首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
日冕物质抛射(Coronal Mass Ejection,简称CME)和共转相互作用区(Corotating Interaction Region,简称CIR)是造成日地空间行星际扰动和地磁扰动的两个主要原因,提供了地球磁暴的主要驱动力,进而显著影响地球空间环境.为深入研究太阳风活动及受其主导影响的地磁活动的时间分布特征,本文对大量太阳风参数及地磁活动指数的数据进行了详细分析.首先,采用由NASA OMNIWeb提供的太阳风参数及地磁活动指数的公开数据,通过自主编写matlab程序对第23太阳活动周期(1996-01-01—2008-12-31)的数据包括行星际磁场Bz分量、太阳风速度、太阳风质子密度、太阳风动压等重要太阳风参数及Dst指数、AE指数、Kp指数等主要的地磁指数进行统计分析,建立了包括269个CME事件和456个CIR事件列表的数据库.采用事例分析法和时间序列叠加法分别对两类太阳活动的四个重要太阳风参数(IMF Bz、太阳风速度、太阳风质子密度、太阳风动压)和三个主要地磁指数(Dst、AE、Kp)进行统计分析,并研究了其统计特征.其次,根据Dst指数最小值确定了第23太阳活动周期内的355个孤立地磁暴事件,并以Dst指数最小值为标准将这些磁暴进一步分类为145个弱磁暴、123个中等磁暴、70个强磁暴、12个剧烈磁暴和5个巨大磁暴.最后,采用时间序列叠加法对不同强度磁暴的太阳风参数和地磁指数进行统计分析.统计分析表明,对于CME事件,Nsw/Pdyn(Nsw表示太阳风质子密度,Pdyn表示太阳风动压)线性拟合斜率一般为正;对于CIR事件,Nsw/Pdyn线性拟合斜率一般为负,这可作为辨别CME和CIR事件的一种有效方法.从平均意义上讲,相较于CIR事件,CME事件有更大的南向IMF Bz分量、太阳风动压Pdyn、AE指数、Kp指数以及更小的Dstmin.一般情况下,CME事件有更大的可能性驱动极强地磁暴.总体而言,对于不同强度的地磁暴,Dst指数的变化呈现出一定的相似性,但随着地磁暴强度的增强,Dst指数衰减的速度变快.CME和CIR事件以及其各自驱动的地磁暴事件有着很多不同,因此,需要将CME事件驱动的磁暴及CIR事件驱动的磁暴分开研究.建立CME、CIR事件及地磁暴的数据库以及获取的统计分析结果,将为深入研究地球磁层等离子体片、辐射带及环电流对太阳活动的响应特征提供有利的帮助.  相似文献   

2.
Characteristics of great geomagnetic storms during solar cycle 23 were statistically investigated. Firstly, we focused on the uniqueness of solar cycle 23 by analyzing both the great storm number and sunspot number from 1957 to 2008. It was found that the relationship between the sunspot number and great storm number weakened as the activity of the storms strengthened. There was no obvious relationship between the annual sunspot number and great storm number with Dstxi≤-300 nT. Secondly, we studied the relationship between the peak Dst and peak Bz in detail. It was found that the condition Bz≤-10 nT is not necessary for storms with Dst≤-100 nT, but seems necessary for storms with Dst≤-150 nT. The duration for Bz≤-10 nT has no direct relationship with the giant storm. The correlation coefficient between the Dst peak and Bz peak for the 89 storms studied is 0.81. After removing the effect of solar wind dynamic pressure on the Dst peak, we obtained a better correlation coefficient of 0.86. We also found the difference between the Dst peak and the corrected Dst peak was proportional to the Dst peak.  相似文献   

