首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spectroscopic studies of the solar corona, using the high spatial and spectral resolution 25-cm coronagraph at the Norikura Solar Observatory for equatorial off-limb observations, indicated that the variation of radiance and line width with height is different for different temperature lines. The line width of the forbidden red emission line [Fe x] 6374 Å was found to increase with height, and that of the green emission line [Fe xiv] 5303 Å decreased with height. This had been interpreted in terms of the interaction between different temperature plasmas but needed to be confirmed. Further observations were made on several days during 2004, in two emission lines simultaneously covering the mid-latitude and polar regions to investigate the existence of the observed variation in other parts of the solar corona. In this study, we have analysed several raster scans that cover mid- and high-latitude regions of the off-limb corona in all four bright emission lines [Fe x] 6374 Å, [Fe xi] 7892 Å, [Fe xiii] 10747 Å, and [Fe xiv] 5303 Å. We find that the FWHM of the red line increases with height and that of the green line decreases with height, similar to the observations in the equatorial regions. The line widths are higher in the polar regions for all of the observed emission lines except the green line. Higher values of FWHM in polar regions may imply higher non-thermal velocities, which could be further linked to a non-thermal source powering the solar-wind acceleration, but the reason for the behaviour of the green emission line remains to be explored.  相似文献   

2.
Solar Cycle 24 is having a historically long and weak start. Observations of the Fe xiv corona from the Sacramento Peak site of the National Solar Observatory show an abnormal pattern of emission compared to observations of Cycles 21, 22, and 23 from the same instrument. The previous three cycles have shown a strong, rapid ??Rush to the Poles?? (previously observed in polar crown prominences and earlier coronal observations) in the parameter N(t,l,dt) (average number of Fe xiv emission features per day over dt days at time t and latitude l). Cycle 24 displays a weak, intermittent, and slow ??Rush?? that is apparent only in the northern hemisphere. If the northern Rush persists at its current rate, evidence from the Rushes in previous cycles indicates that solar maximum will occur in early 2013 or late 2012, at least in the northern hemisphere. At lower latitudes, solar maximum previously occurred when the time maximum of N(t,l,365) reached approximately 20° latitude. Currently, this parameter is at or below 30° and decreasing in latitude. Unfortunately, it is difficult at this time to calculate the rate of decrease in N(t,l,365). However, the southern hemisphere could reach 20° in 2011. Nonetheless, considering the levels of activity so far, there is a possibility that the maximum could be indiscernible.  相似文献   

3.
The RESIK instrument on the CORONAS-F spacecraft obtained solar flare and active-region X-ray spectra in four channels covering the wavelength range 3.8?–?6.1 Å in its operational period between 2001 and 2003. Several highly ionized silicon lines were observed within the range of the long-wavelength channel (5.00?–?6.05 Å). The fluxes of the Si?xiv Ly-β line (5.217 Å) and the Si?xiii 1s 2?–?1s3p line (5.688 Å) during 21 flares with optimized pulse-height analyzer settings on RESIK have been analyzed to obtain the silicon abundance relative to hydrogen in flare plasmas. As in previous work, the emitting plasma for each spectrum is assumed to be characterized by a single temperature and emission measure given by the ratio of emission in the two channels of GOES. The silicon abundance is determined to be A(Si)=7.93±.21 (Si?xiv) and 7.89±.13 (Si?xiii) on a logarithmic scale with H=12. These values, which vary by only very small amounts from flare to flare and times within flares, are 2.6±1.3 and 2.4±0.7 times the photospheric abundance, and are about a factor of three higher than RESIK measurements during a period of very low activity. There is a suggestion that the Si/S abundance ratio increases from active regions to flares.  相似文献   

