首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Two soil CO2 efflux surveys were carried out in September 1999 and June 2002 to study the spatial distribution of diffuse CO2 degassing and estimate the total CO2 output from Showa-Shinzan volcanic dome, Japan. Seventy-six and 81 measurements of CO2 efflux were performed in 1999 and 2002, respectively, covering most of Showa-Shinzan volcano. Soil CO2 efflux data showed a wide range of values up to 552 g m-2 d-1. Carbon isotope signatures of the soil CO2 ranged from -0.9‰ to -30.9‰, suggesting a mixing between different carbon reservoirs. Most of the study area showed CO2 efflux background values during the 1999 and 2002 surveys (B = 8.2 and 4.4 g m-2 d-1, respectively). The spatial distribution of CO2 efflux anomalies for both surveys showed a good correlation with the soil temperature, indicating a similar origin for the extensive soil degassing generated by condensation processes and fluids discharged by the fumarolic system of Showa-Shinzan. The total diffuse CO2 output of Showa-Shinzan was estimated to be about 14.0–15.6 t d-1 of CO2 for an area of 0.53 km2.  相似文献   

2.
Microgravity measurements and levelling surveys on volcanoes are not always easy to make, but are useful for studying volcanic processes quantitatively. Gravity changes associated with volcanic activity are not always significant. Precision of microgravity measurements depend critically on the procedures adopted, and those applied in the present paper are described. Levelling technique is now orthodox, and some empirical laws relating ground deformation to volcanic activity are deduced from the accumulated data. Gravity changes occur at the same time and places as ground deformations. The relationship between microgravity and height changes are discussed from the standpoint of analyzing the data obtained on volcanoes. The observational results obtained on four volcanoes in Japan are separately analyzed because each volcano exhibits different patterns of gravity changes and deformations. During the 1977–1982 activity of Usu volcano, deformation was accompanied by microgravity changes frequently observed at a particular benchmark at the base of the volcano for about five years. The gravity changes prove to be not a direct effect of magma movements but to be caused by the deformations of ground strata and aquifers around the benchmark. The 1983 eruption of Miyakejima volcano was associated with local gravity changes around the eruptive fissures due to magma intrusion which was approximately modelled. Similarly the 1986 eruption of Ooshima volcano caused gravity changes on the volcano, but these were poorly correlated with elevation changes and their origins were not uniquely interpreted. To detect gravity changes associated with the activity of Sakurajima volcano, an equigravity point was selected at the north of the volcano besides the gravity points on and around the volcano itself. The probable gradual accumulation of magmas beneath the volcano for eight years is substantiated by observed microgravity and elevation changes.  相似文献   

3.
Seismic experiments were conducted on Showa-Shinzan, a parasitic lava dome of volcano Usu, Hokkaido, which was formed during 1943–1945 activity. Since we found that firework shots fired on the ground can effectively produce seismic waves, we placed many seismometers on and around the dome during the summer festivals in 1984 and 1985. The internal structure had been previously studied using a prospecting technique employing dynamite blasts in 1954. The measured interval velocity across the dome in 1984 ranges 1.8–2.2 km/s drastically low compared to the results (3.0–4.0 km/s) in 1954; in addition, the velocity is 0.3–0.5 km/s higher than that in the surrounding area. The variation of the observed first arrival amplitudes can be explained by geometrical spreading in the high velocity lava dome. These observations show a marked change in the internal physical state of the dome corresponding to a drop in the measured highest temperature at fumaroles on the dome from 800°C in 1947 to 310°C in 1986.  相似文献   

