首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diarrhetic shellfish poisoning (DSP) events are often registered in Slovenian mariculture areas (Gulf of Trieste, Adriatic Sea) and are related to the occurrence of Dinophysis spp. The annual dynamic of this genus and succession of the most important species were studied at two shellfish farms during monitoring fieldwork in the period 1995-2003. Results indicate that the Dinophysis genus maintains a relatively stable inter-annual dynamic at both sites. The Dinophysis community is characterized by two surface maxima in June and September, while in the middle layer only the autumn peak is pronounced (peak median 92 cells l(-1)). Occasional abundance maxima of around 2000 cells l(-1) in the surface layer indicate that potential outbursts of toxic species are less predictable than their seasonal dynamic. On the basis of multivariate analysis, Dinophysis sacculus was characterized as a typical late spring-early summer species, and Dinophysis caudata and Dinophysis fortii as autumn species. Correlation analysis revealed the influence of stratified conditions only on the most abundant species, D. sacculus. Ecological characteristics of the species were combined with shellfish safety requirements towards a more effective monitoring.  相似文献   

2.
The effectiveness of passive diffusion bag (pdb) samplers in the measurement of selected volatile organic compounds (VOCs) is dependent on a number of factors. At some sites and wells, pdb sampling methods provide an attractive alternative to other sampling methods. In this discussion, I provide two examples of comparisons of temporal trends in tetrachloroethylene (PCE) concentrations from passive and low-flow sampling methods. At the example field site, large changes in PCE concentrations occurred over the deployment period(s) of the pdb samplers, yet the concentrations from the pdb samples are similar to the low-flow samples and the overall trends are the same.  相似文献   

3.
Passive diffusive-adsorptive samplers are being considered for vapor intrusion (VI) pathway assessment, particularly where multi-week time-weighted average concentrations are desired. Recent studies have shown that passive samplers can produce accurate results under well-controlled steady concentration conditions, and field performance was also demonstrated at several sites. The objective of this study was to examine passive sampler performance in settings with time-varying indoor air concentrations, through a comparison of passive sampler results to concentrations determined by 24-h active sorbent tube sampling in a series of multi-week deployments. Sampling was performed in a well-instrumented residential building as well as industrial buildings, over periods of time ranging from 1 to 7 weeks. Strong linear correlations were noted between passive and active sampling concentration results for some passive samplers, with passive sampling results being similar to or lower than measured active sampling results by about 50% for those samplers in the residential study and about 25% higher in the industrial building study. Other samplers produced poor agreement. The conclusion from this study is that some passive samplers have great potential for use in multi-week indoor air quality monitoring. It was further determined that there is need for accepted procedures to validate and calibrate passive samplers for use in the field.  相似文献   

4.
Hydrogeologic and ground water quality data obtained from a gas-driven multilevel sampler system and a polyvinyl chloride (PVC) monitoring well nest with the same aquifer communication intervals are compared. All monitoring points are in close proximity to each other. The study was conducted at an eight-acre uncontrolled hazardous waste site. The site is located in an alluvial valley composed of approximately 40 feet of alluvium overlying shale bedrock. The ground water at the site is contaminated with various organic constituents. A ground water monitoring network consisting of 26 conventional monitoring wells, nine observation well points, and six multilevel gas-driven samplers was established to characterize the hydrogeologic regime and define the vertical and horizontal extent of contamination in the vicinity of the abandoned chemical plant. As part of this study, a multilevel monitoring system was installed adjacent to a well nest. The communication zones of the multilevel samplers were placed at the same elevation as the sand packs of the well nest. The multilevel sampler system and well nest are located in a contaminated area directly downgradient of the site. A comparison of the vertical head distribution and ground water quality was performed between the well nest and the multilevel sampling system. The gas-driven multilevel sampling system consists of three gas-driven samplers that monitor separate intervals in the unconsolidated materials. The well nest, composed of two PVC monitoring wells in separate boreholes, has the same communication interval as the other two gas-driven samplers. Hydraulic head information for each multilevel sampler was obtained using capillary tubing. This was compared with heads obtained from the well nest utilizing an electric water level indicator. Chemical analyses from the PVC and multilevel sampler wells were performed and compared with one another. The analyses included organic acids, base neutrals, pesticides, PCBs, metals, volatile organics, TOX, TOC, CN, pH and specific conductance.  相似文献   

