首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the results of our study of the physical and dynamical parameters of the multiple system HD 222326. A new method for determining the individual radial velocities of components in wide binary and multiple systems in the case of small radial-velocity differences (δV r ≤ the FWHMfor the line profiles) is suggested and tested for both model systems and the binary HD 10009. This testing yielded the component radial velocities V r 1,2 for HD 10009, enabling us to derive the center-of mass velocity, V γ, for the first time. We determined the radial velocities of the components of HD 222326 from high-resolution spectra, and refined the orbital parameters of the subsystems using speckle-interferometric observations. A combined spectroscopic and speckle interferometric analysis enabled us to find the positions of the components in the spectral type—luminosity diagram and to estimate their masses. It is likely that the components are all in various evolutionary stages after leaving the main sequence. We analyzed the dynamical evolution of the system using numerical modeling in the gravitational three-body problem and the known stability criteria for triple systems. The system is probably stable on time scales of at least 106 years. The presence of a fourth component in the system is also suggested.  相似文献   

2.
N-body dynamical simulations are used to analyze the conditions for the gravitational stability of a three-dimensional stellar disk in the gravitational field of two rigid spherical components—a bulge and halo whose central concentrations and relative masses vary over wide ranges. The number of point masses N in the simulations varies from 40 to 500 000 and the evolution of the simulated systems is followed over 10–20 rotation periods of the outer edge of the disk. The initially unstable disks are heated and, as a rule, reach a quasi-stationary equilibrium with a steady-state radial-velocity dispersion cr over five to eight turns. The radial behavior of the Toomre stability parameter QT(r) for the final state of the disk is estimated. Simple models are used to analyze the dependence of the gravitational stability of the disk on the relative masses of the spherical components, disk thickness, degree of differential rotation, and initial state of the disk. Formal application of existing, analytical, local criteria for marginal stability of the disk can lead to errors in cr of more than a factor of 1.5. It is suggested that the approximate constancy of QT?1.2–1.5 for r?(1–2)×L (where L is the radial scale of disk surface density), valid for a wide range of models, can be used to estimate upper limits for the mass and density of a disk based on the observed distributions of the rotational velocity of the gaseous component and of the stellar velocity dispersion.  相似文献   

3.
We analyze the dynamical stability of the hierarchical quadruple systems HD 68255/6/7 and HD 76644 via numerical integration of the equations of motion of the four-body problem, with a chainlike regularization of close stellar interactions. The observational errors were taken into account using Monte Carlo simulations, assuming that they possessed a Gaussian distribution. HD 68255/6/7 is probably stable, while HD 76644 is unstable with a probability exceeding 0.97 and with a disruption time of no more than 105 years. The influence of the observational errors and possible scenarios for the formation of unstable multiple stars are discussed.  相似文献   

4.
A series of dynamical models of the Galaxy is constructed assuming that the entire disk is near the gravitational-stability limit. This imposes constraints on the dynamical and kinematic parameters of the main subsystems (the disk, bulge, and halo). The disk surface density in the solar neighborhood should not exceed 58 M/pc2. Further, we find that the observed local decrease in the rotational velocity at 6 kpc ? r ? 10 kpc is not associated with details of the radial distribution of matter in the Galaxy and instead results from dynamical processes or some other factors responsible for noncircular motions. It follows from the presence of a long-lived bar and the observed distribution of the stellar-velocity dispersion that the central maximum in the rotation curve at radius r ? 300 pc cannot be associated with a very concentrated bulge core. The best agreement between the observational data and the parameters of the dynamical models is achieved for a radial disk scale length of L ? 3 kpc. The relative contribution of the disk to the circular rotational velocity at r = 2.2L is 73%.  相似文献   