4.
During the past 500 thousand years, Unzen volcano, an active composite volcano in the Southwest Japan Arc, has erupted lavas and pyroclastic materials of andesite to dacite composition and has developed a volcanotectonic graben. The volcano can be divided into the Older and the Younger Unzen volcanoes. The exposed rocks of the Older Unzen volcano are composed of thick lava flows and pyroclastic deposits dated around 200–300 ka. Drill cores recovered from the basal part of the Older Unzen volcano are dated at 400–500 ka. The volcanic rocks of the Older Unzen exceed 120 km3 in volume. The Younger Unzen volcano is composed of lava domes and pyroclastic deposits, mostly younger than 100 ka. This younger volcanic edifice comprises Nodake, Myokendake, Fugendake, and Mayuyama volcanoes. Nodake, Myokendake and Fugendake volcanoes are 100–70 ka, 30–20 ka, and <20 ka, respectively. Mayuyama volcano formed huge lava domes on the eastern flank of the Unzen composite volcano about 4000 years ago. Total eruptive volume of the Younger Unzen volcano is about 8 km3, and the eruptive production rate is one order of magnitude smaller than that of the Older Unzen volcano.  相似文献   

5.
The eruptive history of Kuju volcano on Kyushu, Japan, during the past 15,000 years has been determined by tephrochronology and 14C dating. Kuju volcano comprises isolated lava domes and cones of hornblende andesite together with aprons of pyroclastic-flow deposits on its flanks. Kuju volcano produced tephras at roughly 1000-yr intervals during the past 5000 years and 70% of the domes and cones have formed during the past 15,000 years. The youngest magmatic activity of Kuju volcano was the 1.6 km3 andesite eruption about 1600 years ago which emplaced a lava dome and block-and-ash flow. Kuju volcano shows a nearly constant long-term eruption rate (0.7–0.4 km3 for 1000 years) during the past 15,000 years. This rate is within the range of estimated average eruption rates of late Quaternary volcanoes in the Japanese Arc, but is about one order of magnitude higher than the eruption rate of Unzen volcano. Kuju volcano has been in phreatic eruption since October 1995. The late Quaternary history of Kuju indicates that it poses a significant volcanic hazard, primarily due to block-and-ash flows from collapsing lava domes.  相似文献   

6.
The 1977–1978 eruption of Usu volcano is discussed from the geophysical standpoint as a classic example of dacite volcanism. The activities of dacitic volcanoes are characterized by persistent earthquake swarms and remarkable crustal deformations due to the high viscosity of the magmas; the former include shocks felt near the volcanoes and the latter accompany formation of lava domes or cryptodomes.The hypocenters of the earthquakes occurring beneath Usu volcano have been located precisely. Their distribution defines an earthquake-free zone which underlies the area of doming within the summit crater. This zone is regarded as occupied by viscous magma. The domings within the summit crater forming the cryptodomes have amounted to about 160 m. In addition to uplift they showed thrusting towards the northeast. As a result, the northeastern foot of the volcano has contracted by about 150 m. The relation between crustal deformation and earthquake occurrence is examined, and it is found that the abrupt domings are accompanied by the larger earthquakes (M = 3–4.3). Both the seismic activity and the ground deformation are shown to have a unique and common energy source.The energy of activities of Usu volcano consists of the explosive type, the deformation type and the seismic type; the second and the third are in parallel with each other in discharges, and both energies are complementary to the explosive energy. The explosive energy and the seismic energy have been calculated for an explosion sequence, and it is concluded that the deformation energy is about 10 times greater than the seismic energy. The discharge rate of the seismic energy and the upheaval rates of the cryptodomes have continued to decrease since the outburst of the eruption, except for a small increase at the end of January 1978. Eruptions are governed not only by the supply of the energies but also by the depth of the magma, which has gradually approached the surface. The last eruption occurred in October 1978; however, the crustal deformations and the earthquake swarms are still proceeding as of January 1980, albeit at a lower rate of activity.  相似文献   

