首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, we solve the field equations in metric f(R) gravity for Bianchi type VI 0 spacetime and discuss evolution of the expanding universe. We find two types of non-vacuum solutions by taking isotropic and anisotropic fluids as the source of matter and dark energy. The physical behavior of these solutions is analyzed and compared in the future evolution with the help of some physical and geometrical parameters. It is concluded that in the presence of isotropic fluid, the model has singularity at [(t)\tilde]=0\tilde{t}=0 and represents continuously expanding shearing universe currently entering into phantom phase. In anisotropic fluid, the model has no initial singularity and exhibits the uniform accelerating expansion. However, the spacetime does not achieve isotropy as t→∞ in both of these solutions.  相似文献   

2.
We utilise a form for the Hubble parameter to generate a number of solutions to the Einstein field equations with variable cosmological constant and variable gravitational constant. The Hubble law utilised yields a constant value for the deceleration parameter. A variety of solutions is presented in the Robertson-Walker spacetimes. A generalisation of the cosmic scale factor is utilised in the anisotropic Bianchi I spacetime to illustrate that new solutions may also be found in spacetimes with less symmetry than Robertson-Walker. We also show that the constant deceleration parameter used is consistent with alternate theories of gravity by considering the scalar-tensor theory of Lau and Prokhovnik with ak = 0 Robertson-Walker background.  相似文献   

3.
The possibility of using a generalized perfect resonance for the study of libration motions of asteroids near the (p+ q)/p-type commensurabilities of the mean motions of asteroids and Jupiter is considered. Based on the equations of the planar circular restricted three-body problem, the libration-motion equations are derived and their solutions for the intermediate Hamiltonian, as well as a solution taking into account perturbations of the order O(m 3/2), are determined.  相似文献   

4.
Recently, exact spatially-homogeneous solutions have been found for a conformally invariant massless scalar fieldS(t) coupled to a Robertson-Walker geometry. We investigate extending these solutions to inhomogeneous scalar fieldsS(t, x l ). For an isotropic scalar fieldS(t, r) we find a solution satisfying three of the five field equations. If we use REDUCE, we show that the remaining equations forceS=S(t).  相似文献   

5.
The birefringence of electromagnetic radiation from gamma-ray burst (GRB) afterglows due to the Lorentz violation (LV) of spacetime has been calculated. The dependence of this effect on the radiation wavelength and redshift z in the ΛCDM model of the Universe has been established. It is shown that polarization tests for GRB afterglows can be invoked to measure the LV parameters. LV causes oscillations in the parameters of the afterglow spectrum that can be in the ultraviolet spectral range and will depend significantly on redshift z. This can facilitate the recording of LV for an electromagnetic field and can lower significantly the energy threshold of its detection.  相似文献   

6.
This paper is devoted to investigate the modified f(R) theory of gravity, where R represents the Ricci scalar respectively. For our current work, we consider the Friedmann-Robertson-Walker (FRW) space-time for finding solutions of field equations. Furthermore, some numerical solutions are examined by taking the Klein-Gordon Equation and using distinct values of the equation of state (EoS) parameter. In this way, we have discussed the solutions for acceleration expansion of the Universe, sub-relativistic Universe, radiation Universe, ultra-relativistic Universe, dust Universe, and stiff fluid Universe respectively. Moreover, their behaviours are examined by using power-law and exponential law techniques. The bouncing scenario is also discussed by choosing some particular values of the model parameters and observed the energy conditions, which are satisfied for a successful bouncing model. It is also concluded that some solution in f(R) theory of gravity supports the concept of exotic matter and accelerated expansion of the Universe due to a large amount of negative pressure.  相似文献   

7.
We made a power spectrum analysis on the quasar emission redshift distribution, and further confirmed the existence of periodicity in respect of the quantity x = F(z,qo) defined at (8).The existence of this periodicity does not mean that the quasar redshift is non-cosmological, for it can be interpreted as a remnant of density (acoustic) perturbations in the early big-bang universe. For this model, we made a number of tests. We found: 1) the ratio of periodic to non-periodic components falls as the sample size increases; 2) the periodicity should be more marked for quasars in one region of the sky than for all quasars, and 3) the Jeans wavelength before the recombination epoch determines the length of the period. Using this model we also found that qo > 0.5, lending further support to the conclusion reached by other means that the universe may be closed.  相似文献   