5.
The stability of multiple systems with known orbital elements and with subsystems occupying adjacent hierarchy levels is analyzed using six stability criteria and numerical simulations of their dynamical evolution. All the stability criteria considered are in qualitative agreement with the numerical computations. Of the 16 systems studied, 11 are confirmed to be stable and five (HD 40887, HD 136176, HD 150680, HD 217675, and HD 222326) may be unstable on time scales of ~106 yr or less. The small dynamical ages of the unstable systems may indicate that they have captured components during encounters between close binaries and field or moving cluster stars. The instability could also result from the perturbation of a stable system when it approaches a massive object (star, black hole, or molecular cloud). It is possible that some of the unstable systems are remnants of small clusters or stellar groups.  相似文献   

6.
We have modeled the magnetic fields of the slowly rotating stars HD 116458 and HD 126515 using the “magnetic charge” technique. HD 116458 has a small angle between its rotation axis and dipole axis (β = 12°), whereas this angle is large for HD 126515 (β = 86°). Both stars can be described with a decentered-dipole model, with the respective displacements being r = 0.07 and r = 0.24 in units of the stellar radius. The decentered-dipole model is able to satisfactorily explain the phase relations for the effective field, Be(P), and the mean surface field, Bs(P), for both stars, along with the fact that the Be(P) phase relation for HD 126515 is anharmonic. We discuss the role of systematic measurement errors possibly resulting from instrumental or methodical effects in one or both of the phase relations. The displacement of the dipole probably reflects real asymmetry of the stellar field structure, and is not due to measurement errors. Using both phase relations, Be(P) and Bs(P), in the modeling considerably reduces the influence of the nonuniform distribution of chemical elements on the stellar surface.  相似文献   

7.
We have carried out numerical simulations of the dynamical evolution of galaxy clusters taking into account merging when the relative velocities of the colliding galaxies are low. In particular, we study the evolution of the structure, mass spectrum, and velocity spectrum of a cluster of a thousand galaxies, as well as the growth of the central supermassive cD galaxy. The initial velocity dispersion of the galaxies and the rotation of the cluster were taken into account. The observed logarithmic spectrum dN\(\tfrac{{dM}}{M}\) was adopted as the initial mass spectrum. The dynamical evolution of galaxy clusters, allowing for the possible merging of colliding galaxies, results in the emergence of a central supermassive galaxy, whose mass continuously increases due to mergers. This occurs only if the mass of the central galaxy becomes greater than ~0.1 of the total mass of the cluster. The observation of cD galaxies with relative masses of ~0.01 suggests that they initially formed in the cluster core, merged with nearby galaxies, and accreted intergalactic gas. The model indicates that a logarithmic galaxy mass spectrum is preserved during the cluster evolution, despite the substantial decrease in the number of galaxies in the cluster with time. The model can also reproduce the observed mass distribution with distance from the cluster center, M r r 1.7.  相似文献   

8.
The atmospheric abundances of 30 chemical elements in the halo star HD 221170 are analyzed by fitting synthetic spectra to observed spectra (i) with a resolution of 60 000 and signal-to-noise ratios of about 200 taken with the 1.93-m telescope of the Observatoire de Haute Provence and (ii) with a resolution of 35 000 and signal-to-noise ratios of more than 100 taken with the 2-m telescope of the Terskol Peak Observatory. The derived parameters of the stellar atmosphere are Teff=4475 K, log g=1.0, [Fe/H]=?2.03, Vmicro=1.7 km/s, and Vmacro=4 km/s. The parameters Teff, log g, [Fe/H], and Vmicro can be determined by analyzing the variations of the rms error of the mean iron abundance derived using different model atmospheres. The chemical composition of the star’s atmosphere is analyzed. The abundances of a total of 35 elements in HD 221170 have been derived in this paper and in previous studies. Overall, the abundances of elements lighter than praseodymium are consistent with the elemental abundances in the atmospheres of stars with similar metal deficits. Copper and manganese are underabundant by ?2.9 and ?2.6 dex, respectively, relative to the Sun (when the analysis includes the effects of hyperfine structure). Heavy r-process elements (starting from praseodymium) are overabundant compared to iron-group elements. This can be explained by an enrichment in r-process elements of the material from which the star was formed.  相似文献   