7.
Usu volcano has erupted nine times since 1663. Most eruptive events started with an explosive eruption, which was followed by the formation of lava domes. However, the ages of several summit lava domes and craters remain uncertain. The petrological features of tephra deposits erupted from 1663 to 1853 are known to change systematically. In this study, we correlated lavas with tephras under the assumption that lava and tephra samples from the same event would have similar petrological features. Although the initial explosive eruption in 1663 was not accompanied by lava effusion, lava dome or cryptodome formation was associated with subsequent explosive eruptions. We inferred the location of the vent associated with each event from the location of the associated lava dome and the pyroclastic flow deposit distribution and found that the position of the active vent within the summit caldera differed for each eruption from the late 17th through the 19th century. Moreover, we identified a previously unrecognized lava dome produced by a late 17th century eruption; this dome was largely destroyed by an explosive eruption in 1822 and was replaced by a new lava dome during a later stage of the 1822 event at nearly the same place as the destroyed dome. This new interpretation of the sequence of events is consistent with historical sketches and documents. Our results show that petrological correlation, together with geological evidence, is useful not only for reconstructing volcanic eruption sequences but also for gaining insight into future potential disasters.  相似文献   

8.
To understand the oxidation state and process of oxidation of lava domes, we carried out magnetic petrological analyses of lava samples obtained from domes and block-and-ash-flow deposits associated with the 1991–1995 eruption of Unzen volcano, Japan. As a result, we recognize three different types of magnetic petrology, each related to deuteric high-temperature oxidation during initial cooling. Type A oxides are characterized by homogenous titanomagnetite and titanohematite, indicating a low oxidation state and high titanomagnetite concentrations. Type B oxides are weakly exsolved and contain titanohematite laths and rutile lenses, indicating a higher oxidation state. Type C oxides, which represent the highest oxidation state, are completely exsolved and composed of Ti-poor titanomagnetite, titanohematite, rutile, and pseudobrookite, indicating high hematite concentrations. Some grains in Types A and B show indications of reduction, which was related to interaction with volcanic gases subsequent to high-temperature oxidation. In terms of geological occurrence, the oxidation processes probably differed for endogenous and exogenous domes. Endogenous dome lavas are oxidized concentrically and are classified into the three types according to their location within the dome: samples from the surface are strongly oxidized and classified as Type C, while the inner part is unoxidized and classified as Type A. Exogenous dome lavas are unoxidized and assigned to Type A. Some samples show signs of reduction, which may have occurred around fumaroles. We propose that location within the dome and the process of dome growth are the factors that control oxidation.  相似文献   

9.
Activity at Somma-Vesuvio volcanic area in southern Italy is monitored by seismic stations and periodic geodetic and gravity surveys. The seismic network, which consists at present of four vertical stations and one three-component station, recorded an increase in earthquake activity in 1978 and between November 1988 and March 1989. During the later activity, earthquakes were located in a cluster about 3 km beneath the summit of the volcano. Two tide gauges, two tiltmeters and a recording gravimeter are also operating at Somma-Vesuvio. Yearly levelling surveys are conducted along several closed routes that extend from as much as 6 km from the base of the volcano to the summit area. Survey results reveal no significant ground movement since 1959, except for a slight subsidence around the rim of the summit crater. Gravity changes have been larger than the expected 10 μGal uncertainty of the measurements. The lack of contemporary elevation changes implies that the observed gravity changes are the result of a slight change in density structure. The cone of Somma-Vesuvio has been very stable for the last few decades, showing no indications of a buildup to activity. The lack of surface movement should rule out a magma-supply rate to this volcano at the historic eruptive rate of 0.002 km3/yr.  相似文献   

10.
The Mt Cameroon volcano is the highest and most active volcano of the Cameroon Volcanic Line. Little geological information is available for improving the understanding of the structure of this large volcanic system and its relationship to regional tectonics. After reviewing the tectonic evolution of the region, the analysis of a Digital Elevation Model and results from a field campaign dedicated to mapping geological structures in the summit area and at the SE base of Mt Cameroon are presented. Mt Cameroon is a lava-dominated volcano with long steep (over 30°) flanks. It is elongate parallel to its well defined rift zone. The summit plateau is bordered by 10 m high cliffs formed by summit subsidence along normal faults. Geological profiles were measured along rivers cutting through a topographic step at the SE base of Mt Cameroon. This step is associated with deformed Miocene sediments from the Douala basin that are overlain by volcanic products. Weak sediments of this area are deformed by 050°–060° and 020°–030° trending asymmetrical folds verging toward the SE, and thrusts faults related to the spreading of the volcano over its mechanically weak substratum. Combined remote sensing and field observations suggest that spreading is accommodated by summit subsidence and flanks sliding. Both slow spreading movements and catastrophic collapses of the steep flanks are interpreted to result from complex interactions between the growing edifice, repeated dyke intrusions, the weak sedimentary substratum and tectonic structures.  相似文献   