3.
Summary The individual storm-time variations of the geomagnetic field were compared with the variations of the Bz-component of the interplanetary magnetic field over 24 and 48-hour intervals of storm time. Good correlation between Bz and Dst was observed in about one half of the 166 cases analysed (1965–72), the time lag of the manifestations of the interplanetary field at the Earth's surface having been taken into account. The effect of the Bz-field is reflected to a considerably larger extent in intense storms (Dst –80 nT). Good correlation was observed in 80% of the total number of 35 intense storms. Preliminary investigations have shown that Dst-variations, constructed from Bz-data using the relations derived herein, are quite close to the observed, particularly as regards the main phase (3 examples are given).  相似文献   

4.
Geomagnetic storms are large disturbances in the Earth's magnetosphere caused by enhanced solar wind–magnetosphere energy transfer. One of the main manifestations of a geomagnetic storm is the ring current enhancement. It is responsible for the decrease in the geomagnetic field observed at ground stations. In this work, we study the ring current dynamics during two different levels of magnetic storms. Thirty-three events are selected during the period 1981–2004. Eighteen out of 33 events are very intense (or super-intense) magnetic storms (Dst ⩽−250 nT) and the remaining are intense magnetic storms (−250<Dst ⩽−100 nT). Interplanetary data from spacecraft in the solar wind near Earth's orbit (ACE, IMP-8, ISEE-3) and geomagnetic indices (Dst and Sym-H) are analyzed. Our aim is to evaluate the interplanetary characteristics (interplanetary dawn–dusk electric field, interplanetary magnetic field component BS), the ε parameter, and the total energy input into the magnetosphere () for these two classes of magnetic storms. Two corrections on the ε energy coupling function are made: the first one is an already known correction in the magnetopause radius to take into account the variation in the solar wind pressure. The second correction on the Akasofu parameter, first proposed in this work, accounts for the reconnection efficiency as a function of the solar wind ram pressure. Geomagnetic data/indices are also employed to study the ring current dynamics and to search for the differences in the storm evolution during these events. Our corrected ε parameter is shown to be more adequate to explain storm energy balance because the energy input and the energy dissipated in the ring current are in better agreement with modern estimates as compared with previous works. For super-intense storms, the correction of the Akasofu ε is on average a scaling factor of 3.7, whilst for intense events, this scaling factor is on average 3.4. The injected energy during the main phase using corrected ε can be considered a criterion to separate intense from very intense storms. Other possibilities of cutoff values based on the energy input are also investigated. A threshold value for the input energy is much more clear when a new classification on Dst=−165 nT is considered. It was found that the energy input during storms with Dst<−165 nT is double of the energy for storms with Dst>−165 nT.  相似文献   

5.
本文选取了INTERMAGNET地磁台网2001年到2012年的地磁数据,对其进行世界时(UT)到地方时(LT)的转换后利用自然正交分量法(NOC)从所选资料中提取出太阳静日变化Sq成分,再通过球谐分析方法建立模型分离内、外源Sq成分,逐日反演出内、外源Sq等效电流体系,并得到外源Sq等效电流体系南北电流涡中心电流强度.本文将外源Sq等效电流体系南北电流涡中心电流强度与同一时期的Dst指数进行了对比分析,研究表明它们之间具有同步变化的规律,且北半球电流涡中心电流强度在磁暴发生时的异常现象远高于南半球.对F10.7cm太阳射电流量与外源Sq等效电流体系南、北半球电流涡中心电流强度的长短周期分析发现,Sq等效电流表现出明显的11年周期特点,与太阳活动周期一致.外源南、北半球电流涡中心电流强度和F10.7cm年均值的相关系数分别达到了0.93和0.90,说明太阳活动是导致外源Sq电流体系变化的最直接也最主要的因素,这可能与电离层电导率受控于太阳的电磁辐射相关.  相似文献   