9.
We analyze three-phase flow of immiscible fluids taking place within an elementary capillary tube with circular cross-section under water- and oil-wet conditions. We account explicitly for momentum transfer between the moving phases, which leads to the phenomenon of viscous coupling, by imposing continuity of velocity and shear stress at fluid-fluid interfaces. The macroscopic flow model which describes the system at the Darcy scale includes three-phase effective relative permeabilities, K i j,r , accounting for the flux of the ith phase due to the presence of the jth phase. These effective parameters strongly depend on phase saturations, fluid viscosities, and wettability of the solid matrix. In the considered flow setting, K i j,r reduce to a set of nine scalar quantities, K i j,r . Our results show that K i j,r of the wetting phase is a function only of the fluid phase own saturation. Otherwise, K i j,r of the non-wetting phase depends on the saturation of all fluids in the system and on oil and water viscosities. Viscous coupling effects (encapsulated in K i j,r with ij) can be significantly relevant in both water- and oil-wet systems. Wettability conditions influence oil flow at a rate that increases linearly with viscosity ratio between oil and water phases.  相似文献   

10.
We have obtained the stellar velocity dispersion in three mutually perpendicular directions in the halos and cores of clusters as a function of time for several non-stationary open-cluster models. During the dynamical evolution of the open-cluster models, the velocity dispersions undergo oscillations that do not decay during 5–10 violent-relaxation timescales, τ vr . We estimated the time for synchronization of the rotation of the open-cluster models and their motion around the center of the Galaxy, t s , which, depending on the model parameters, is t s ? (5–27)τ vr . Synchronization mechanisms for the models are discussed. The disruption of the systems in the force field of the Galaxy is strongly affected by tidal friction. We have also estimated the time for the formation of a spherical stellar-velocity distribution in the cluster models, t σ ? (6 ? 25)τ vr . The impact of instability in the stellar motions in a cluster on the formation of a spherical velocity distribution in the open-cluster models is discussed. We have noted a tendency for a weakening of the dependence of the coarse phase density of the cluster on small initial perturbations of the stellar phase coordinates in the model cluster cores for times about five times longer than the violent-relaxation time.  相似文献   

11.
This study quantifies the influence of various intrinsic soil properties including particle roundness, R, sphericity, S, 50% size by weight, D 50, coefficient of uniformity, C u, and the state property of relative density, D r, on the compression and recompression indices, C c and C r, of sands of various geologic origins at pre-crushing stress levels. Twenty-four sands exhibiting a wide range of particle shapes, gradations, and geologic origins were collected for the study. The particle shapes were determined using a computational geometry algorithm which allows characterization of a statistically large number of particles in specimens. One dimensional oedometer tests were performed on the soils. The new data was augmented with many previously published results. Through statistical analyses, simple functional relationships are developed for C c and C r. In both cases, the models utilized only R and D r since other intrinsic properties proved to have lesser direct influence on the compression indices. However, previous studies showed that the contributions of S and C u are felt through their effects on index packing void ratios and thus on D r. The accuracy of the models was confirmed by comparison of predicted and observed C c and C r values.  相似文献   

12.
Rock slope instabilities are a major hazard for human activities often causing economic losses, property damages and maintenance costs, as well as injuries or fatalities. For slope stability analysis of open pit mines, series of studies must be carried out in order to identify the criteria which should take into consideration. In this research geotechnical parameters; Geological Strength Index (GSI), Rock Quality Designation (RQD), Cohesion (C), angle of internal friction (φ), uniaxial compressive strength (UCS) and Rock mass deformation modulus (Em) which are obtained from data measured within geotechnical boreholes and pore pressure (U) are considered as the criteria to evaluate stability of pit No.1 of the Gole Gohar iron mine, located in Kerman province, south east of Iran. Since human judgments and preferences are often vague and complex and decision makers cannot estimate their preferences with an exact scale, we can only give linguistic assessments instead of exact ones. So fuzzy set theory introduced into Analytical Hierarchy Process (AHP). Fuzzy AHP (FAHP) is put forward to solve such uncertain problems. In this paper, FAHP method is used to determine the weights of the criteria by decision makers and then classification of the stability of blocks are determined by TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method by the shortest distance to positive ideal solution (PIS) and the longest distance to negative ideal solution (NIS).  相似文献   