4.
The Astronomical Institute of the Slovak Academy of Sciences has published the intensities, recalibrated with respect to a common intensity scale, of the 530.3 nm (Fe xiv) green coronal line observed at ground-based stations up to the year 2008. The name of this publication is Homogeneous Data Set (HDS). We have developed a method that allows one to successfully substitute the ground-based observations by satellite observations and, thus, continue with the publication of the HDS. For this purpose, the observations of the Extreme-ultraviolet Imaging Telescope (EIT), onboard the Solar and Heliospheric Observatory (SOHO) satellite, were exploited. Among other data the EIT instrument provides almost daily 28.4 nm (Fe xv) emission-line snapshots of the corona. The Fe xiv and Fe xv data (4051 observation days) taken in the period 1996?–?2008 have been compared and good agreement was found. The method to obtain the individual data for the HDS follows from the correlation analysis described in this article. The resulting data, now under the name of Modified Homogeneous Data Set (MHDS), are identical up to 1996 to those in the HDS. The MHDS can be used further for studies of the coronal solar activity and its cycle. These data are available at http://www.suh.sk .  相似文献   

5.
With a view to investigate variations in parameters of coronal emission lines over a large range of radial distance from the limb, raster scans were made with sufficiently long exposure times on several days during September – October 2003. An analysis of the data shows that (i) in most of the coronal structures, the FWHM of the Fe xiv 5303 Å line decreases up to 300″±50″, (ii) the FWHM of the Fe x 6374 Å line increases up to about 200″ and then remains unchanged up to about 500″, and (iii) the FWHMs of the Fe xi 7892 Å and Fe xiii 10747 Å lines show an intermediate behaviour with height. The analysis of the data also shows that the ratio of FWHM of 6374 Å to that of 5303 Å increases from 0.93 at the limb to 1.18 at 200″ above the limb. From this and the ratio of intensities of the two lines we infer that the plasma in steady coronal structures at a height of about 200″ has a temperature of about 1.5 MK and a non-thermal velocity around 17 km s?1. The observations also show that non-homogeneous temperatures and non-thermal velocities largely exist in the lower corona up to about 300″±100″ above the limb. Amplitudes of variations in FWHM of different emission lines with height in the coronal loops are similar to those in the diffuse plasma around the coronal loops.  相似文献   

6.
J. T. Mariska 《Solar physics》2013,282(2):629-639
Since its launch on 22 September 2006, the EUV Imaging Spectrometer onboard the Hinode satellite has exhibited a gradual decay in sensitivity. Using spectroheliograms taken in the Fe viii 185.21 Å and Si vii 275.35 Å emission lines in quiet regions near Sun center we characterize that decay. For the period from December 2006 to March 2012, the decline in the sensitivity can be characterized as an exponential decay with an average time constant of 7358±1030 days (20.2±2.8 years). Emission lines formed at temperatures ??106.1 K in the quiet Sun data exhibit solar-cycle effects.  相似文献   

7.
SWAP images from PROBA2 taken at 174 Å in the Fe ix/x lines are compared with simultaneous slitless flash spectra obtained during the solar total eclipse of 11 July 2010. Myriad faint low-excitation emission lines together with the He i and He ii Paschen α chromospheric lines are recorded on eclipse spectra where regions of limb prominences are obtained with space-borne imagers. We analyzed a deep flash spectrum obtained by summing 80 individual spectra to evaluate the intensity modulations of the continuum. Intensity deficits are observed and measured at the prominences boundaries in both eclipse and SWAP images. The prominence cavities interpreted as a relative depression of plasma density, produced inside the corona surrounding the prominences, and some intense heating occurring in these regions, are discussed. Photometric measurements are shown at different scales and different, spectrally narrow, intervals for both the prominences and the coronal background.  相似文献   

8.
The structure of the photospheric magnetic field during solar flares is examined using echelle spectropolarimetric observations. The study is based on several Fe i and Cr i lines observed at locations corresponding to brightest Hα emission during thermal phase of flares. The analysis is performed by comparing magnetic-field values deduced from lines with different magnetic sensitivities, as well as by examining the fine structure of I±V Stokes-profiles’ splitting. It is shown that the field has at least two components, with stronger unresolved flux tubes embedded in weaker ambient field. Based on a two-component magnetic-field model, we compare observed and synthetic line profiles and show that the field strength in small-scale flux tubes is about 2?–?3 kG. Furthermore, we find that the small-scale flux tubes are associated with flare emission, which may have implications for flare phenomenology.  相似文献   