8.
In this paper, we study self-similar solutions, and their linear stability as well, describing the flow within a spherical shell with finite thickness, expanding according to a power law of time, t q , where q>0. The shell propagates in a medium with initially uniform density and it is bounded by a strong shock wave at its outer border while the inner face is submitted to a time-dependent uniform pressure. For q=2/5, the well-known Sedov–Taylor solution is recovered. In addition, although both accelerated and decelerated shells can be unstable against dynamic perturbations, they exhibit highly different behaviors. Finally, the dispersion relation derived earlier by Vishniac (Vishniac, E.T. in Astrophys. J. 274:152, 1983) for an infinitely thin shell is obtained in the limit of an isothermal shock wave.  相似文献   

9.
In this paper we compare outcomes of some extended phantom-like cosmologies with each other and also with ΛCDM and ΛDGP. We focus on the variation of the luminosity distances, the age of the universe and the deceleration parameter versus the redshift in these scenarios. In a dynamical system approach, we show that the accelerating phase of the universe in the f(R)-DGP scenario is stable if one consider the curvature fluid as a phantom scalar field in the equivalent scalar-tensor theory, otherwise it is a transient and unstable phenomenon. Up to the parameters values adopted in this paper, the extended F(R,ϕ)-DGP scenario is closer to the ΛCDM scenario than other proposed models. All of these scenarios explain the late-time cosmic speed-up in their normal DGP branches, but the redshift at which transition to the accelerating phase occurs are different: while the ΛDGP model transits to the accelerating phase much earlier, the F(R,ϕ)-DGP model transits to this phase much later than other scenarios. Also, within the parameter spaces adopted in this paper, the age of the universe in the f(R)-DGP model is larger than ΛCDM, but this age in F(G,ϕ)-DGP is smaller than ΛCDM.  相似文献   

10.
I present updated compilations of both observational data and theoretical predictions concerning excess line width and sizes in astrophysical bodies. After removing two well-known broadening mechanisms (thermal width and width due to large scale motions such as expansion), I analyse statistically the excess line widthW excess. The excess line width shows a changing behavior with object sizeR, of the formW excess ~R q. Taking all objects together, I find thatq = 0.55 with s.d. = 0.05. This resultextends previous studies to cover 5 decades in sizes, from 0.01 pc up to 1000 pc. Taking only objects withR < 1 pc, I find thatq = 0.7 with s.d.=0.1, while taking only objects withR > 1 pc givesq = 0.5 with s.d.=0.1; thus a steeper (not flatter) value ofq at smallR may be possible. Previous claims to derive a law for objects of sizesR > 1 kpc are discussed, in relation to the problem of removing obvious large scale motions from the observed line width. Thus several models with predictedq values between 0 and 1 can be eliminated, and the remaining ones could allow weak magnetic effects on the line widths.  相似文献   

11.
In this paper, we analyze stability regions of a non-static restricted class of axially symmetric spacetime with anisotropic matter distribution. We consider f(R)=R+?R 2 model and assume hydrostatic equilibrium of the axial self-gravitating system at large past time. Considering perturbation from hydrostatic phase, we develop dynamical as well as collapse equations and explore dynamical instabilities at Newtonian and post-Newtonian regimes. It is concluded with the help of stiffness parameter, Γ 1, that radial profile of physical parameters like pressure anisotropy, energy density and higher curvature terms of the f(R) model affect the instability ranges.  相似文献   

12.
The aim of this series of papers is to develop straightforward methods of computing the response of flat galaxies to small perturbations. This Paper I considers steady state problems; Paper II considers time varying perturbations and the effects of resonances; and Paper III applies the methods developed in Papers I and II to a numerical study of the stability of flat galaxies.The general approach is to study the dynamics of each individual orbit. The orbits are described by their apocentric and pericentric radii,r a andr p , and the distribution function of an equilibrium model is a function ofr a andr p . The mass density and potential corresponding to a distribution function is found by means of an expansion in Hankel-Laguerre functions; the coefficients of the expansion being found by taking moments of the mass density of the individual orbits. This leads to a simple method of constructing equilibrium models.The response to a small perturbation is found by seeking the response of each orbit. When the perturbations are axisymmetric and slowly varying, the response can be easily found using adiabatic invariants. The potential is expanded in a series of Hankel-Laguerre functions, and the response operator becomes a discrete matrix. The condition that the model is stable against adiabatic radial perturbations is that the largest eigenvalue of the response matrix should be less than one.An analytic approximation to the response matrix is derived, and applied to estimate the eccentricity needed for stability against local perturbations.  相似文献   

13.
We present a class of exact cosmological solutions of Brans-Dicke (B-D) equations with cosmological constant in flat Robertson-Walker metric. These solutions are based on the relation øR n= constant between the B-D field and the scale factor of the universe. This relation turns out to be consistent with the equation of statep =m for the cosmic matter, provided thatn andm are suitably related to each other. Several special cases and asymptotic solutions are derived and discussed.  相似文献   