13.
We study the growth of the masses of neutron stars in binary systems due to the accumulation of mass from the optical donors accreted onto the neutron-star surface. Possible scenarios for this accretion are considered. The masses and magnetic-field strengths of radio pulsars derived using population-synthesis methods are compared to the observational data. The population-synthesis analysis indicates that a neutron star can increase its mass from the standard value of m x ? 1.35M to the Oppenheimer-Volkoff limit, m x ? 2.5M, via accretion from a companion.  相似文献   

14.
We have determined the main parameters of the old precataclysmic variable stars MS Peg and LM Com. The radial velocities of the components, reflection effects in the spectra, and light curves of the systems are studied based on model stellar atmospheres subject to external irradiation. Forty-seven moderate-resolution spectra for MS Peg and 57 for LM Com obtained with the 6-m telescope of the Special Astrophysical Observatory are used to derive the refined orbital periods of 0.1736660 days and 0.2586873 days, respectively; the orbital eccentricities do not exceed e=0.04. The mass (M w =0.49e) and radius (e w =0.015R) of the MS Peg primary calculated using the gravitational redshift correspond to those for a cooling carbon white dwarf with a thin hydrogen envelope. The parameters of the red dwarf (M r =0.19M, Teff=3560 K, R r =0.18R) are close to those derived from evolutionary tracks for main-sequence M stars with solar chemical composition. The radius (R r =0.22R) and temperature (Teff=3650 K) of the LM Com secondary exceed theoretical estimates for main-sequence stars with masses of M r =0.17M. The luminosity excess of the red dwarf in LM Com can be explained by a prolonged (T>5×106 yrs) relaxation of the M star to its normal state after the binary leaves the common-envelope stage. For both systems, theoretical U, B, V, and R light curves and spectra calculated using the adopted sets of parameters are generally consistent with the observations. This confirms the radiative origin of the hot spots, the unimportance of horizontal radiative transport, and the absence of large-scale velocity fields with high values (Vtrans>50 km/s) at the surfaces of the secondaries. Most of the emission lines in the spectra of these objects are formed under conditions close to thermalization, enabling modeling of their pro files in an LTE approximation. A strong λ3905 Å emission line has been identified as the 3s23p4s 1P0-3s23p2 1S SiI λ3905.52 Å line formed in the atmosphere of the hot spot. The observed intensity can be explained by non-LTE “superionization” of SiI atoms by soft UV radiation from the white dwarf. We suggest a technique for identifying binaries whose cool components are subject to UV irradiation based on observations of λ3905 Å emission in their spectra.  相似文献   

15.
The radial dependence of the pseudo phase-space density, ρ(r)/σ 3(r) is studied. We find that the pseudo phase-space density for halos consisting both of dark matter and baryons is approximately a power-law only down to 0.1% of the virial radius while it has a non-power law behavior below the quoted scale, with inner profiles changing with mass. Halos consisting just of dark matter, as the one in dark matter only simulations, are characterized by an approximately power-law behavior. The results argue against universality of the pseudo phase-space density, when the baryons effect are included, and as a consequence argue against universality of density profiles constituted by dark matter and baryons as also discussed in [1].  相似文献   

16.
Numerical simulations of the motions of stars in the gravitational fields of binary black holes with various component mass ratios have been carried out. Two models are considered: (1) the two-body problem with two fixed centers; (2) the general three-body problem. The first model is applicable only over short times Δt ? T, where T is the period of the binary system. The second model is applicable at all times except for during close encounters of stars with one of the binary components, r ≤ 0.00002 pc, where r is the distance from the star to the nearer black hole. In very close passages, relativistic corrections must be taken into account. Estimates of the probability of formation of high-velocity stars as a result of such interactions are obtained. It is shown that this mechanism is not suitable for the nucleus of our Galaxy due to the probable absence of a second massive black hole in the central region of the Galaxy.  相似文献   