9.
M. Waldmeier 《Solar physics》1975,43(2):351-358
Coronal interferograms in the lines of Fe xiv 5303 Å, He i 5876 Å and Fe x 6374 Å were obtained during the total solar eclipse of 10 July, 1972 (see Figure 2). He i emission was found in the chromosphere only. The upper limit of the D3 equivalent width in terms of the coronal continuous background is 0.013 Å in the inner corona (r=1.15 R⊙). The λ6374 negative was taken with low contrast. The half width of 16374 is 1.0–1.08 Å for a limited area of the corona (P=88?104°, r=1.30?1.44 R⊙). A detailed photometry of the 5303 Å line was carried out and the behaviour of the half widths and equivalent widths were studied in different regions of the corona. The half width of λ5303 increases with distance from the Sun's center in almost all the studied regions (1.2 R⊙ ? r ? 1.7 R⊙). This increase corresponds to an increase of the non-thermal velocities with a gradient of 1–2 km s-1 per 0.1 R⊙. The equivalent widths, expressed in the coronal continuous background intensity remain constant on the average.  相似文献   

10.
We analyze the evolution of coronal plasma upflows from the edges of AR 10978, which has the best limb-to-limb data coverage with Hinode’s EUV Imaging Spectrometer (EIS). We find that the observed evolution is largely due to the solar rotation progressively changing the viewpoint of nearly stationary flows. From the systematic changes in the upflow regions as a function of distance from disc center, we deduce their 3D geometrical properties as inclination and angular spread in three coronal lines (Si vii, Fe xii, and Fe xv). In agreement with magnetic extrapolations, we find that the flows are thin, fan-like structures rooted in quasi separatrix layers (QSLs). The fans are tilted away from the AR center. The highest plasma velocities in these three spectral lines have similar magnitudes and their heights increase with temperature. The spatial location and extent of the upflow regions in the Si vii, Fe xii, and Fe xv lines are different owing to i) temperature stratification and ii) line of sight integration of the spectral profiles with significantly different backgrounds. We conclude that we sample the same flows at different temperatures. Further, we find that the evolution of line widths during the disc passage is compatible with a broad range of velocities in the flows. Everything considered, our results are compatible with the AR upflows originating from reconnections along QSLs between over-pressure AR loops and neighboring under-pressure loops. The flows are driven along magnetic field lines by a pressure gradient in a stratified atmosphere. Our interpretation of the above results is that, at any given time, we observe the superposition of flows created by successive reconnections, leading to a broad velocity distribution.  相似文献   

11.
The flash spectrograms obtained at the June 30, 1973 eclipse contain the monochromatic images of a coronal condensation in three coronal lines of Fexiv 5303, Fex 6374 and Fexi 7892 and Hα line. The assumption of the axially-symmetric distribution of the emissivity in the coronal lines allows us to find the density and temperature structure of the coronal condensation. While the electron density in the central axis of the condensation is about ten times as high as that of the normal corona at each height, the temperature is not so high (T?2.3×106K). This seems to be a representative nature of a coronal active region in the post maximum phase of activity. It is found that there exists a cool and dense core (T = 106K, N e =6 × 109 cm-3 at 17000 km) at the lower part of the coronal condensation, which is in a close geometrical coincidence with the small active prominence protruding from the underlying plage region.  相似文献   

12.
Long-term variations of solar differential rotation and sunspot activity are investigated through re-analyzing the data on parameters of the differential-rotation law obtained by Makarov, Tlatov, and Callebaut (Solar Phys. 170, 373, 1997), Javaraiah, Bertello, and Ulrich (Astrophys. J. 626, 579, 2005a; Solar Phys. 232, 25, 2005b), and Javaraiah et al. (Solar Phys. 257, 61, 2009). Our results indicate that the solar-surface-rotation rate at the Equator (indicated by the A-parameter of the standard solar-rotation law) shows a secular decrease since Cycle 12 onwards, given by about 1?–?1.5×10?3 (deg?day?1?year?1). The B-parameter of the standard differential-rotation law seems to also show a secular decrease since Cycle 12 onwards, but of weak statistical significance. The rotation rate averaged over latitudes 0°?–?40° does not show a secular trend of statistical significance. Moreover, the average sunspot area shows a secular increase of statistical significance since Cycle 12 onwards, while a negative correlation is found between the level of sunspot activity (indicated by the average sunspot area) and the solar equatorial rotation on long-term scales.  相似文献   