5.
I.m~UCrIONBedloadisthesedimentwhichmovesalongtheriverbedintheformofrolling,slidingandsaltation.BedloadmaycreatemanyproblemsintheoperationandmaintenanceofnavigationchannelandinthedevelOPmentofhydroelectricity.Dataofbedloaddischargearealsorequiredinthedesignofreservoir,inwhichtheinflowbedloadareallactuallytrapped.Thewaysofbedloadmotionaredifferentfordifferentsizes.Thus,itisextremelydifficulttodeterminethebedloaddischargeaccurately.Manyequationshavebeenproposedtocalculatethebedloaddischarge.H…  相似文献   

6.
The results of comprehensive field testing of on‐site vapor‐phase‐based groundwater monitoring methods are presented to demonstrate their utility as a robust and cost‐effective approach for rapidly obtaining volatile organic compounds (VOCs) concentration data from a monitoring well. These methods—which rely on sensitive, commercially available field equipment to analyze vapor in equilibrium with groundwater—proved easy to implement and can be tailored to site‐specific needs, including multilevel sampling. During field testing, low‐flow groundwater concentrations could be reasonably estimated using submerged passive vapor diffusion samplers or field equilibration of collected groundwater (R2 = 0.85 to 0.96). These two methods are not as reliant on in‐well mixing to overcome vertical stratification within wells as simpler headspace methods. The importance of well and aquifer‐specific factors on concentration data (and therefore method selection) is highlighted, including the effect of changing in‐well patterns due to seasonal temperature gradients. Results indicated that vertical stratification was relatively limited within the set of wells included in these studies, resulting in similar performance for short depth‐discrete passive vapor diffusion samplers (constructed from 40‐mL vials) and longer samplers (2.5 to 5 feet in length) designed to cover a larger portion of the screened interval. A year‐long, multi‐event evaluation demonstrated that vapor‐phase‐based monitoring methods are no more variable than conventional groundwater monitoring methods, with both types subject to similar spatial and temporal variability that can be difficult to reduce. Vapor sampling methods represent a promising approach for estimation of groundwater concentrations by reducing the cost liabilities associated with monitoring while providing a more sustainable approach.  相似文献   

7.
To investigate the combined effects of decreasing taxonomic resolution (i.e. species, family, phylum), the use of different mesh-size (1.0 mm and 0.5 mm) and the type of samplers used (van Veen vs. corers taken by divers) on the quality of data obtained, a comparative study was undertaken with the overall aim of identifying cost efficient methods for routinely monitoring the ecological change caused by Mediterranean fish farming. The results clearly showed that information loss was relatively low as data were aggregated at higher taxonomic levels, particularly up to the level of family or even order. It was also found that the extra information gained by sieving samples through a 0.5 mm sieve did not improve the ability to distinguish the potentially impacted sites from the control stations. Finally, it was found that a relatively large proportion of the available information concerning the community structure such as abundance, biomass or diversity is lost when sampling is carried out with corers. A cost/benefit ratio analysis for the two sampling and the two sieving methods showed minimal values for the van Veen samples (for both sieve fractions) at the family level, indicating that analysis at this level gives the best balance between precision of the results and decrease in taxonomic effort. However, if the time needed to sort the samples is included in the analysis, then samples taken with corers using a 0.5 mm sieve and identified to families seems like a good compromise between precision and cost.  相似文献   

8.
Two methods for sampling aggregates in the soil surface under simulated rain were compared using two soil types. Results showed that aggregate size distributions obtained by spatula sampling were not significantly different from those obtained using rings buried in the soil surface, provided both were sampled to the same depth. The effect of transporting samples over a distance of 60 km was non-significant when samples were placed in bottles half-filled with rainwater and transported in an upright position. The per cent aggregates > 0.125 mm was found to be the most suitable index of aggregate stability for both soils.  相似文献   