11.
 Investigation of well-exposed volcaniclastic deposits of Shiveluch volcano indicates that large-scale failures have occurred at least eight times in its history: approximately 10,000, 5700, 3700, 2600, 1600, 1000, 600 14C BP and 1964 AD. The volcano was stable during the Late Pleistocene, when a large cone was formed (Old Shiveluch), and became unstable in the Holocene when repetitive collapses of a portion of the edifice (Young Shiveluch) generated debris avalanches. The transition in stability was connected with a change in composition of the erupting magma (increased SiO2 from ca. 55–56% to 60–62%) that resulted in an abrupt increase of viscosity and the production of lava domes. Each failure was triggered by a disturbance of the volcanic edifice related to the ascent of a new batch of viscous magma. The failures occurred before magma intruded into the upper part of the edifice, suggesting that the trigger mechanism was indirectly associated with magma and involved shaking by a moderate to large volcanic earthquake and/or enhancement of edifice pore pressure due to pressurised juvenile gas. The failures typically included: (a) a retrogressive landslide involving backward rotation of slide blocks; (b) fragmentation of the leading blocks and their transformation into a debris avalanche, while the trailing slide blocks decelerate and soon come to rest; and (c) long-distance runout of the avalanche as a transient wave of debris with yield strength that glides on a thin weak layer of mixed facies developed at the avalanche base. All the failures of Young Shiveluch were immediately followed by explosive eruptions that developed along a similar pattern. The slope failure was the first event, followed by a plinian eruption accompanied by partial fountain collapse and the emplacement of pumice flows. In several cases the slope failure depressurised the hydrothermal system to cause phreatic explosions that preceded the magmatic eruption. The collapse-induced plinian eruptions were moderate-sized and ordinary events in the history of the volcano. No evidence for directed blasts was found associated with any of the slope failures. Received: 28 June 1998 / Accepted: 28 March 1999  相似文献   

12.
A particular nuée ardente type (Merapi-type avalanche nuée) has been defined at the Merapi volcano because of its prominent role in the recent activity of the volcano: gravity plays a significant role during the eruption. However, some other eruption styles occur too producing surges and ashfalls. Three types of tephra, deposited in a very short time-span (15 years) are compared: chemistry and mineralogy are similar, but grain-size analyses are different. There is no vesicular glass, and it is concluded that there is an absence of new magma. This example shows clearly the variety of volcanic styles, with similar chemistry in a very short period. Avalanche nuées from collapsed domes or flows are separated into two types:
  1. Merapi-typesensu stricto, without any fresh glass, derived from a wholly solidified dome.
  2. Arenal-type, containing pumiceous glass, derived from a dome, the interior of which is still liquid.
  相似文献   

13.
Abstract Nekoma volcano forms part of the arc axis volcanic array of the North-eastern Honshu arc, Japan, which is commonly characterized by medium-K lava suites. However, Nekoma is exceptional because many of its lavas are low-K. This anomaly has been a matter of debate. Nekoma was active from 1.1 to 0.35 Ma. The volcano consists of thick andesite flows and domes associated with block and ash flow deposits produced during lava dome formation. A horseshoe-shaped collapse caldera was formed at the summit and small lava domes extruded into the caldera. Stratigraphy, published K–Ar ages, and tephrochronology define three stages of volcanic activity, about 1.1 Ma (Stage 1), 0.8–0.6 Ma (Stage 2) and 0.45–0.35 Ma (Stage 3; post caldera stage). Low-K andesites occur in all stages. Extremely low-K andesite was also associated in Stage 2 and medium-K andesite was dominant in Stage 3. In general, lavas changed from low-K to medium-K after caldera formation. Geochemical study of the Nekoma lavas shows that both low-K and medium-K lavas are isotopically similar and were derived from a common source. Adatara and Azuma volcanoes, which lie close to Nekoma, also have both low-K and medium-K andesites. However, Sr isotope ratios or temporal-spatial variations in K-level lava classification vary between the three centers. Comparisons of K suites and Sr isotope ratios with frontal arc volcanoes in North-east–Honshu suggest source heterogeneity existed in both medium- and low-K suites. The K contents of lavas and their Sr isotopes are not simply related. This requires re-examination of models for chemical variation of andesites in arcs.  相似文献   