13.
Possible precursor signatures in the quasi-periodic variations of solar photospheric fields were investigated in the build-up to one of the deepest solar minima experienced in the past 100 years. This unusual and deep solar minimum occurred between Solar Cycles 23 and 24. We used both wavelet and Fourier analysis to study the changes in the quasi-periodic variations of solar photospheric fields. Photospheric fields were derived using ground-based synoptic magnetograms spanning the period 1975.14 to 2009.86 and covering Solar Cycles 21, 22, and 23. A hemispheric asymmetry in the periodicities of the photospheric fields was seen only at latitudes above ±?45° when the data were divided into two parts based on a wavelet analysis: one prior to 1996 and the other after 1996. Furthermore, the hemispheric asymmetry was observed to be confined to the latitude range of 45° to 60°. This can be attributed to the variations in polar surges that primarily depend on both the emergence of surface magnetic flux and varying solar-surface flows. The observed asymmetry along with the fact that both solar fields above ±?45° and micro-turbulence levels in the inner-heliosphere have been decreasing since the early- to mid-nineties (Janardhan et al. in Geophys. Res. Lett. 382, 20108, 2011) suggest that around this time active changes occurred in the solar dynamo that governs the underlying basic processes in the Sun. These changes in turn probably initiated the build-up to the very deep solar minimum at the end of Cycle 23. The decline in fields above ±?45°, for well over a solar cycle, would imply that weak polar fields have been generated in the past two successive solar cycles, viz. Cycles 22 and 23. A continuation of this declining trend beyond 22 years, if it occurs, will have serious implications for our current understanding of the solar dynamo.  相似文献   

14.
We present an investigation of line-of-sight (LOS) velocity oscillations in solar faculae and sunspots. To study the phase relations between chromospheric and photospheric oscillations of the LOS velocity, we measured the time lag of the chromospheric signal relative to the photospheric one for several faculae and sunspots in a set of spectral line pairs. The measured time lags are different for different objects. The mean measured delay between the oscillations in the five-minute band in faculae is 50?s for the Si?i 10?827?Å?–?He?i 10?830?Å pair; for the pair Fe?i 6569?Å?–?Hα 6563?Å the mean delay is 20?s; for the pair Fe?i 4551?Å?–?Ba?ii 4554?Å the mean delay is 7?s; for the pair Si?i 8536?Å?–?Ca?ii 8542?Å the mean delay is 20?s. For the oscillations in the three-minute band in sunspot umbrae the mean delay is 55?s for the Si?i 10?827?Å?–?He?i 10?830?Å pair; for the Fe?i 6569?Å?–?Hα 6563?Å pair it was not possible to determine the delay; for the Fe?i 4551?Å?–?Ba?ii 4554?Å pair the mean delay is 6?s; for the Si?i 8536?Å?–?Ca?ii 8542?Å pair the mean delay is 21?s. Measured delays correspond to the wave propagation speed, which significantly exceeds the generally adopted speed of sound in the photosphere. This raises the question of the origin of these oscillations. The possibility that we deal with slow MHD waves is not ruled out.  相似文献   