9.
Installation of a permeable reactive barrier to intercept a phosphate (PO4) plume where it discharges to a pond provided an opportunity to develop and test methods for monitoring the barrier's performance in the shallow pond-bottom sediments. The barrier is composed of zero-valent-iron mixed with the native sediments to a 0.6-m depth over a 1100-m2 area. Permanent suction, diffusion, and seepage samplers were installed to monitor PO4 and other chemical species along vertical transects through the barrier and horizontal transects below and near the top of the barrier. Analysis of pore water sampled at about 3-cm vertical intervals by using multilevel diffusion and suction samplers indicated steep decreases in PO4 concentrations in ground water flowing upward through the barrier. Samples from vertically aligned pairs of horizontal multiport suction samplers also indicated substantial decreases in PO4 concentrations and lateral shifts in the plume's discharge area as a result of varying pond stage. Measurements from Lee-style seepage meters indicated substantially decreased PO4 concentrations in discharging ground water in the treated area; temporal trends in water flux were related to pond stage. The advantages and limitations of each sampling device are described. Preliminary analysis of the first 2 years of data indicates that the barrier reduced PO4 flux by as much as 95%.  相似文献   

10.
Ground water scientists engaged in assessment of contaminant occurrence and migration are faced with a number of practical problems. These problems include, but are not limited to, escalating drilling costs, labor costs for proper sampling of monitoring wells, collection of ground water samples that are representative of aquifer conditions and accurate delineation of hydrogeologic regimes and the areal and vertical distribution of ground water contaminants.
In response to these problems, a number of ground water sampling devices have been developed. One device is a gas-driven ground water sampler developed for multilevel installation. Use of these samplers have been shown to decrease project costs and allow easy collection of high quality samples. However, the currently available samplers are relatively expensive, some of them operate on a closed check valve system, which does not allow determination of piezometric heads in aquifers with fluctuating water tables and they are not adaptable to design changes in the field necessitated by site-specific hydrogeologic conditions.
GHR Engineering Associates Inc. has designed an effective gas-driven sampler, which accomplishes the same objectives as the commercially available models, but is on the average, one-tenth the cost of currently available samplers. It offers the advantages of being more cost-effective than commercially available models, has an open check valve system to allow measurements of water table fluctuation and is easily adaptable in the field to meet site-specific hydrogeologic conditions.  相似文献   

11.
A standpipe system was developed for testing the reliability of ground water samplers. The unit consists of a stainless steel pipe 5 inches (13 centimeters) in diameter and 100 feet (30.5 meters) in height. It has 14 sampling ports from which control samples can be withdrawn at the same time and position as the samples are collected by a sampler lowered to that position. Test solutions were made in two mixing tanks, totaling 260 gallons (980 liters), by diluting the concentrate of five volatile chlorohydrocarbons in water at two levels of concentration: 10-to-30 and 100-to-200 parts per billion (micrograms per liter).
A gas chromatograph interfaced with a purge-and-trap system was used to perform the analyses. Comparisons of the control samples with the sampler-collected samples have indicated that the three non-pumping samplers had recoveries in the range of 92.4 to 103.5 percent and the three pumping samplers had recoveries ranging from 97.7 to 101.5 percent.  相似文献   

12.
Subsequent to an initial wet season flood event in the Brisbane River, Australia, both fast (naked disk) and slow (membrane-covered) variants of SDB-RPS Empore disk passive sampling devices were deployed with an automated grab sampling program. A trend increase in the aquatic dissolved concentrations of diuron and simazine was observed over a 10-day period. Kinetic and equilibrium parameters for each sampler were calculated based on the dynamic concentration. Absolute percent difference for duplicate passive samples was <10% in the fast and <25% in the slow samplers. For kinetic sampling, significantly shortened integrative periods are available with the fast compared with the slow variant, with higher sampling rates offering improved detection limits. The study demonstrates a method for determining kinetic parameters of passive samplers in a variable concentration field deployment, and illustrates the differences in quality between active and passive data, in terms of capturing changes in concentration associated with rainfall events.  相似文献   