14.
Numerical models of the extrusion and gravity current of a viscous incompressible fluid are studied to determine the shapes of salt structures formed on the Earth’s surface and the velocities of rock salt extrusion and lateral spreading. Two main types of salt extrusion are examined. In the case of active extrusion, salt rises to the surface at a velocity of about 30–35 cm/yr, forming a salt dome about 550 m in height. In the case of passive extrusion, the velocity of salt extrusion from under a newly developing sedimentary minibasin is significantly lower. In the course of its evolution, the salt dome becomes topographically lower and transforms into a broad plateau. The extrusion velocity of salt controls the shape, size, and velocity of its gravity current. The shapes of salt domes modeled in this study agree well with observations. The gravity current velocities in the models vary from 3 m/yr to 60 cm/yr, depending on the proximity to the current orifice. Numerical modeling of salt extrusion and gravity current in various geodynamic settings can be used for a detailed analysis of the geological and geophysical evolution of structures containing salt layers and the related oil and gas fields.  相似文献   

15.
Repetitive gravity surveys at Pacaya Volcano from 1975 to 1979 revealed time-dependent changes in the gravity field, which although related to volcanic activity, could not be uniquely attributed to elevation changes or mass redistributions because elevation control was lacking. Elevation control was established in July 1979 using precision leveling. Relative elevation and gravity measurements in June and July of 1979, January 1980 and June 1980 indicate concurrent gravity and elevation changes contemporaneous with variations in eruptive activity. From June 1979 to January 1980, while fumarolic activity was dominant, relative to the most remote station, the volcano deflated by at least 195 mm and the gravity field increased by up to 221 μgal. From January 1980 to June 1980, preceding a Strombolian eruption beginning about June 1980, the volcano inflated by at least 19 mm and the gravity field decreased by up to 231 μgal. Gravity change maps for the intervals of January 1978 to June 1979, June 1979 to January 1980, and January 1980 to June 1980 show areas subject to repeated positive and negative gravity change. Some of those areas coincide with areas of maximum elevation change observed in the June 1979–January 1980 and January 1980–June 1980 intervals; however, gravity changes were observed in areas lacking elevation changes. Adjusting observed gravity changes for elevation changes using a free-air value of −3.086 μgal/cm does not substantially alter the pattern, position, or amplitude of the gravity changes. The relationship between gravity changes, elevation changes, and volcanic activity requires a mechanism producing gravity decreases with little inflation during times of increased eruptive activity, and producing gravity increases with subsidence during times of declining eruptive activity. Such a pattern of changes could be produced by a near-surface magma body in which high-density degassed magma is displaced volume for volume by low-density vesiculated magma during time of increased eruptive activity, and in which loss of gasses by fumarolic activity produces a density increase and a reduction in volume of the magma body during periods of declining eruptive activity. Such a pattern of changes could also be induced by a low-density, vesiculated magma body moving upward in the volcanic pile by piecemeal stoping where the high-density rocks of the volcano are replaced on a volume for volume basis by low-density magma during periods of increasing eruptive activity; and by later density increases and magma body volume reductions accompanying devolatilization and devesiculation during periods of declining eruptive activity. Simple density change and density contrast models involving shallow magma bodies at depths of 100 to 200 m indicate density changes or contrasts of about 0.4 g/cm3 could produce the gravity changes.  相似文献   