15.
We recently found that the halo of the Milky Way contains a large reservoir of warm-hot gas that accounts for large fraction of the missing baryons from the Galaxy. The average physical properties of this circumgalactic medium (CGM) are determined by combining average absorption and emission measurements along several extragalactic sightlines. However, there is a wide distribution of both, the halo emission measure and the O?vii column density, suggesting that the Galactic warm-hot gaseous halo is anisotropic. We present Suzaku observations of fields close to two sightlines along which we have precise O?vii absorption measurements with Chandra. The column densities along these two sightlines are similar within errors, but we find that the emission measures are different: 0.0025±0.0006 cm?6?pc near the Mrk 421 direction and 0.0042±0.0008 cm?6?pc close to the PKS 2155-304 sightline. Therefore the densities and pathlengths in the two directions must be different, providing a suggestive evidence that the warm-hot gas in the CGM of the Milky Way is not distributed uniformly. However, the formal errors on derived parameters are too large to make such a claim. In the Mrk 421 direction we derive the density of \(1.6^{+2.6}_{-0.8} \times 10^{-4}~\mbox{cm}^{-3}\) and pathlength of \(334^{+685}_{-274}~\mbox{kpc}\) . In the PKS 2155-304 direction we measure the gas density of \(3.6^{+4.5}_{-1.8} \times10^{-4}~\mbox{cm}^{-3}\) and path-length of \(109^{+200}_{-82}~\mbox{kpc}\) . Thus the density and pathlength along these sightlines are consistent with each other within errors. The average density and pathlength of the two sightlines are similar to the global averages, so the halo mass is still huge, over 10 billion solar masses. With more such studies, we will be able to better characterize the CGM anisotropy and measure its mass more accurately. We can then compare the observational results with theoretical models and investigate if/how the CGM structure is related to the larger scale environment of the Milky Way. We also show that the Galactic disk makes insignificant contribution to the observed O?vii absorption; a similar conclusion was also reached by Henley and Shelton (2013) about the emission measure. We further argue that any density inhomogeneity in the warm-hot gas, be it from clumping, from the disk, or from a non-constant density gradient, would strengthen our result in that the Galactic halo path-length and the mass would become larger than what we estimate here. As such, our results are conservative and robust.  相似文献   

16.
A study of circumnuclear star-forming regions (CNSFRs) in several early-type spirals has been carried out in order to investigate their main properties: stellar and gas kinematics, dynamical masses, ionising stellar masses, chemical abundances and other properties of the ionised gas. Both high resolution (R~20,000) and moderate resolution (R~5000) have been used. In some cases, these regions (about 100–150 pc in size) are composed of several individual star clusters with sizes between 1.5 and 4.9 pc, estimated from Hubble Space Telescope images. Stellar and gas velocity dispersions are found to differ by about 20 to 30 km?s?1, with the Hβ emission lines being narrower than both the stellar lines and the [Oiii]λ5007 Å lines. The twice ionised oxygen, on the other hand, shows velocity dispersions comparable to those of stars. We have applied the virial theorem to estimate dynamical masses of the clusters, assuming that the systems are gravitationally bounded and spherically symmetric, and using previously measured sizes. The measured values of the stellar velocity dispersions yield dynamical masses of the order of 107 to 108 M for the full CNSFRs. We obtain oxygen abundances which are comparable to those found in high-metallicity disc Hii regions from direct measurements of electron temperatures and consistent with solar values within the errors. The region with the highest oxygen abundance is R3+R4 in NGC3504, 12+log(O/H)=8.85, about 1.5 times solar. The derived N/O ratios are, on average, larger than those found in high-metallicity disc Hii regions, and they do not seem to follow the trend of N/O vs. O/H which marks the secondary behaviour of nitrogen. On the other hand, the S/O ratios span a very narrow range—between 0.6 and 0.8 times solar. Compared to high-metallicity disc Hii regions, CNSFRs show values of the O23 and the N2 parameters whose distributions are shifted to lower and higher values, respectively. Hence, even though their derived oxygen and sulphur abundances are similar, higher values would in principle be obtained for the CNSFRs if pure empirical methods were used to estimate abundances. CNSFRs also exhibit lower ionisation parameters than their disc counterparts, as derived from [Sii]/[Siii]. Their ionisation structure also seems to be different, with CNSFRs showing radiation-field properties more similar to Hii galaxies than to disc high-metallicity Hii regions.  相似文献   

17.
A quiescent prominence observed above the north-west limb on November 20, 1980, is analyzed using data obtained with the Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission (SMM). The spectral data include the lines 1215 Å of Hi, 1401 Å of Oiv, 1402 Å of Siiv, 1548 Å of Civ, 1640 Å of Hei, and 1655 Å of Ci. From an analysis of these lines and their emission patterns we deduce physical characteristics of the prominence plasma, and suggest in particular that the prominence consisted of flux tubes at various temperatures. In the hotter parts of the plasma the number density reached values of about 3 × 1011 cm#X2212;3.  相似文献   