13.
To study the spatial and temporal variability of water dynamics and chemical reactions within the coastal groundwater mixing zones (CGMZs), high‐resolution periodical and spatial groundwater sampling within CGMZs is needed. However, current samplers and sampling systems may require heavy driving machines to install. There is also possible contamination from the metal materials for current samplers and sampling systems. Here, a permanent multilevel sampling system is designed to sample coastal groundwater within CGMZs. This cost‐effective system consists of metal‐free materials and can be installed easily. The system is tested in Po Sam Pai and Tingkok, Tolo Harbor and Hong Kong. Major ions, nutrients, stable isotopes and radium and radon isotopes were analyzed and the data provided scientific information to study the fresh‐saltwater interface fluctuations, and temporal variations and spatial heterogeneity of geochemical processes occurred within CGMZs. The reliable spatial and temporal data from the sampling system demonstrate that the system functions well and can provide scientific data for coastal aquifer studies.  相似文献   

14.
The accurate measurement of suspended sediment (<200 μm) in aquatic environments is essential to understand and effectively manage changes to sediment, nutrient, and contaminant concentrations on both temporal and spatial scales. Commonly used sampling techniques for suspended sediment either lack the ability to accurately measure sediment concentration (e.g., passive sediment samplers) or are too expensive to deploy in sufficient number to provide landscape‐scale information (e.g., automated discrete samplers). Here, we evaluate a time‐integrated suspended sediment sampling technique, the pumped active suspended sediment (PASS) sampler, which collects a sample that can be used for the accurate measurement of time‐weighted average (TWA) suspended sediment concentration and sediment particle size distribution. The sampler was evaluated against an established passive time‐integrated suspended sediment sampling technique (i.e., Phillips sampler) and the standard discrete sampling method (i.e., manual discrete sampling). The PASS sampler collected a sample representative of TWA suspended sediment concentration and particle size distribution of a control sediment under laboratory conditions. Field application of the PASS sampler showed that it collected a representative TWA suspended sediment concentration and particle size distribution during high flow events in an urban stream. The particle size distribution of sediment collected by the PASS and Phillips samplers were comparable and the TWA suspended sediment concentration of the samples collected using the PASS and discrete sampling techniques agreed well, differing by only 4% and 6% for two different high flow events. We should note that the current configuration of the PASS sampler does not provide a flow‐weighted measurement and, therefore, is not suitable for the determination of sediment loads. The PASS sampler is a simple, inexpensive, and robust in situ sampling technique for the accurate measurement of TWA suspended sediment concentration and particle size distribution.  相似文献   

15.
Because of their fast response to hydrological events, small catchments show strong quantitative and qualitative variations in their water runoff. Fluxes of solutes or suspended material can be estimated from water samples only if an appropriate sampling scheme is used. We used continuous in‐stream measurements of the electrical conductivity of the runoff in a small subalpine catchment (64 ha) in central Switzerland and in a very small (0·16 ha) subcatchment. Different sampling and flux integration methods were simulated for weekly water analyses. Fluxes calculated directly from grab samples are strongly biased towards high conductivities observed at low discharges. Several regressions and weighted averages have been proposed to correct for this bias. Their accuracy and precision are better, but none of these integration methods gives a consistently low bias and a low residual error. Different methods of peak sampling were also tested. Like regressions, they produce important residual errors and their bias is variable. This variability (both between methods and between catchments) does not allow one to tell a priori which sampling scheme and integration method would be more accurate. Only discharge‐proportional sampling methods were found to give essentially unbiased flux estimates. Programmed samplers with a fraction collector allow for a proportional pooling and are appropriate for short‐term studies. For long‐term monitoring or experiments, sampling at a frequency proportional to the discharge appears to be the best way to obtain accurate and precise flux estimates. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract

The large quantities of sediment eroded from the Sydney F3 Expressway extension and the lack of defined channels within the catchment presented several problems of discharge and sediment load sampling. The monitoring equipment at the catchment outlet, namely pump samplers and capacitance-based water level sensors, was computer controlled, but for partial area monitoring manual methods were used together with Gerlach traps and erosion pins. The monitoring at the catchment outlet was cost-effective because of the use of electronic equipment. The sampling strategies are described and recommendations for future sampling programs are presented. Coarse sand and silt-clay concentrations in many samples were more than 10 g 1?1 at the outlet. In some samples the silt-clay concentrations exceeded 30 g 1?1 and the coarse sand concentrations 100 g 1?1.  相似文献   