6.
中低纬地区电离层对CIR和CME响应的统计分析   总被引:1,自引:1,他引:0       下载免费PDF全文
本文利用中低纬日本地区(131°E,35°N)GPS-TEC格点化数据,分析了2001—2009年间109个共转相互作用区(CIR)事件、45个日冕物质抛射(CME)事件引起的地磁扰动期间电离层的响应.结果表明,电离层暴的类型随太阳活动的变化而有不同的变化,CIR事件引发的电离层正相暴、正负双相暴多发生在太阳活动下降年,负相暴多发生在高年,负正双相暴多发生在低年;CME事件引发的电离层正相暴和负相暴多发生在高年.CIR和CME引发的不同类型的电离层暴的季节性差异不大,在夏季多发生正负双相暴.电离层暴发生时间相对地磁暴的时延大部分在-6~6h之间,但CIR引发的电离层暴时延范围更广,在-12~24h之间,而CME引发的电离层暴时延主要在-6~6h之间.中低纬的电离层暴多发生在主相阶段,其中CIR引发的双相暴也会发生在初相阶段.电离层负暴多发生在AE最大值为800~1200nT之间.CIR引起的电离层扰动持续时间较长,一般在1~6天左右,而CME引起的电离层扰动持续时间一般在1~4天左右.  相似文献   

7.
对比分析1957--2008年间Dst≤-100nT的强磁暴数与太阳黑子数的变化趋势,发现太阳黑子数和Dst≤-100nT的强磁暴数的变化趋势有很好的一致性。进一步统计强磁暴在太阳周不同阶段的分布后发现,同一太阳周内60%以上的强磁暴出现在下降年,但从太阳周各个阶段的平均磁暴年发生率来看,强磁暴平均年发生率最高的年份仍然是太阳活动极大年。  相似文献   

8.
The polar geomagnetic activity resulting from solar wind–magnetosphere interactions can be characterized the Polar Cap (PC) indices, PCN and PCS. PC index values are derived from polar magnetic variations calibrated on a statistical basis such that the index approximate values in units of mV/m of the interplanetary “geo-effective” (or “merging”) electric field (EM) conveyed by the solar wind. The timing and amplitude relations of the PC index to solar wind plasma and magnetic field parameters are reported. The solar wind effects are parameterized in terms of the geo-effective electric field (EM) and the dynamical pressure (PDYN). The PC index has a delayed and damped response to EM variations and display saturation-like effects for EM values exceeding 10 mV/m. Steady or slowly varying levels of solar wind dynamical pressure have little or no impact on the PC index above the effects related to EM for which the solar wind velocity is also a factor. Sharp increases in the dynamical pressure generate impulsive variations in the PC index comprising a initial negative impulse of 5–10 min duration followed by a positive impulse lasting 10–20 min. Typical amplitudes of both the negative and the positive impulses are 0.2–0.5 units. A sharp decrease in the pressure produces the inverse sequence of pulses in the PC index. Auroral substorm activity represented by the AL index level has a marked influence on the average PC/EM level at the transition from very quiet (AL0 nT) to disturbed conditions while more or less disturbed conditions (AL<100 nT) have no systematic effect on the average PC/EM values. At distinct substorm events the PC/EM ratio has a minimum (0.8) in the pre-onset phase at around 20 min before substorm onset. The average ratio gradually increases in the expansion phase to reach a maximum value (1.1) at around 40 min after substorm onset (or 20 min after the largest (negative) peak in AL). At substorm recovery during the next 2 h the PC/EM ratio decreases. Finally, we report on the application of polar magnetic variations to model the disturbance storm time (Dst) index development during magnetic storms by using the PC index as a source function to quantify the energy input to the ring current representing accumulated storm energy and characterized by the Dst index.  相似文献   