14.
Analysis of observational data of OB stars show an, excellent agreement of the density distributions in space ?(x, y, z) as well as in velocity space \(\rho (\dot x,\dot y,\dot z)\) with the predictions of the density wave theory, the values for the density and velocity fluctuations are explained only by the non-linear theory. These theoretical calculations predict perturbations greater than ±10 km s?1, consistent with the observations for the velocity field. Thus one should disregard analytical treatments of the linearized equations since they predict maximum perturbations of ±5km s?1. Another consequence of this is the fact that the Gould's Belt is not a local anomaly, but a local feature of the density waves. The analysis of observational data show that the wave pattern is similar to that of the gas and dust.  相似文献   

15.
We show that in the framework of R2 gravity and in the linearized approach it is possible to obtain spherically symmetric stationary states that can be used as a model for galaxies. Such approach could represent a solution to the Dark Matter Problem. In fact, in the model, the Ricci curvature generates a high energy term that can in principle be identified as the dark matter field making up the galaxy. The model can also help to have a better understanding on the theoretical basis of Einstein-Vlasov systems. Specifically, we discuss, in the linearized R2 gravity, the solutions of a Klein-Gordon equation for the spacetime curvature. Such solutions describe high energy scalarons, a field that in the context of galactic dynamics can be interpreted like the no-light-emitting galactic component. That is, these particles can be figured out like wave-packets showing stationary solutions in the Einstein-Vlasov system. In such approximation, the energy of the particles can be thought of as the galactic dark matter component that guarantees the galaxy equilibrium. Thus, because of the high energy of such particles the coupling constant of the R2-term in the gravitational action comes to be very small with respect to the linear term R. In this way, the deviation from standard General Relativity is very weak, and in principle the theory could pass the Solar System tests. As pertinent to the issue under analysis in this paper, we present an analysis on the gravitational lensing phenomena within this framework.Although the main goal of this paper is to give a potential solution to the Dark Matter Problem within galaxies, we add a section where we show that an important property of the Bullet Cluster can in principle be explained in the scenario introduced in this work.To the end, we discuss the generic prospective to give rise to the Dark Matter component of most galaxies within extended gravity.  相似文献   

16.
Nonlinear dynamics of electron acoustic waves (EAWs) in a plasma consisting of stationary ions, cool inertial electrons and hot electrons having a nonextensive distribution is studied. Under transverse perturbations, the nonlinear wave can be described by the general form of the Davey-Stewartson (DS) equations. The reductive perturbation technique is employed to derive Davey-Stewartson equations. From the solutions of these equations, amplitude modulation properties and stability regions of EAWs are studied in two-dimensional plasma. Further, the influence of nonextensivity of hot electrons (via q) on the characteristics of EAWs has been analysed.  相似文献   

17.
In this study, we consider a flat Friedmann-Robertson-Walker (FRW) universe in the context of Palatini f(R) theory of gravity. Using the dynamical equivalence between f(R) gravity and scalar-tensor theories, we construct a point Lagrangian in the flat FRW spacetime. Applying Noether gauge symmetry approach for this f(R) Lagrangian we find out the form of f(R) and the exact solution for cosmic scale factor. It is shown that the resulting form of f(R) yield a power-law expansion for the scale factor of the universe.  相似文献   

18.
The Lehto-Tifft redshift quantization model is used to predict the redshift distribution for certain classes of quasars, and for galaxies in the neighborhood of z = 0.5. In the Lehto-Tifft model the redshift is presumed to arise from time dependent decay from an origin at the Planck scale; the decay process is a form of period doubling. Looking back in time reveals earlier stages of the process where redshifts should correspond to predictable fractions of the speed of light. Quasar redshift peaks are shown to correspond to the earliest simple fractions of c as predicted by the model. The sharp peaks present in deep field galaxy redshifts surveys are then shown to correspond to later stages in such a decay process. Highly discordant redshift associations are expected to occur and shown to be present in the deep field surveys. Peaks in redshift distributions appear to represent the spectrum of possible states at various stage of the decay process rather than physical structures. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
We discuss the Bianchi type I model with perfect fluid as matter content in f(R,T) gravity, where R is the Ricci scalar and T is the trace of the energy-momentum tensor. We obtain exact solutions of the field equations employing the anisotropic feature of spacetime for two expansion laws namely exponential and power expansions. The physical and kinematical quantities are examined for both cases in future evolution of the universe. We also explore the validity of null energy condition and conclude that our solutions are consistent with the current observations.  相似文献   

20.
We consider the changes of cometary perihelion distances as a process of diffusion in the value of q, due to perturbations by stars. We find more comets at large q values than is observed. This suggests that a large number of long-period comets is not observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号