17.
Unbaited phreatic traps are a promising new method for sampling subterranean limnofauna. The aim of this study is to evaluate whether such trap systems are suitable to gather representative samples of the physico-chemical parameters and the invertebrate fauna of the aquifer. Fifteen traps, installed in five groundwater bores, and four traps located in the hyporheic zone, were sampled twice monthly over a 1 year period (June 2003–June 2004). Water samples were removed in three separated fractions (hose, trap and aquifer water), analysed for physico-chemical and faunal characteristics and compared with one another. The study was carried out in the Nakdong River floodplain, Korea. Physico-chemical characteristics of trap and aquifer were similar, but differed greatly from the hose samples. Abundances of fauna inside the traps were higher than in the aquifer, whereas there were no differences in taxonomic composition of the trap and aquifer samples. Biases of abundances suspected due to the use of traps were negligible in the groundwater, though it is recommended that comparisons between groundwater and hyporheic abundances ascertained by traps be handled cautiously.  相似文献   

18.
This paper reviews both field and laboratory studies that tested or compared the ability of various types of sampling devices to deliver representative ground water samples. Several types of grab samplers, positive displacement devices, and suction-lift devices were evaluated, Gas-lift and inertial-lift pumps were also evaluated. This study found that most of these devices can. under certain circumstances, alter the chemistry of ground water samples, das-lift pumps, older types of submersible centrifugal pumps, and suction-lift devices are not recommended when sampling for sensitive constituents such as volatile organics and inorganics, or inorganics that are subject to oxidation/precipitation reactions. In general, of the devices reviewed in this paper, bladder pumps gave the best recovery of sensitive constituents. However, better performance could be achieved for several devices if improved operational guidelines were developed by additional testing, especially at lower flow rates. Clearly, further research is warranted. Future studies should focus on pumping rate, flow control mechanisms, and dedication or decontamination of sampling devices.  相似文献   

19.
As part of an agricultural non-point-source study in the Conestoga River head waters area in Pennsylvania, different methods for collecting ground water samples from a fractured carbonate-rock aquifer were compared. Samples were collected from seven wells that had been cased to bedrock and drilled as open holes to the first significant water-bearing zone. All samples were analyzed for specific conductance, dissolved oxygen, and dissolved-nitrogen species. Water samples collected by a point sampler without pumping the well were compared to samples collected by a submersible pump and by a point sampler after pumping the well. Samples collected by using a point sampler, adjacent to major water-bearing zones in an open borehole without pumping the well, were not statistically different from samples collected from the pump discharge or from point samples collected adjacent to major water-bearing zones after pumping the well. Samples collected by using a point sampler without pumping the well at depths other than those adjacent to the water-bearing zones did not give the same results as the other methods, especially when the water samples were collected from within the well casings. It was concluded that, for the wells at this site, sampling adjacent to major water-bearing zones by using a point sampler without pumping the well provides samples that are as representative of aquifer conditions as samples collected from the pump discharge after reaching constant temperature and specific conductance, and by using a point sampler after pumping the well.  相似文献   

20.
Little is known about the spatial and temporal scales of variation in aeolian processes. Studies that aim to investigate surface erodibility often sample aeolian sediment transport at the nodes of a regular grid of arbitrary size. Few aeolian transport investigations have the resources to obtain sufficient samples to produce reliable models for mapping the spatial variation of transport. This study reports the use of an innovative nested strategy for sampling multiple spatial scales simultaneously using 40 sediment samplers. Reliable models of the spatial variation in aeolian sediment transport were produced and used for ordinary punctual kriging and stochastic simulated annealing to produce maps for several wind erosion events over a 25 km2 playa in western Queensland, Australia. The results support the existence of a highly dynamic wind erosion system that was responding to possibly cyclic variation in the availability of material and fluctuations in wind energy. The spatial scale of transport was considerably larger than the small scale expected of the factors controlling surface erodibility. Thus, it appears that transport cannot be used as a surrogate of erodibility at the scale of this investigation. Simulation maps of transport provided considerably more information than those from kriging about the variability in aeolian sediment transport and its possible controlling factors. The proposed optimal sampling strategy involves a nested approach using ca 50 samplers. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号