9.
We study the annual frequency of occurrence of intense geomagnetic storms (Dst < –100 nT) throughout the solar activity cycle for the last three cycles and find that it shows different structures. In cycles 20 and 22 it peaks during the ascending phase, near sunspot maximum. During cycle 21, however, there is one peak in the ascending phase and a second, higher, peak in the descending phase separated by a minimum of storm occurrence during 1980, the sunspot maximum. We compare the solar cycle distribution of storms with the corresponding evolution of coronal mass ejections and flares. We find that, as the frequency of occurrence of coronal mass ejections seems to follow very closely the evolution of the sunspot number, it does not reproduce the storm profiles. The temporal distribution of flares varies from that of sunspots and is more in agreement with the distribution of intense geomagnetic storms, but flares show a maximum at every sunspot maximum and cannot then explain the small number of intense storms in 1980. In a previous study we demonstrated that, in most cases, the occurrence of intense geomagnetic storms is associated with a flaring event in an active region located near a coronal hole. In this work we study the spatial relationship between active regions and coronal holes for solar cycles 21 and 22 and find that it also shows different temporal evolution in each cycle in accordance with the occurrence of strong geomagnetic storms; although there were many active regions during 1980, most of the time they were far from coronal holes. We analyse in detail the situation for the intense geomagnetic storms in 1980 and show that, in every case, they were associated with a flare in one of the few active regions adjacent to a coronal hole.  相似文献   

10.
本文选取2002-2006年期间的36个强磁暴为研究对象,对CHAMP卫星加速度仪反演的实测大气密度进行经验正交分解,研究暴时热层大气密度的纬度分布特征,以及大气密度与ap指数、Dst指数的关系.结果表明,大气密度的纬度分布与季节相关,夏季半球的密度大于冬季半球,春秋季节南北半球的大气密度几乎对称分布;春秋季节白天大气密度在低纬地区呈现出赤道密度异常结构,在中高纬地区密度随纬度增加而减小,夜间则呈现抛物线的形状,赤道附近密度值最小.大气密度的纬度分布特征在若干天内具有良好的稳定性,发生时间相近的磁暴事件,纬度分布曲线非常相似,并且暴前与暴时的纬度分布变化不大.相关性分析表明,大气密度滞后ap指数2~6 h,相对Dst指数平均提前0~1 h,对磁暴的响应速度在日照区比在阴影区快,大气密度与ap指数、Dst指数具有较好的相关性.  相似文献   

11.
Summary In this work the previous author's results concerning the geomagnetic effect of the interplanetary parameters in dependence on geomagnetic latitude are verified, complemented and presented with better accuracy. Data of 7 intensive storms recorded in 1973–79 at 5 observatories with slight differences in local time and with the appropriate latitude distribution limited by real possibilities have been analysed. Even in these cases the derived values of the constants determining the dependence of storm-time variations of the geomagnetic field upon both the dynamic pressure of the solar wind(P) and the interplanetary electric field(Ey) vary relatively regularly with geomagnetic latitude. The anomaly of Dst and DR-variations from the Almeria Observatory (AE) evident in some intensive storms is pointed out here. Unlike the previous work the time characteristics () of the ring current decay have been studied from the standpoint of the main (m) and recovery (r) phases of the storm. This yields higher values of r as compared to from the above mentioned work. On the other hand, a large decrease in the values of r was observed in some cases at a latitude of about 40°, as in the earlier study. Actually this phenomenon does not occur in all intensive storms as could be expected. As to the investigated storms, m seems to be independent of geomagnetic latitude and much lower in its magnitude than r.  相似文献   

12.
Geomagnetism and Aeronomy - Based on the OMNI2 archival data for 1995–2017, the dynamics of geomagnetic activity indices (Dst, ap, AE, and PC) and interplanetary parameters over the periods...  相似文献   

13.
Great magnetic storms (geomagnetic index C9 is ≥8 for St. Petersburg, which can correspond to Kp ≥ 8 or Dst < ?200 nT), registered from 1841 to 1870 at the St. Petersburg, Yekaterinburg, Barnaul, Nerchinsk, Sitka, and Beijing (at the Russian embassy) observatories are analyzed. A catalog of intensive magnetic storms during this period, which includes solar cycles 9–11, has been compiled. The statistical characteristics of great magnetic storms during this historical period have been obtained. These results indicate that high solar activity played a decisive role in the generation of very intense magnetic storms during the considered period. These storms are characterized by only one peak in a solar cycle, which was registered in the years of the cycle minimum (or slightly earlier): the number of great geomagnetic storms near the solar activity maximum was twice as large as the number of such storms during less active periods. A maximum in September–October and an additional maximum in February are observed in the annual distribution of storms. In addition, the storm intensity inversely depends on the storm duration.  相似文献   