16.
 A first-order leveling survey across the northeast part of the Yellowstone caldera in September 1998 showed that the central caldera floor near Le Hardy Rapids rose 24±5 mm relative to the caldera rim at Lake Butte since the previous survey in September 1995. Annual surveys along the same traverse from 1985 to 1995 tracked progressive subsidence near Le Hardy Rapids at an average rate of –19±1 mm/year. Earlier, less frequent surveys measured net uplift in the same area during 1923–1976 (14±1 mm/year) and 1976–1984 (22±1 mm/year). The resumption of uplift following a decade of subsidence was first detected by satellite synthetic aperture radar interferometry, which revealed approximately 15 mm of uplift in the vicinity of Le Hardy Rapids from July 1995 to June 1997. Radar interferograms show that the center of subsidence shifted from the Sour Creek resurgent dome in the northeast part of the caldera during August 1992 to June 1993 to the Mallard Lake resurgent dome in the southwest part during June 1993 to August 1995. Uplift began at the Sour Creek dome during August 1995 to September 1996 and spread to the Mallard Lake dome by June 1997. The rapidity of these changes and the spatial pattern of surface deformation suggest that ground movements are caused at least in part by accumulation and migration of fluids in two sill-like bodies at 5–10 km depth, near the interface between Yellowstone's magmatic and deep hydrothermal systems. Received: 30 November 1998 / Accepted: 16 April 1999  相似文献   

17.
Temporal gravity changes provide information about mass and/or density variations within and below the volcano edifice. Three active volcanoes have been under investigation; each of them related to a plate boundary: Mayon/Luzon/Philippines, Merapi/Java/Indonesia, and Galeras/Colombia. The observed gravity changes are smaller than previously expected but significant. For the three volcanoes under investigation, and within the observation period, mainly the increase of gravity is observed, ranging from 1,000 nm–2 to 1,600 nms–2. Unexpectedly, the gravity increase is confined to a rather small area with radii of 5 to 8 km around the summit. At Mayon and Merapi the parallel GPS measurements yield no significant elevation changes. This is crucial for the interpretation, as the internal pressure variations do not lead to significant deformation at the surface. Thus the classical Mogi-model for a shallow extending magma reservoir cannot apply. To confine the possible models, the attraction due to changes of groundwater level or soil moisture is estimated along the slope of Merapi exemplarily by 2-D modelling. Mass redistribution or density changes were evaluated within the vent as well as deeper fluid processes to explain the gravity variations; the results are compared to the model incorporating the additional effect of elastic deformation.  相似文献   

18.
 Lascar Volcano (22°22'S, 67°44'W) is the most active volcano of the central Andes of northern Chile. Activity since 1984 has been characterised by periods of lava dome growth and decay within the active crater, punctuated by explosive eruptions. We present herein a technique for monitoring the high-temperature activity within the active crater using frequent measurements of emitted shortwave infrared (SWIR) radiation made by the spaceborne along-track scanning radiometer (ATSR). The ATSR is an instrument of low spatial resolution (pixels 1 km across) that shares certain characteristics with the MODIS instrument, planned for use as a volcano monitoring tool in the NASA EOS Volcanology Project. We present a comprehensive time series of over 60 cloud- and plume-free nighttime ATSR observations for 1992–1995, a period during which Lascar experienced its largest historical eruption. Variations in short wavelength infrared flux relate directly to changes in high-temperature surfaces within the active crater. From these data, interpretations can be made that supplement published field reports and that can document the presence and status of the lava dome during periods where direct, ground-based, observations are lacking. Our data agree with less frequent information collected from sensors with high spatial resolution, such as the Landsat thematic mapper (Oppenheimer et al. 1993) and are consistent with field observations and models that relate subsidence of the dome to subsequent explosive eruptions (Matthews et al., 1997). Most obviously, Lascar's major April 1993 eruption follows a period in which the magnitude of emitted shortwave infrared radiation fell by 90%. At this time subsidence of the 1991–1992 lava dome was reported by field observers and this subsidence is believed to have impeded the escape of hot volatiles and ultimately triggered the eruption (Smithsonian Institution 1993a). Extrapolating beyond the period for which field observations of the summit are available, our data show that the vulcanian eruption of 20 July 1995 occurred after a period of gradual increase in short wavelength infrared flux throughout 1994 and a more rapid flux decline during 1995. We attribute this additional, otherwise undocumented, cycle of increasing and decreasing SWIR radiance as most likely representing variations in degassing through fumaroles contained within the summit crater. Alternatively, it may reflect a cycle of dome growth and decay. The explosive eruption of 17 December 1993 appears to have followed a similar, but shorter, variation in SWIR flux, and we conclude that large explosive eruptions are more likely when the 1.6-μm signal has fallen from a high to a low level. The ATSR instrument offers low-cost data at high temporal resolution. Despite the low spatial detail of the measurements, ATSR-type instruments can provide data that relate directly to the status of Lascar's lava dome and other high-temperature surfaces. We suggest that such data can therefore assist with predictions of eruptive behaviour, deduced from application of physical models of lava dome development at this and similar volcanoes. Received: 1 October 1996 / Accepted: 13 January 1997  相似文献   