17.
Lower limits for the percentages of stars with various luminosities in the cores of six globular clusters are derived using stellar spatial density distributions f(r) to deep limiting B magnitudes obtained earlier. For NGC 6535 and NGC 5466, the logarithmic density range and Kholopov parameters Df and Dr are also determined. These two parameters are correlated with the mean masses of stars of various subsystems and the total mass (number) of stars in the cluster.  相似文献   

18.
A CCD BV R photometric study of the central region (15″ ≤ r ≤ 100″) of the globular cluster NGC 7006 based on color-magnitude diagrams is presented. We find for the main parameters of the cluster [Fe/H] = ?1.62, Y = 0.21, E B?V = 0.15 m , V HB = 18.84 m , M V HB =+0.56 m , R = 37.1 kpc). Two previously unknown RR Lyr variables were discovered in the central region of the cluster. The morphological index of the horizontal branch for the entire region studied indicates that the red stellar population dominates, consistent with previous studies: HB mi = ?0.13. Such anomalously negative morphological indices are possessed by a whole group of Ool clusters with intermediate metallicities, which also display a characteristic distribution of stars along the horizontal branch. There is a radial dependence for the horizontal-branch morphology, with the color becoming primarily blue with approach toward the cluster center. One possible origin for this behavior could be the effect of inner dynamical processes on the spatial distribution of hot stars.  相似文献   

19.
Freshwater inflow is a driver of the functioning of estuaries, and average salinity is usually measured to identify the effects of inflow in salinity-zone habitats. However, salinity variability could act as a disturbance by producing unstable habitats, leading to the question: is salinity variance an indicator of benthic disturbance, and therefore a driver of community stability? The macrofauna communities of five estuaries that lie in a climatic gradient on the Texas coastline were analyzed using a 26-year data set. Comparisons within and between estuaries with different inflow regimes were used as a natural experiment to simulate press disturbance events (i.e., climatic inflow) and pulse disturbance (i.e., floods) in maintaining community stability. Salinity average and variance was compared with benthic community diversity, evenness, and species richness. Salinity variance was more correlated to benthic diversity for each estuarine system (r?=??0.6610; p?=?0.0015) than average salinity (r?=?0.3818; p?=?0.0967). As salinity variance decreased (i.e., stability increased), diversity levels of benthic communities increased, and areas with mgore freshwater inflow displayed lower levels of benthic diversity. These findings advance a component of the general theory of diversity maintenance that persistent stressors, such as salinity variability, can influence diversity.  相似文献   

20.
A new class of figures of equilibrium for a rotating gravitating fluid located inside a gravitating ring or torus is studied. These figures form a family of sequences of generalized oblate spheroids, in which there is for any value of the tidal parameter α in the interval 0 ≤ \(0 \leqslant \frac{\alpha }{{\pi G\rho }} \leqslant 0.1867\) ≤ 0.1867 a sequence of spheroids with oblatenesses emin (α) ≤ eemax (α). A series of classicalMaclaurin spheroids from a sphere to a flat disk is obtained for α = 0. At intermediate values 0 < ααmax, there are two limiting non-rotating spheroids in each sequence. When α = αmax, the sequence degenerates into a single non-rotating spheroid with ecr ≈ 0.9600, corresponding to the maximum oblateness of E7 elliptical galaxies. The second part of the paper considers the influence of rings of dark matter on the dynamics of elliptical galaxies. It is proposed that the equilibrium of an oblate isolated non-rotating galaxy is unstable, and it cannot be supported purely by anisotropy of the stellar velocity dispersion. A ring of dark matter can stabilize a weakly rotating galaxy, supplementing standard dynamical models for such stellar systems. In order for a galaxy to acquire appreciable oblateness, the mass of the ring must be an order of magnitude higher than the mass of the galaxy itself, consistent with the ratios of the masses of dark and baryonic matter in the Universe. The influence of massive external rings could shed light on the existence of galaxies with the critical oblateness E7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号