14.
We address the geoeffectiveness of three interplanetary structures in the interplanetary space: magnetic clouds (MCs), interplanetary shocks (IPSs), and corotating interaction regions (CIRs). The geoeffectiveness is evaluated using the geomagnetic indices Kp, AE, and Dst. We find that MCs are more geoeffective than IPSs, or CIRs. The average values of magnetic indices are significantly enhanced during disturbed periods associated with MCs, IPSs and CIRs, compared to the whole interval. The highest effect is noted for MC disturbed periods.Results obtained for the three data sets are used to derive a theoretical (continuous) probability distribution function (PDF) by fitting the histograms representing the percentage of events against the intervals of magnetic index. PDFs allow estimation of the probability of a given level of geomagnetic activity to be reached after the detection, by in situ solar wind observations, of a given interplanetary structure approaching the Earth.  相似文献   

15.
利用第23太阳活动周中WIND和ACE资料,统计分析行星际扰动对不同水平地磁活动的影响,研究磁暴强度与不同行星际参数之间的相关性,结果发现:①从长期来看,地磁活动指数Dst与太阳风速度的相关性最好,相关性在太阳活动谷年时最高;②多磁暴时序叠加结果证实了导致小、中、强磁暴开始的经验行星际南向磁场条件,磁暴过程中行星际磁场...  相似文献   

16.
Statistical study on the universal time variations in the mean hourly auroral electrojet index (AE-index) has been undertaken for a 21 y period over two solar cycles (1957–1968 and 1978–1986). The analysis, applied to isolated auroral substorm onsets (inferred from rapid variations in the AE-index) and to the bulk of the AE data, indicates that the maximum in auroral activity is largely confined to 09–18 UT, with a distinct minimum at 03–06 UT. The diurnal effect was clearly present throughout all seasons in the first cycle but was mainly limited to northern winter in the second cycle. Severe storms (AE > 1000 nT) tended to occur between 9–18 UT irrespective of the seasons whereas all larger magnetic disturbances (AE > 500 nT) tended to occur in this time interval mostly in winter. On the whole the diurnal trend was strong in winter, intermediate at equinox and weak in summer. The implication of this study is that Eastern Siberia, Japan and Australia are mostly at night, during the period of maximum auroral activity whereas Europe and Eastern America are then mostly at daytime. The minimum of auroral activity coincides with near-midnight conditions in Eastern America. It appears that the diurnal UT distribution in the AE-index reflects a diurnal change between interplanetary magnetic field orientation and the Earths magnetic dipole inclination.  相似文献   

17.
A previous application of extreme-value statistics to the first, second and third largest geomagnetic storms per solar cycle for nine solar cycles is extended to fourteen solar cycles (1844–1993). The intensity of a geomagnetic storm is measured by the magnitude of the daily aa index, rather than the half-daily aa index used previously. Values of the conventional aa index (1868– 1993), supplemented by the Helsinki Ak index (1844–1880), provide an almost continuous, and largely homogeneous, daily measure of geomagnetic activity over an interval of 150 years. As in the earlier investigation, analytic expressions giving the probabilities of the three greatest storms (extreme values) per solar cycle, as continuous functions of storm magnitude (ad), are obtained by least-squares fitting of the observations to the appropriate theoretical extreme-value probability functions. These expressions are used to obtain the statistical characteristics of the extreme values; namely, the mode, median, mean, standard deviation and relative dispersion. Since the Ak index may not provide an entirely homogeneous extension of the aa index, the statistical analysis is performed separately for twelve solar cycles (1868–1993), as well as nine solar cycles (1868–1967). The results are utilized to determine the expected ranges of the extreme values as a function of the number of solar cycles. For fourteen solar cycles, the expected ranges of the daily aa index for the first, second and third largest geomagnetic storms per solar cycle decrease monotonically in magnitude, contrary to the situation for the half-daily aa index over nine solar cycles. The observed range of the first extreme daily aa index for fourteen solar cycles is 159–352 nT and for twelve solar cycles is 215–352 nT. In a group of 100 solar cycles the expected ranges are expanded to 137–539 and 177–511 nT, which represent increases of 108% and 144% in the respective ranges. Thus there is at least a 99% probability that the daily aa index willAlso Visiting Reader in Physics, University of Sussex, Palmer, Brighton, BN1 9QH, UK  相似文献   