18.
Recent observations of the X-ray and EUV emission of non-supergiant B stars are summarized. As compared with O stars, the X-rays of most of the near-main-sequence B stars are soft, and the stars show a departure from theL x = 10?7 L bol relation. Using line driven wind models to provide an estimate of the density distribution, it is concluded that a major fraction of the wind emission measure is hot, whereas in shocked wind theory less than 10 percent of the wind emission measure should be hot. The X-ray observations suggest that all of the B stars are X-ray emitters with a basal X-ray luminosity of about 10?8.5 L bol . A hard component dominates the X-ray emission of τ Sco, and possible causes are discussed. For the Be stars, the X-ray emission is that which is expected from a normal B-star wind coming from the poles, as in the Wind Compressed Disk (WCD) model of Be stars. None of the stars, including theβ Cep stars, show noticeable variability in their X-rays.EUVE observations of CMa B2 II, find it to be the brightest object in the EUV sky at 500 to 700 Å. It shows a Lyman continuum flux that is a factor of 30 higher than line blanketed model atmospheres. The continuum is seen on both sides of the He I 504 Å edge, and the discrepancy with model atmospheres is even greater shortward of 504 Å. TheEUVE spectra show emission lines both from high stages of ionization ( Feix to Fexvi) and from low stages (Heii and Oiii). The Heii Lymanα results from recombination following X-ray photoionization in the wind, and the Oiii resonance line is found to be present because of the Bowen fluorescence mechanism. Thus, there is and interesting coupling between the wind production by the EUV photospheric emission, the production of X-ray and line EUV emission by winds, and the production of fluorescence by recombination in the wind; all of these processes are now observable in B stars.  相似文献   

19.
The relative Doppler velocities and linewidths in a polar coronal hole and the nearby quiet-Sun region have been obtained from the Solar and Heliospheric Observatory (SOHO)/Coronal Diagnostic Spectrometer (CDS) observations using emission lines originating at different heights in the solar atmosphere from the lower transition region (TR) to the low solar corona. The observed region is separated into the network and the cell interior, and the behavior of the above parameters were examined in the different regions. It has been found that the histograms of Doppler velocity and width are generally broader in the cell interior than in the network. The histograms of Doppler velocities of the network and cell interior do not show significant differences in most cases. However, in the case of the quiet Sun, the Doppler velocities of the cell interior are more blueshifted than those of the network for the lowermost line He?ii 304 Å, and an opposite behavior is seen for the uppermost line Mg?ix 368 Å. The linewidth histograms show that the network–cell difference is more prominent in the coronal hole. The network has a significantly larger linewidth than the cell interior for the lowermost TR line He?ii 304 Å for the quiet Sun. For the coronal hole, this is true for the three lower TR lines: He?ii 304 Å, O?iii 599 Å, and O?v 630 Å. We also obtained the correlations between the relative Doppler velocity and the width. A mild positive correlation is found for the lowermost transition-region line He?ii 304 Å, which decreases even more or become insignificant for the intermediate lines. For the low coronal line Mg?ix 368 Å, the correlation becomes strongly negative. This might be caused by standing waves or waves propagating from the lower to the upper solar atmosphere. The results may have implications for the generation of the fast solar wind and coronal heating.  相似文献   

20.
A progress report is given of investigations related to observations of stellar spectra obtained with the ultraviolet stellar spectrophotometer S59 aboard the ESRO TD-1A satellite. We describe first the processing of the observations: intensity and wavelength calibration, identification of lines, classification of spectra. Thereafter some important groups of lines are dealt with: non-LTE computation of the Mgii lines are presented: apart from the peculiar emission line and shell stars they compare well with the observations; intensity ratios, of Feii and Feiii lines are an important temperature classification criterion. Interstellar UV lines indicate large deficiencies of some metals, as compared to solar values. A new ultraviolet continuous extinction curve is determined. We discuss the strong outstreaming motions observed in α Cygni, and the consequent mass loss of this star (< 3 × 10?10 \(\mathfrak{M}_ \odot \) yr?1and finally we describe the composite spectrum of the (WC8+09I) bnary γ2 Velorum; the ultraviolet continuous spectrum of the WC star is about one magnitude brighter than any theory predicts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号