19.
Cladistics is a systematic method of classification that groups entities on the basis of sharing similar characteristics in the most parsimonious manner. Here cladistics is applied to the classification of volcanoes using a dataset of 59 Quaternary volcanoes and 129 volcanic edifices of the Tohoku region, Northeast Japan. Volcano and edifice characteristics recorded in the database include attributes of volcano size, chemical composition, dominant eruptive products, volcano morphology, dominant landforms, volcano age and eruptive history. Without characteristics related to time the volcanic edifices divide into two groups, with characters related to volcano size, dominant composition and edifice morphology being the most diagnostic. Analysis including time based characteristics yields four groups with a good correlation between these groups and the two groups from the analysis without time for 108 out of 129 volcanic edifices. Thus when characters are slightly changed the volcanoes still form similar groupings. Analysis of the volcanoes both with and without time yields three groups based on compositional, eruptive products and morphological characters. Spatial clusters of volcanic centres have been recognised in the Tohoku region by Tamura et al. (Earth Planet Sci Lett 197:105–106, 2002). The groups identified by cladistic analysis are distributed unevenly between the clusters, indicating a tendency for individual clusters to form similar kinds of volcanoes with distinctive but coherent styles of volcanism. Uneven distribution of volcano types between clusters can be explained by variations in dominant magma compositions through time, which are reflected in eruption products and volcanic landforms. Cladistic analysis can be a useful tool for elucidating dynamic igneous processes that could be applied to other regions and globally. Our exploratory study indicates that cladistics has promise as a method for classifying volcanoes and potentially elucidating dynamic and evolutionary volcanic processes. Cladistics may also have utility in hazards assessment where spatial distributions and robust definitions of a volcano are important, as in locating sensitive facilities such as nuclear reactors and repositories.  相似文献   

20.
Mount Baker volcano displayed a short interval of seismically-quiescent thermal unrest in 1975, with high emissions of magmatic gas that slowly waned during the following three decades. The area of snow-free ground in the active crater has not returned to pre-unrest levels, and fumarole gas geochemistry shows a decreasing magmatic signature over that same interval. A relative microgravity survey revealed a substantial gravity increase in the ~30 years since the unrest, while deformation measurements suggest slight deflation of the edifice between 1981–83 and 2006–07. The volcano remains seismically quiet with regard to impulsive volcano-tectonic events, but experiences shallow (<3 km) low-frequency events likely related to glacier activity, as well as deep (>10 km) long-period earthquakes. Reviewing the observations from the 1975 unrest in combination with geophysical and geochemical data collected in the decades that followed, we infer that elevated gas and thermal emissions at Mount Baker in 1975 resulted from magmatic activity beneath the volcano: either the emplacement of magma at mid-crustal levels, or opening of a conduit to a deep existing source of magmatic volatiles. Decadal-timescale, multi-parameter observations were essential to this assessment of magmatic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号