18.
行星际扰动和地磁活动对GEO相对论电子影响   总被引:1,自引:0,他引:1       下载免费PDF全文
利用1988—2010年小时平均的GOES卫星数据,对地球同步轨道(GEO)相对论电子变化进行了统计分析,研究了相对论电子通量(Fe)增强事件的发展过程,探讨了利于相对论电子通量增强的太阳风和地磁活动条件.主要结论如下:(1)GEO相对论电子通量即使是峰值,也具有明显的地方时特性,最大电子通量出现在磁正午时.午/夜电子通量比率随着太阳风速度(Vsw)增加而增大;在Dst-50nT时相对论电子具有规则的地方时变化.在太阳活动下降相,电子通量与各参数的相关性较好,与其相关性最好的Vsw、Kp指数以及三次根号下的太阳风密度(N)分别出现在电子通量前39~57h、57~80h和12~24h.(2)强(日平均电子通量峰值Femax≥104 pfu)相对论电子事件,在距离太阳活动谷年前两年左右和春秋分期间发生率最高,较弱(104Femax≥103 pfu)事件无此特点;大部分强相对论电子事件中,电子通量在磁暴主相开始增加,较弱事件中则在恢复相开始回升.(3)太阳风密度变化对相对论电子事件的发展具有重要指示作用.电子通量在太阳风密度极大值后0~1天达到极小值,太阳风密度极小值后0~2天达到极大值.(4)90%以上相对论电子事件是在磁暴及高速太阳风的条件下发生的,与其伴随的行星际参数和地磁活动指数极值满足以下条件:Vswmax516km/s,Dstmin-31nT,Nmin2.8cm-3,Nmax14.1cm-3,Bzmin-2.9nT,AEmax698nT.(5)磁暴过程中,Dstmin后日平均电子通量大于103 pfu的发生概率为53%左右,强/弱相对论电子事件占总数比例分别为36%/64%左右,磁暴强度对其无影响.磁暴过程中的Vsw、N和AE指数大小对于能否引起相对论电子增强起着指示作用.  相似文献   

19.
The influence of geomagnetic disturbances on electron density Ne at F1 layer altitudes in different conditions of solar activity during the autumnal and vernal seasons of 2003–2015, according to the data from the Irkutsk digital ionospheric station (52° N, 104° Е) is examined. Variations of Ne at heights of 150–190 km during the periods of twenty medium-scale and strong geomagnetic storms have been analyzed. At these specified heights, a vernal–autumn asymmetry of geomagnetic storm effects is discovered in all periods of solar activity of 2003–2015: a considerable Ne decrease at a height of 190 km and a weaker effect at lower levels during the autumnal storms. During vernal storms, no significant Ne decrease as compared with quiet conditions was registered over the entire analyzed interval of 150?190 km.  相似文献   

20.
The dependence of the correlation coefficient r(h, fo) between the stratospheric parameter h(100) and critical frequency foF2 revealed in the data of two solar cycles (1979–1989 and 1990–2000) on geomagnetic activity is analyzed. It is shown that the character of the r(h, fo) dependence on limitation on the Ap geomagnetic index is the same in both cycles but depends on the time of day and solar activity level for the given year. It is also found that there is a considerable difference in the absolute values of r(h, fo) between two cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号