticated Waxman–Smits and Hanai–Bruggeman models provide parameters that better describe the electrical properties of the rock and are able to identify heterogeneity between samples that would otherwise be missed. The ranges of values for matrix resistivity (49 < ρr < 161 Ωm) and cementation factor (1.6 < m < 2.1) obtained from the Hanai–Bruggeman model indicate significant variation between samples. Comparison of laboratory‐determined values for cation exchange capacity (0.06 < Qv < 0.51 meq/mL) and those obtained from the Waxman–Smits model (0.09 < Qv < 0.55 meq/mL) indicates a very strong correlation, suggesting this model is appropriate for describing the rock. There is good agreement between parameters modelled using fully and partially saturated versions of both the Hanai–Bruggeman and Waxman–Smits equations, indicating that the data are consistent with these models and that the assumptions made are appropriate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号